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CONSTRUCTION OF SOME IRREDUCIBLE SUBGROUPS
OF E8 AND E6

A. J. E. RYBA

Abstract

We construct two embeddings of finite groups into groups of
Lie type. These embeddings have the interesting property that
the finite subgroup acts irreducibly on a minimal module for
the group of Lie type. We present our constructions as exam-
ples of a general method that obtains embeddings into groups
of Lie type.

1. Introduction

This paper establishes existence of two embeddings:
2F4(2) < E8(3) and L2(8).3 < E6(C).

These embeddings are of particular interest because in both cases the subgroup
acts irreducibly in a minimal projective representation of the overgroup. The two
embeddings complete the classification by Liebeck and Seitz of Lie primitive finite
subgroups that are irreducible on a minimal module for an exceptional algebraic
group (see [6]).

We give computer constructions of the embeddings. In each case, we start with a
natural invariant Lie algebra for the subgroup and construct an invariant subalgebra
of appropriate exceptional Lie type. This gives the desired embedding. Our approach
is similar to the computer construction used in [3], and is based on the strategy
introduced in [9].

The second embedding L2(8).3 < E6(C) is independently constructed by
Aschbacher as Result 29.18 in the unpublished article ‘The maximal subgroups
of E6’ (1986). This previous construction is noted in [1], where the character of the
embedding is reported incorrectly. We prove that there can be no embedding with
the character given in [1].

2. Invariant Lie subalgebras

In this section, we give a general description of our method for the construction
of embeddings of subgroups into overgroups of Lie type. Our method is to con-
struct an action of the subgroup on the Lie algebra of the overgroup. We begin
with a natural action of the subgroup on a larger Lie algebra, and we search for
invariant subalgebras to locate the desired action. The following standard pair of
theorems shows that there are natural invariant Lie algebras with appropriate types
of subalgebras.
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irreducible subgroups of E8 and E6

Theorem 2.1. Suppose that a finite group G embeds in a finite Chevalley group E.
Let E be the Lie algebra of E and let ( , ) be the Killing form of E. Then E/Z(E)
is isomorphic to a G-invariant Lie subalgebra of the Lie algebra of derivations of
( , ).

We use the term ‘Chevalley group’ to mean a quotient of a simply connected
universal Chevalley group. The term ‘Chevalley Lie algebra’ refers to the Lie algebra
of a Chevalley group. A linear transformation τ is a derivation of a bilinear form
( , ) if, for all vectors v and w, (vτ, w) + (v, wτ) = 0.

Proof. The adjoint representation ρ of E gives an E-invariant embedding of ρ(E)
into the Lie algebra of linear transformations of E . The Killing form is associative.
Hence the transformations in ρ(E) are derivations of ( , ). Moreover, the kernel of
ρ is the center of E .

Theorem 2.2. Suppose that a finite group G embeds in a finite Chevalley group
E. Let E be the Lie algebra of E, and let U be a non-trivial absolutely irreducible
E-module in natural characteristic. Let k be the algebraic closure of the field of
definition of U . Let E and U denote the Lie algebra and E-module obtained from E
and U by extension of scalars to k. Then there is a non-trivial G-invariant homo-
morphism of Lie algebras: E → Homk(U,U).

Proof. It is shown in [10, Lemma 2] that there is an action of E on E and a kE-
module structure on U such that the action: U ×E → U is E-invariant. (In the case
where E is defined over a field that does not have prime order, there are inequivalent
(twisted) actions of E on the Lie algebra E . These are obtained from a preferred
adjoint action by the application of a field automorphism. If the highest weight
of U is not p-reduced, a twisted action of E on E is applied in [10, Lemma 2].)
The E-invariant action gives an E-invariant Lie algebra homomorphism from E to
Homk(U,U). This homomorphism is perforce G-invariant.

The following algorithm takes the action of a group on a Lie algebra as input.
The action is specified by matrices over a finite field of scalars, but the algebra is
considered to be defined over the algebraic closure of the input field. The algorithm
determines all invariant subalgebras that meet specified representation-theoretic
conditions. In the implementation, it is important to note that although we deter-
mine subalgebras defined over an algebraically closed field, we must work over one
or more finite fields. Write k for a finite field and k for its algebraic closure. We
add an overline to indicate that an algebra, module, or vector space defined over k
should have its scalars extended to k.

