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Abstract

We characterize the abelian groups G for which the functors Ext(G, −) or Ext(−,G) commute with or
invert certain direct sums or direct products.
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1. Introduction

Let F be a functor acting on the category of abelian groups and let C be a class of
abelian groups. We address the problem of characterizing those F which preserve or
invert direct sums or products from C, according to the following definitions, in which
the indices run over arbitrary sets and the Ai are groups in C:

(1) F preserves direct sums from C if F (
⊕

i Ai) �
⊕

i(F (Ai));
(2) F preserves direct products from C if F (

∏
i Ai) �

∏
i(F (Ai));

(3) F inverts direct products from C if F (
∏

i Ai) �
⊕

i(F (Ai));
(4) F inverts direct sums from C if F (

⊕
i Ai) �

∏
i(F (Ai)).

This problem is a generalization of many well-known results in the theory of abelian
groups and modules. For example, the classic text of Fuchs [9] contains proofs that
the covariant functors Hom(G, −) and Ext(G, −) preserve direct products, whereas the
contravariant functors Hom(−,G) and Ext(−,G) invert direct sums from the class A
of all abelian groups.

The simplest case for the preserving/inverting properties of Hom functors is that
of small abelian groups, that is, abelian groups G for which the functor Hom(G, −)
preserves direct sums from A. These are precisely the finitely generated abelian
groups. However, the characterization of the other preserving/inverting properties is

c© 2013 Australian Mathematical Publishing Association Inc. 1446-7887/2013 $16.00

276

https://doi.org/10.1017/S1446788712000456 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000456


[2] Commuting properties of Ext 277

more complicated. For instance, in [10], the class of slender groups is characterized,
where slender groups are those abelian groups G for which the functor Hom(−,G)
inverts direct products of non-measurable index from A. Each of the four properties
for the two cases F = Hom(−,G) and F = Hom(G, −) are considered in the recent
papers [5, 15]. A related problem concerns the ‘self’ specialization: describe the
class of groups G for which Hom(G, −) or Hom(−,G) preserve or invert sums or
products of copies of G. For example, G is self-small [4] if for all cardinals
κ, Hom(G,

⊕
κ G) is naturally isomorphic to

⊕
κ Hom(G,G) and self-slender if

Hom(
∏

κ G,G) �
⊕

κ Hom(G,G). These properties are considered in [3, 8, 11, 15].
Concerning corresponding properties of the extension functors, Göbel and Trlifaj

proved in [14, Example 3.1.8], using a result of Salce [18], that despite the results
in [9] quoted above, there are important differences between the cases of Hom and Ext.
In [12] Göbel and Prelle showed that Ext(−,G) inverts direct products and preserves
direct products from the class of abelian groups if and only if G is divisible, and
from the class of torsion-free abelian groups if and only if G is cotorsion; that is,
Ext(J,G) = 0 for all torsion-free groups J.

In this paper, we complete the characterization of the groups G for which the
functors Ext(−,G) or Ext(G, −) preserve or invert direct sums and products from
various classes of abelian groups.

If Ext(−,G) or Ext(G, −) preserve or invert arbitrary sums or products of copies of
G, we say that they preserve or invert self-sums or self-products.

Just like the Hom functors, it turns out that the most interesting cases are:
• C-Ext-small groups = {G : Ext(G, −) preserves sums from C},
• C-Ext-slender groups = {G : Ext(−,G) inverts products from C},
together with the corresponding ‘self’ versions. Note that in the papers [1, 7] these
concepts are called C-extendible and C-coextendible, respectively.

Henceforth, to simplify the notation, ‘group’ means abelian group, ‘sum’ means
direct sum and ‘product’ means direct product. For a group A and a cardinal κ, let
A(κ) =

⊕
κ A and Aκ =

∏
κ A. For any group A we denote by T (A) the torsion subgroup

of A. For a prime p, we denote by Ap the p-component of T (A) and by A[p] the socle of
Ap. Except where explicitly stated, we adopt the notation of the standard reference [9].
In particular, Z(pn) is the cyclic group of order pn for some prime p, Jp is the group of
p-adic integers and Zp the localization of the integers Z at the prime p.