Algorithm 2.3. Suppose that G is a finite group and that (L, [ , ]) is a G-invariant
Lie algebra over k. Let V be a kG-module and let W be an irreducible submodule
of V . Determine all G-invariant Chevalley Lie subalgebras of L that are isomorphic
(as kG-modules) to V and are generated by a kG-submodule isomorphic to W .

Method.

1. Determine a basis f1, f2, . . . , f� for HomkG(W,L).
2. Let X be an �-dimensional k-space. (X parameterizes HomkG(W,L).)
3. Let M be a kG-submodule of L that contains all copies of V in L.
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irreducible subgroups of E8 and E6

4. Select a pair of random vectors w1 and w2 in W .

5. Let f :X ⊗X → L be the linear transformation with

f((x1, x2, . . . , x�) ⊗ (y1, y2, . . . , y�)) =
[∑

i xifi(w1) ,
∑

j yjfj(w2)
]
.

6. Let S be the set of non-zero vectors in X for which the tensor square belongs
to f−1(M). Thus

S =
{
(x1, x2, . . . , x�) | f((x1, x2, . . . , x�) ⊗ (x1, x2, . . . , x�)) ∈M

}
.

The set S is closed under non-zero scalar multiplication. Let S be a set of
representatives of the 1-dimensional spaces spanned by elements of S.

7. For each (x1, x2, . . . , x�) in S:

(a) let L be the subalgebra of L generated by the image of W under
∑

i xifi;
(b) if L is isomorphic to V as a kG-module, output L. �

Note that the first six steps of this procedure serve to reduce the number of can-
didates that are considered in Step 7. It is obvious that all appropriate subalgebras
would be obtained by consideration of every 1-dimensional subspace of X at Step 7.
However, if (x1, x2, . . . , x�) is an element of X that gives a successful outcome at
Step 7(b), then

∑
i xifi(W ) generates a subalgebra of L that is contained in M . In

particular, [∑
i xifi(w1) ,

∑
j xjfj(w2)

] ∈M.

Hence, (x1, x2, . . . , x�) ∈ S. In other words, the reduction of candidates that is ac-
complished by Steps 1–6 does not lead to the omission of any invariant subalgebras.

Although there is no guarantee that the set S is finite, or even any smaller than
X itself, in the two cases that we consider in this paper, the set S that we obtain
is in bijection with the set of subalgebras of L that are isomorphic to V as G-
modules. In other words, in our examples, S is as small as is possible. In any case,
the possibility of some reduction in work at Step 7 is worth the effort involved in
the earlier steps. The running time of these earlier steps is comparable with that
of a single iteration of Step 7(a). However, there may be instances where S turns
out to be infinite: in these instances our algorithm fails. (Formally, this possibility
of failure means that our method is not an algorithm.)

Steps 1 and 3 are accomplished by application of the MeatAxe [8] to analyze
the structure of the kG-module L. In Step 3, it is desirable to use a module M that
is as small as possible (since a larger module might result in an enlargement of the
set S). The algebra that is generated at Step 7 is computed with the spin routine
of the MeatAxe. Steps 2, 4, and 5 present no problems. Note that the first five
steps require only linear algebra over k.

The computation at Step 6 requires the solution over k of equations with
coefficients in k. This is the only non-linear step in our method. In general, we
seek a finite set of invariant subalgebras over k (see [14]). Therefore any method
must involve a non-linear step. A strategy of Algorithm 2.3 is to delay this non-
linear step for as long as possible.

Step 6 reduces to a relative eigenvector problem, as explained in [3]. A vector v
is a relative eigenvector for a set of (not necessarily square) matrices A1, A2, . . . , Ar

if the images vA1, vA2, . . . , vAr are scalar multiples of each other. (In other words,
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these images lie in a 1-dimensional space.) In Step 6, elements of X ⊗ X may be
represented by vectors in such a way that a tensor product

(x1, x2, . . . , x�) ⊗ (y1, y2, . . . , y�)

is represented by the vector

(x1y1, x1y2, . . . , x1y�, x2y1, . . . , x2y�, . . . , x�y�).

In this way, a basis of f−1(M) is represented by an m× �2 matrix, B say. Partition
the matrix B as a sequence B1, B2, . . . B� of � blocks of size m × �. Then x =
(x1, x2, . . . , x�) ∈ S if and only if there is a vector y with yBi = xix, for 1 � i � �.
In this case, y is a relative eigenvector for the matrices B1, B2, . . . , B�.