The various classes C of groups from which we take direct sums or products are as
follows:
• A, all abelian groups;
• TF, torsion-free groups;
• T, torsion groups;
• D, divisible groups;
• p∞A, p-divisible groups;
• A[p∞], p-groups;
• Cp, cyclic p-groups;
• {B}, a singleton group B.
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We use repeatedly the trivial but useful result that if C ⊆ C′ are classes of groups and
F is a functor which preserves (inverts) sums (products) from C′, then F preserves
(inverts) sums (products) from C.

In Section 2 we survey the known results and characterize the C-Ext-slender groups
for various classes C, and the self-Ext-slender groups.

In Section 3 we characterize the groups G for which Ext(G, −) inverts products from
some classes C, and in Section 4 those for which Ext(G, −) inverts sums from C. For
example, we prove in Theorem 4.5 that Ext(G, −) inverts sums from TF , and hence
fromA, if and only if G is free.

Section 5 contains a characterization of the C-Ext-small groups for some important
classes C. This complements the results from [7], in which we proved that a group is
A-Ext-small if and only if it is TF -Ext-small, and the class of these groups coincides
with the class of groups which are direct sums of a finitely generated group and a free
group.

R 1.1. (1) For any family (Ai)i∈I of groups from a class C, there are canonical
injections ιi : Ai→

⊕
i Ai and projections πi :

∏
i Ai→ Ai. The functors Ext(G, −)

and Ext(−,G) induce natural homomorphisms from
⊕

i Ext(G, Ai) to Ext(G,
⊕

i Ai)
and from

⊕
i Ext(Ai,G) to Ext(

∏
i Ai,G). Moreover, if we start with the canonical

projections
⊕

i Ai→ Ai, we obtain a natural homomorphism from Ext(G,
⊕

i Ai) to∏
i Ext(G, Ai); see [1].
We might require these natural homomorphisms to be isomorphisms, but we do

not impose this condition since in all situations considered here, the existence of an
isomorphism implies that the natural homomorphism is an isomorphism. Solutions
for the ‘natural’ case were obtained in [6] for modules over right hereditary rings, and
in [2] for self-Ext-small abelian groups.

(2) In many cases, it turns out that sums or products are preserved or inverted only
because both sides of an isomorphism evaluate to zero. In this situation, we say that the
functor preserves or inverts products or sums trivially. For instance, an abelian group
G is free if and only if Ext(G, −) preserves direct sums from A trivially. Therefore
many techniques used here are closely related to those used in the study of cotorsion
theories in [19, 22, 23].

2. The functor Ext(−, G)

Some of the properties of Ext(−,G) described in the introduction are well known
but are listed here for completeness.

P 2.1 [9, Theorem 52.2 1.]. For all groups G, Ext(−,G) inverts sums
fromA.

In [12, Section 5], Göbel and Prelle studied the properties of the functor Ext(−,G).
By reducing to the cases of elementary p-groups and free groups and using the basic
properties of Ext described in [9, Section 52], they showed that Ext(−,G) preserves
(inverts) products in various classes C if and only if it does so trivially.
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Hence we have the following results.

P 2.2. The following statements are equivalent for a group G and a prime
p.

(1) G is p-divisible.
(2) Ext(−,G) preserves products from p∞A.
(3) Ext(−,G) inverts products from p∞A.

C 2.3 [12, Corollary 5.6(a)]. The following statements are equivalent for a
group G.

(1) G is divisible.
(2) Ext(−,G) preserves products fromA.
(3) Ext(−,G) inverts products fromA.

P 2.4 [12, Theorem 3.3, Corollary 5.6(b)]. The following statements are
equivalent for a group G.

(1) G is cotorsion; that is, Ext(J,G) = 0 for every torsion-free group J.
(2) Ext(−,G) preserves products from TF .
(3) Ext(−,G) preserves products from {Q}.

Similarly, it is easy to show that Ext(−,G) preserves sums from a class C if and
only if it does so trivially.

L 2.5. Ext(−,G) preserves sums from any class C if and only Ext(H,G) = 0 for
all H ∈ C.

P. It is clear that if Ext(H,G) = 0 for all H ∈ C, then sums are preserved trivially.
Conversely, assume that Ext(−,G) preserves sums from C and let |Ext(H,G)| = λ >

1 for some H ∈ C. Let κ ≥ λ be an infinite cardinal. Then

|Ext(H(κ),G)| = |Ext(H,G)κ| = λκ but |Ext(H,G)(κ)| = λκ = κ.

Hence Ext(H(κ),G) � Ext(H,G)(κ). �

P 2.6.

(1) Ext(−,G) preserves sums fromA if and only if G is divisible.
(2) Ext(−,G) preserves sums from TF if and only if G is cotorsion.
(3) Ext(−,G) preserves sums fromA[p∞] if and only if G is p-divisible.
(4) Ext(−,G) preserves self-sums if and only if Ext(G,G) = 0.

P. In each of the four parts, it is well known that the structure condition is trivially
sufficient. To show that it is also necessary, it is enough to apply Lemma 2.5. �

R 2.7. Groups satisfying Ext(G,G) = 0 are called splitters. We introduced these
groups in [20], pointing out the obvious facts that free groups and cotorsion groups
are splitters, and posed the question whether these classes are the only examples.
This question was answered immediately in the negative by Göbel and Shelah [13],
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who by an elaborate construction using generators and relations found large classes of
counterexamples.

It remains to characterize the C-Ext-slender and self-Ext-slender groups.

L 2.8. Let H be a group. A group G is {H}-Ext-slender if and only if Ext(Hκ,G) =

0 for all cardinals κ.

P. Suppose that G is {H}-Ext-slender. For every infinite cardinal κ, we have an
epimorphism

Ext(H,G)(κ) � Ext(Hκ,G)� Ext(H(κ),G) � Ext(H,G)κ.

This is possible only if Ext(H,G) = 0. Therefore, for every cardinal κ, Ext(Hκ,G) �
Ext(H,G)(κ) = 0. �

Conversely, if Ext(Hκ,G) = 0 for all κ, it follows that Ext(H,G) = 0, hence
Ext(H,G)(κ) = 0 = Ext(Hκ,G).

Göbel and Prelle proved the following result in [12, Theorem 3.3 and
Corollary 5.6(b)]. We present some details for the reader’s convenience.

T 2.9. The following statements are equivalent for a group G.

(1) G is TF -Ext-slender.
(2) G is {Q}-Ext-slender.
(3) G is {Z}-Ext-slender.
(4) If 0 , H ∈ TF , then G is {H}-Ext-slender;
(5) G is cotorsion.

P. It is obvious that (1) implies (2), (3) and (4) and that (5) implies (1).
That (2) implies (5) is a consequence of Lemma 2.8.
To prove that (4) implies (3), let H , 0 be a torsion-free group such that G is {H}-

Ext-slender. By Lemma 2.8, it follows that Ext(Hκ,G) = 0 for all κ. Since Zκ embeds
in Hκ, we obtain Ext(Zκ,G) = 0 for all κ, so G is {Z}-Ext-slender.

Finally, we prove that (3) implies (5). Göbel and Prelle proved in [12, Theorem 3.3]
that if a group G is not cotorsion, then there is a cardinal κ such that Ext(Zκ,G) , 0.
But the {Z}-Ext-slender condition shows that Ext(Zκ,G) = 0 for all κ, so G must be
cotorsion. �

T 2.10. The following statements are equivalent for a group G and a prime p.

(1) G is {Z(p)}-Ext-slender.
(2) If B , 0 is a bounded p-group then G is {B}-Ext-slender.
(3) G is p-divisible.

P. It is well known that if G is p-divisible, then Ext(A,G) = 0 for any p-group
A. Moreover, if B , 0 is a bounded p-group such that Ext(B,G) = 0 then there is a
positive integer n such that Ext(Z(pn),G) = 0. Since Z(p) can be embedded in Z(pn),
it follows that G/pG � Ext(Z(p),G) = 0, so G is p-divisible. �
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T 2.11. The following are equivalent for a group G and a prime p.