Other than an exhaustive search, we know of no general solution to a relative
eigenvector problem. However, relative eigenvector problems often reduce to a se-
quence of ordinary eigenvector problems. This is the case in the example that arises
in [3]. A similar decomposition occurs in the relative eigenvector problem of the
first example considered in this paper.

Remark 2.4. Algorithm 2.3 can be adapted to work with higher tensor powers in
place of X ⊗X.

For example, to work with the tensor cube of X, we modify Step 5 to select three
vectors w1, w2, and w3. We define a linear transformation g :X ⊗X ⊗X → L such
that:

g((x1, x2, . . . , x�) ⊗ (y1, y2, . . . , y�) ⊗ (z1, z2, . . . , z�))

=
[ [ ∑

i xifi(w1) ,
∑

j yjfj(w2)
]
,
∑

k zkfk(w3)
]
.

In this case, Step 6 would let S be the set of non-zero vectors in X for which the
tensor cube belongs to f−1(M). The other steps are exactly as in Algorithm 2.3.

In most situations, it is best to apply the original version of Algorithm 2.3.
It leads to a simultaneous system of quadratic equations, whereas the modified
algorithm that is described above leads to cubic equations. However, in the second
example that we consider in this paper, it is advantageous to apply the modified
algorithm. In Section 4, we explain why the modified algorithm is more useful in
that instance.

3. The embedding 2F4(2) < E8(3)

Our strategy is to construct a natural action of 2F4(2) on the Lie algebra of
GO+

248(3). Then, Algorithm 2.3 is applied to obtain actions of 2F4(2) on the Lie
algebra of E8(3) and embeddings 2F4(2) < E8(3).

Write V for a 248-dimensional space over the finite field k = Z3. Let G be the
group 2F4(2). Write χ for the irreducible 3-modular Brauer character of G that
restricts to a sum of two conjugate irreducible characters (with degrees 124) of the
Tits group G′. (The irreducible 3-modular characters of the Tits group are obtained
in [4]. Exactly two of them have degree 124.)

Construct an embedding G = 2F4(2) < GL(V ) ∼= GL248(3) that has character χ.
(The 248-dimensional irreducible character of G has multiplicity 2 as a constituent
of the skew square of the 52-dimensional irreducible character. The corresponding
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52-dimensional matrix representation of G is given in [16]; cf. also [15]. Its skew
square is decomposed with the MeatAxe to yield an embedding G < GL(V ).)

Let ( , ) be a G-invariant bilinear form on V . Irreducibility of V implies that
this form is essentially unique. It can be constructed with the MeatAxe standard
basis procedure [8] as follows. Let X be (a matrix that gives) a standard basis for
the matrix representation ρ of G on V . Let Y be a standard basis for the image
of ρ under the inverse transpose map. Then X−1Y represents an invariant bilinear
form for ρ. This construction is due to R. A. Parker; see [3] for more details.

Let O be the subgroup of GL(V ) that preserves the form ( , ). Then G<O<
GL(V ) and O∼=GO+

248(3). The groups GL(V ), O, and G act naturally on the Lie
algebra Homk(V, V ). Moreover, the groups O and G act naturally on the subalgebra
D ⊂ Homk(V, V ) that consists of derivations of ( , ).

When considered as an O-module, V is self-dual. Hence, as O-modules,
Hom(V, V ) ∼= V⊗V . The Lie product on Hom(V, V ) is identified with anO-invariant
Lie product on V ⊗V that is given by [v⊗w, y⊗ z] = (w, y)v⊗ z− (v, z)w⊗ y (see
[9]). The algebra (V ⊗V, [ , ]) has an O-invariant subalgebra

∧2
V . This subalgebra

corresponds to the subalgebra D when V ⊗ V is identified with Homk(V, V ) (see
[9]).

Computational Theorem 3.1. There are two G-invariant subalgebras of
(
∧2

V, [ , ]) that have type E8.

Proof. Apply Algorithm 2.3 to compute all G-invariant subalgebras of
∧2

V that
give G-modules isomorphic to V . (Since V is irreducible, the submodule W of
Algorithm 2.3 is taken as V itself.)

In the application of Algorithm 2.3, we find that � = 3, at Step 1. At Step 3,
choose M to be the sum of the three copies of V in the socle of

∧2
V . The first

random pair of vectors selected at Step 4 results in a set S that has size 2. At Step 7,
both elements of S give 248-dimensional Lie subalgebras of

∧2
V . For each of these

248-dimensional subalgebras, apply the algorithm of [11] to compute a split Cartan
subalgebra and its corresponding set of root spaces. In both cases, the root spaces
form root systems of type E8.