(1) G isA[p∞]-Ext-slender.
(2) G is {Z(p∞)}-Ext-slender.
(3) If H , 0 is an unbounded p-group then G is {H}-Ext-slender.
(4) G is a cotorsion p-divisible group.

P. Since {Z(p∞)} ⊆ A[p∞], (1) implies (2)
By Lemma 2.7, Ext(Z(p∞)κ,G) = 0 for all cardinals κ. For all cardinals λ, there is a

cardinal κ such that Hλ embeds in Z(p∞)κ. Since Ext(Hλ,G) is a homomorphic image
of Ext(Z(p∞)κ,G), it follows that G is {H}-Ext-slender, thus (2) implies (3).

By Lemma 2.7, Ext(Hκ,G) = 0 for all cardinals κ. Since H is unbounded, the group
Hω is not a torsion group, so for every cardinal λ there is a cardinal κ such that Zλ

embeds in Hκ. Hence Ext(Zλ,G) = 0 for all λ. By [12, Theorem 3.3], it follows that G
is a cotorsion group.

If H is not divisible then it has a nonzero cyclic direct summand, and from
Ext(H,G) = 0 it follows that G is p-divisible. If H is divisible, we obtain the condition
Ext(Z(p∞),G) = 0, and from the structure of reduced cotorsion groups, [9, 54(I)], it
follows that G must be p-divisible. Thus (3) implies (4).

If G is p-divisible cotorsion group then Ext(−,G) annihilates all p-groups and all
torsion-free groups, hence it annihilates all direct products of p-groups. Thus (4)
implies (1). �

C 2.12. The following statements are equivalent for a group G.

(1) G isA-Ext-slender.
(2) G is T -Ext-slender.
(3) G isD-Ext-slender.
(4) G is divisible.

For the characterization of self-Ext-slender groups, recall from [20] that a group
G is a Π-splitter if for all cardinals κ, Ext(Gκ,G) = 0. Using [20, Corollary 4.3] we
obtain the following result.

L 2.13. Let G be a torsion-free group. The following statementsare equivalent.

(1) G is a Π-splitter.
(2) G is self-Ext-slender.
(3) G is cotorsion.

P. Let κ be any cardinal. Then Ext(Gκ,G) = 0 = Ext(G,G)(κ). Thus (1) implies
(2).

That (2) implies (3) is a consequence of Theorem 2.9.
It follows from [20, Corollary 4.3] that (3) implies (1). �

It remains to characterize the self-Ext-slender groups that are not necessarily
torsion-free.
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T 2.14. A group G is self-Ext-slender if and only if G = D ⊕ H where:

(1) H is a cotorsion torsion-free group.
(2) D is divisible torsion.
(3) If Dp , 0 then H is p-divisible.

P. Let G be self-Ext-slender. By Lemma 2.8, Ext(G,G) = 0 so that G = D ⊕ H,
where D is torsion divisible and H is torsion-free such that H is p-divisible whenever
Dp , 0.

Conversely, let G = D ⊕ H satisfying (1), (2) and (3). For every cardinal λ we have
the isomorphism 0 = Ext(Gλ,G) � Ext(Hλ, H). Hence H is a Π-splitter so G is self-
Ext-slender. �

3. When Ext(G, −) inverts products

As in Section 2, some of the properties of Ext(G, −) are well known, and others can
be derived by straightforward cardinality arguments.

P 3.1 [9, Theorem 52.2(2)]. For all groups G, Ext(G, −) preserves
products fromA.

Corresponding to Lemma 2.5, we show that Ext(G, −) inverts products from a class
C if and only if it does so trivially.

P 3.2. Ext(G, −) inverts products from a class C if and only if Ext(G, A) = 0
for all A ∈ C.

P. Let A ∈ C satisfy |Ext(G, A)| = κ. Then for any infinite cardinal λ > κ, κλ =

|Ext(G, A)λ| = |Ext(G, Aλ)| = |Ext(G, A)(λ)| = κλ. Hence κ = 0.
The converse is evident. �

L 3.3. If G is a group and H is a p-group then Ext(G ⊗ Zp, H) � Ext(G, H).