The two G-invariant E8-subalgebras of (
∧2

V, [ , ]) give two G-invariant sub-
algebras of D ⊂ Homk(V, V ) under the O-invariant identification of V ⊗ V with
Homk(V, V ). Let E be one of these subalgebras of D. The group NGL(V )(E) has
the form Z(GL(V )) × E, where E � GL(V ) is isomorphic to the Chevalley group
E8(3). (Note that Aut(E) ∼= E — see [13].) Hence, G � 2 × E8(3), and we obtain
an embedding G � E8(3) (since G has no center).

The module V decomposes as 124 ⊕ 124′ when it is restricted to the group
G′. Hence, CGL(V )(G′) ∼= 2 × 2. Let x be a non-scalar element of this centralizer.
Then x acts by conjugation on Z(GL(V )) × G. (The element x negates elements
of G \G′.) It follows that for all g ∈ G, Exgx−1

= E±g = E . Hence, Exg = Ex, and
therefore Ex is a G-invariant subalgebra of Homk(V, V ). Moreover, x acts on D. (D
is the algebra of derivations of the (essentially) unique bilinear form invariant under
Z(GL(V ))×G, and x normalizes this group.) Hence, Ex ⊂ D. However, Ex cannot
be the algebra E . (Otherwise x ∈ Z(GL(V )) × E, so that [x, Z(GL(V )) × E] ⊂ E.
However, −1 ∈ [x,G] ⊂ [x, Z(GL(V )) × E], and −1 /∈ E: a contradiction.)
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We have now shown that E and Ex are two G-invariant E8-subalgebras of D.
According to Theorem 3.1, these are the only G-invariant E8-subalgebras of D.

Observe that only one of the groupsG andGx is a subgroup of E. (This is because
−1 ∈ 〈G,Gx〉 and −1 /∈ E.) Suppose that it is the group G that is contained in E.
(If necessary, switch the algebras E and Ex, which switches the groups E and Ex.)

Theorem 3.2. The group E ∼= E8(3) has one conjugacy class of subgroups isomor-
phic to G that are irreducible on the adjoint module.

Proof. Suppose that H is a subgroup of E that is isomorphic to 2F4(2) and is
irreducible on the adjoint module V of E. Then there exists � ∈ GL(V ) with
G = H�. (From [4], G has only one irreducible 3-modular representation with
degree 248.) We must show that the conjugation is effected by an element of E.

The module V supports an E-invariant bilinear form. This is the (essentially)
unique G-invariant form ( , ). The bilinear form is fixed by H. Therefore G fixes its
transform 〈 , 〉 under �. (The transform is defined by 〈u, v〉 = (u�, v�).) However,
since V is an irreducible G-module, the invariant bilinear forms are related by a
scalar multiplication: 〈 , 〉 = ±( , ).

The subalgebra D ⊂ Hom(V, V ) that consists of derivations of ( , ) is invariant
under the action of �. (Let α ∈ D. Then

(vα�, w) + (v, wα�) = (v�−1α�,w) + (v, w�−1α�)

= 〈v�−1α,w�−1〉 + 〈v�−1, w�−1α�〉
= ±{(v�−1α,w�−1) + (v�−1, w�−1α)}
= ±0.)

Now, E is an E-invariant subalgebra of D. Hence, E� is a G-invariant subalgebra
of D (since E is invariant under H, and G = H�). Hence, E� ∈ {E , Ex}. In the former
case � ∈ Z(GL(V )) × E, and therefore ±� is an element of E that conjugates H
to G. The latter case is impossible. (It gives E�x = E . Hence, �x ∈ Z(GL(V )) × E.
Now, one of the elements ±�x belongs to E. Thus 〈G,H±�x〉 � E. However, −1 ∈
〈G,Gx〉 = 〈G,H±�x〉 and −1 /∈ E: a contradiction.)

4. The embedding L2(8).3 < E6(C)

Our strategy is to construct a natural action of L2(8).3 on the Lie algebra of
L27(13). We then apply the modified algorithm described below Remark 2.4 to
obtain embeddings of L2(8).3 into an algebraic group of type E6 in characteristic 13.
Larsen’s (0, p)-correspondence (see [3, Appendix 2]) provides embeddings L2(8).3 <
E6(C).