P. If G is a group and Gp = G/
⊕

q,p Gq then, for every p-group H, Ext(G, H) �
Ext(Gp, H) and Gp ⊗ Zp �G ⊗ Zp. Therefore, we can suppose that Gq = 0 for all
q , p.

Hence there is an embedding G�G ⊗ Zp whose cokernel is a torsion group with
trivial p-component. Consequently, for every p-group H, there is an isomorphism
Ext(G ⊗ Zp, H) � Ext(G, H). �

L 3.4. The following statements are equivalent for a group G and a prime p.

(1) Ext(G, H) = 0 for all p-groups H.
(2) G ⊗ Zp is free over Zp.

P. If Ext(G, H) = 0 for all p-groups H, then Ext(G ⊗ Zp, H) = 0 for all p-groups
H. Since all p-groups are naturally Zp-modules, we can look at this as an equality
in the category of Zp-modules. Using Griffith’s solution of the Baer splitting
problem [16], we obtain that G ⊗ Zp is free as a Zp-module. Thus (1) implies (2).
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If G ⊗ Zp is free over Zp, it follows that Ext(G, H) � Ext(G ⊗ Zp, H) = 0 for all
p-groups H since all p-groups are naturally Zp-modules. Thus (2) implies (1). �

C 3.5.

(1) Ext(G, −) inverts products fromA if and only if G is free.
(2) Ext(G, −) inverts products from TF if and only if G is free.
(3) Ext(G, −) inverts products from {B}, where B is a bounded p-group, if and only

if Gp = 0.
(4) Ext(G, −) inverts products fromA[p∞] if and only if G ⊗ Zp is free over Zp.
(5) Ext(G, −) inverts products from {Z} if and only if G is a Whitehead group.
(6) Ext(G, −) inverts self-products if and only if G is a splitter.

P. (1) By Proposition 3.2, it suffices to show that if Ext(G, A) = 0 for all A ∈ A,
then A is free. But this is well known; see [9, p. 222(A)].

(2) Once again, it suffices to show that if Ext(G, A) = 0 for all A ∈ TF , then G is
free. But any abelian group H is a homomorphic image of a free group F, so Ext(G, H)
is a homomorphic image of Ext(G, F) = 0. By (1), G is free.

(3) and (4) follow similarly from Proposition 3.2 and Lemma 3.4.
(5) and (6) follow similarly from Proposition 3.2 and the definitions of

Whitehead groups (A is Whitehead if Ext(Z, A) = 0) and splitters (A is a splitter if
Ext(A, A) = 0). �

4. When Ext(G, −) inverts sums

We shall use the following cardinal property.

L 4.1 [21, pp. 153, 154], [16, Lemma 3.1]. For every cardinal κ there is a
cardinal λ ≥ κ such that λℵ0 = 2λ.

T 4.2. Let G be a group. Then:

(1) Ext(G, −) inverts sums from {Z(p)} if and only if Gp = 0;
(2) Ext(G, −) inverts sums fromA[p∞] if and only if G ⊗ Zp is free over Zp.

P. (1) Suppose that Gp , 0, so that Ext(G, Z(p)) , 0. Denote by ν the cardinality
of Ext(G, Z(p)), and, using Lemma 4.1, fix an infinite cardinal λ such that ν ≤ λ and
λℵ0 = 2λ.

Since Ext(G, −) inverts sums of p-groups, Ext(G, Z(p)(2λ)) � Ext(G, Z(p))2λ has
cardinality ν2λ . On the other side, Z(p)(2λ) � Z(p)λ, hence Ext(G, Z(p)(2λ)) �
Ext(G, Z(p))λ, and its cardinality is νλ. However, νλ ≤ λℵ0λ = (2λ)λ = 2λ < 22λ ≤ ν2λ .
Therefore, Gp = 0.

The converse is clear.
(2) If G ⊗ Zp is free over Zp, it follows using Lemma 3.3 that Ext(G, H) = 0 for all

p-groups H, so that Ext(G, −) inverts sums fromA[p∞].
Conversely, suppose Ext(G, −) inverts sums of p-groups. We have proved

that Gp = 0. By Lemma 3.3, we observe that Ext(G ⊗ Zp, H) � Ext(G, H) for all
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p-groups H. Therefore Ext(G ⊗ Zp, −) inverts sums from A[p∞]. It follows that for
every family E of cyclic p-groups,

Ext

G ⊗ Zp,
⊕
C∈E

C

 �∏
C∈E

Ext(G ⊗ Zp,C) = 0.

This property is also valid in the category of Zp-modules, hence G ⊗ Zp is a Baer
module. Therefore it is free. �

From Theorem 4.2, the following useful result can be deduced.

L 4.3. Let G and H be groups such that Ext(G, −) inverts sums from {H}. If p is
a prime such that pH , H then Gp = 0.

P. First observe that if H is an elementary p-group, then in the proof of
Theorem 4.2(1) λ can be chosen such that H(2λ) � Hλ, and it follows that Ext(G, H) =

0, so that Gp = 0.
Now suppose that H is any group satisfying pH , H. Let κ be a cardinal.

Starting with an exact sequence H(κ) p
→ H(κ)� (H/pH)(κ), where the first arrow is

multiplication by p, apply the functor Ext(G, −) to obtain the exact sequence

Ext(G, H)κ � Ext(G, H(κ))
p
→ Ext(G, H(κ)) � Ext(G, H)κ� Ext(G, (H/pH)(κ)).

Using [9, Lemma 52.1], observe that the first arrow is again multiplication by p.
Therefore Ext(G, (H/pH)(κ)) � Ext(G, (H/pH))κ, so G inverts sums from {H/pH}. By
Theorem 4.2(1), it follows that the p-component of G is trivial. �

C 4.4. Ext(G, −) inverts sums from {B}, where B , 0 is a bounded p-group, if
and only if Gp = 0.

T 4.5. The following are equivalent statements for a group G.

(1) The functor Ext(G, −) inverts sums fromA.
(2) Ext(G, −) inverts sums from TF .
(3) G is free.

P. It is clear that (1) implies (2) and (3) implies (1).
We prove that (2) implies (3). Using Lemma 4.3, we see that G is torsion-free. Let

L be a direct sum of finite cyclic groups. Then L is an epimorphic image of a direct
sum H of p-adic integers where p runs over some set of primes. Hence Ext(G, L) is
an epimorphic image of Ext(G, H). But since Ext(G, −) inverts sums of torsion-free
groups, Ext(G, H) is a product of terms Ext(G, Jp), each of which is zero since G is
torsion-free. Thus Ext(G, L) = 0 for all direct sums L of finite cyclic groups, so by [17,
Proposition 2.5], G is free. �
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5. C-Ext-small groups

We can now characterize the C-Ext-small groups for various classes C.

P 5.1.

(1) Every finitely generated group isA-Ext-small.
(2) If B is a bounded p-group then Z(p∞) is {B}-Ext-small, but it is not A[p∞]-Ext-

small.

P. (1) This is a consequence of [14, Lemma 3.1.6].
(2) Let κ be a cardinal and B a bounded p-group. From the short exact sequence

Zp� Q� Z(p∞) we obtain the exact sequence

Hom(Q, B(κ))→ Hom(Zp, B(κ))→ Ext(Z(p∞), B(κ))→ Ext(Q, B(κ)),

where the first and the last groups are zero so that Ext(Z(p∞), B(κ)) � B(κ). Therefore
Z(p∞) is {B}-Ext-small.

On the other hand, Ext(Z(p∞),
⊕

n>0 Z(pn)) is not a torsion group since we have an
exact sequence

Ext
(
Z(p∞),

⊕
n>0

Z(pn)
)
→ Ext

(
Q,

⊕
n>0

Z(pn)
)
→ Ext

(
Zp,

⊕
n>0

Z(pn)
)

= 0,

and the nonzero group Ext(Q,
⊕

n>0 Z(pn)) is torsion-free divisible. �

We now characterize the C-Ext-small groups for certain classes of p-groups.

L 5.2. Let G be an infinite bounded p-group. For every group B which is not
p-divisible and for every cardinal µ, there is a cardinal λ > µ such that |Ext(G, B(λ))| >
|Ext(G, B)(λ)|.

P. Given the group B and the cardinal µ, we claim first that the property is valid
for G = (Z(pn))(ν) for any positive integer n and any infinite cardinal ν. Moreover, the
inequality holds for all cardinals λ ≥max{|(B/pnB)|ν, µ} such that λℵ0 = 2λ. In that
case,

Ext(G, B) � Ext(Z(pn), B)ν � (B/pnB)ν , 0.

Let |(B/pnB)ν| = κ. Then for any cardinal λ, |Ext(G, B(λ))| = κλν, whereas |Ext(G, B)(λ)|

= λκ.
If λ ≥max{κ, µ} such that λℵ0 = 2λ then λκ = λ < 2λ = λℵ0 ≤ λν, and the proof of our

claim is complete. Moreover, such a cardinal λ exists by Lemma 4.1.
Now let G be an arbitrary bounded p-group, so G is a finite direct sum of its

homogeneous components. Since G is infinite we can write G = F ⊕G1 ⊕ · · · ⊕Gm,
where F is a finite group and G1, . . . ,Gm are infinite homogeneous bounded p-groups.
Let ni be the exponent for the group Gi and let λi be a cardinal satisfying our claim for
the group Gi.
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By Lemma 4.1 again, there is a cardinal λ ≥max{λ1, . . . , λm, µ} such that λℵ0 = 2λ.
Then by our claim

|Ext(Gi, B(λ))| > |Ext(Gi, B)(λ)| for all i ∈ {1, . . . , n},

so that
|Ext(G, B(λ))| > |Ext(G, B)(λ)|. �

T 5.3. Let B , 0 be a bounded p-group. A group G is {B}-Ext-small if and only
if the p-component of G has finite rank.

P. Let κ be an infinite cardinal and B a bounded p-group bounded by pn. Using
the proof of [9, 52(F)], there is an isomorphism

Ext(G, B(κ)) � Ext(G[pn], B(κ)). (])

Suppose that G is {B}-Ext-small. Then G[pn] is {B}-Ext-small, and it follows by
Lemma 5.2 that it is finite. Therefore Gp has finite rank.

Conversely, if Gp has finite rank then G is {B}-Ext-small as a consequence of the
isomorphism (]) and Proposition 5.1. �

Our final result is the following theorem.

T 5.4. The following statements are equivalent for a group G.

(1) G isA[p∞]-Ext-small.
(2) G is Cp-Ext-small, where Cp is the class of cyclic p-groups.
(3) G = B ⊕ K, where B is a finite p-group and K is a group with trivial p-component

such that K ⊗ Zp is free over Zp.

P. That (1) implies (2) and (3) implies (1) is obvious.
We prove that (2) implies (3). Let G be Cp-Ext-small. It follows from Theorem 5.3

that the p-component of G is of finite rank, so it is a direct sum of a finite p-group and
finitely many copies of Z(p∞).

Moreover,

Ext

G,⊕
k>0

Z(pk)

 �⊕
k>0

Ext(G, Z(pk)) �
⊕
k>0

G[pk]

is a torsion group.
But we have seen in the proof of Proposition 5.1 that Ext(Z(p∞),

⊕
k>0 Z(pk)) is

not a torsion group. It follows that the p-component of G is finite. Hence G = B ⊕ K
where B is a finite p-group and the p-component of K is 0. Then for every family E of
cyclic p-groups C = Z(pnC ),

Ext

G,⊕
C∈E

C

 �⊕
C∈E

Ext(G,C) �
⊕
C∈E

B[pnC ].
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Hence if pn is a positive integer such that pnB = 0, then pn Ext(K, −) annihilates all
direct sums of cyclic p-groups. Let L be a direct sum of cyclic p-groups. The bounded
group Ext(K, L) is p-divisible, since the p-component of K is zero. It follows that
Ext(K, L) = 0 for all direct sums of cyclic p-groups L.

If H is a p-group with basic subgroup L, then there is an epimorphism Ext(K, L)�
Ext(K, H) and it follows that Ext(K, H) = 0 for all p-groups H. Then K ⊗ Zp is free
over Zp as a consequence of Lemma 3.4. �
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