Lemma 4.1. Suppose that f :L2(8).3 → E6(C) is an embedding for which f(L2(8).3)
acts irreducibly on the 27-dimensional projective representation of E6(C). Then the
adjoint representation of E6(C) restricts to a module of f(L2(8).3) whose character
is a sum of irreducibles of degrees 21, 27, 7, 7, 8, and 8. Moreover, in this sum
of irreducibles, either all four characters of degrees 7 and 8 are rational, or the
characters of degrees 7 and 8 form two pairs of conjugate, irrational characters.

The first decomposition allowed by Lemma 4.1 is the one asserted by [1]. Here the
characters of degree 7 and 8 are the two characters explicitly given in the ATLAS.
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These characters are written as 7+ and 8+ in [1]. (The decomposition of [1] includes
a clearly spurious second copy of 21. However, after omission of this second copy
of 21, the first decomposition allowed by Lemma 4.1 does remain.) Later we show
that the restriction of the adjoint representation to f(L2(8).3) cannot have this
decomposition.

In the second decomposition permitted by Lemma 4.1, the characters of degrees
7 and 8 are multiplied by cube roots of unity on outer elements of L2(8).3. (In the
notation of [1] that is applied to other groups with an automorphism of order 3:

78 = 21 + 27 + 7ω + 7ω̄ + 8ω + 8ω̄.

Here ω and ω̄ denote cube roots of 1.)

Proof of Lemma 4.1. Write Ẽ for the triple cover of E6(C), and write ψ̃ and χ̃

for irreducible characters of Ẽ that have degrees 27 and 78. Let ψ and χ be the
restrictions of ψ̃ and χ̃ to the preimage L̃ of f(L2(8).3) in Ẽ. The group L̃ is an
isocline of 3 × L2(8).3 (see [2, p. xxiii]). In particular, L̃ contains a copy of L2(8)
on which ψ restricts to a sum of the three irreducible characters of degree 9. Let
g2, g7, and g9 denote elements of orders 2, 7, and 9 in this copy of L2(8).

The values of ψ̃ and χ̃ at all elements of Ẽ that have order at most 7 are given in
[1, Table 2]. Now, ψ(g2) = 3. Hence g2 belongs to the class 2A of [1] and therefore
χ(g2) = −2. Similarly, ψ(g7) = −1 so that g7 belongs to the class 7N of [1] and
χ(g7) = 1. Further, ψ(g9) = ψ(g3

9) = 0. A machine enumeration (using Kac theory;
see [7]) of elements of order 9 in Ê shows that the class of g9 in Ê is uniquely
determined and has χ(g9) = 0 and χ(g3

9) = −3.
We have now obtained the value of χ at all elements in a copy of L2(8). There-

fore the restriction of χ to this group is completely determined: it contains each
irrational character with multiplicity 1 and each non-trivial rational character with
multiplicity 2. In particular, the irreducible constituents of χ must have degrees 27,
21, 8, 8, 7, and 7.

Write g3 for an element of Ẽ that maps to an outer element of order 3 in
f(L2(8).3). The order of the element g3 is either 3 or 9, but the order of its image
in E is 3. Moreover, ψ̃(g3) = 0. Another machine enumeration (using Kac theory)
shows that the only possibilities for such an element g3 have order 3 and belong to
one of the Ẽ-classes called 3C and 3D in [1, Table 2]. Hence, χ̃(g3) is either −3
or 6 (see [1]). Together with the known degrees of the irreducible constituents of
χ, each of these possibilities determines a single decomposition of the character χ.
The two decompositions that arise are as stated above.

Lemma 4.2. There is no embedding of G ∼= L2(8).3 in E6(C) for which G is irre-
ducible on the 27-dimensional module of 3.E6(C) and G has adjoint character

21 + 27 + 2 × 7+ + 2 × 8+.

Proof. We suppose that there is such an embedding, and obtain a contradiction.
Let (E , [ , ]) be the Lie algebra of E6(C). Let V be a copy of the CG-module with
character 7+. Let f1 and f2 be two independent CG-module homomorphisms from
V to E .

The space Hom CG(Λ2V, E) is 1-dimensional (because Λ2V is irreducible). Let F
be a non-zero element of Hom CG(Λ2V, E).

335https://doi.org/10.1112/S1461157000001431 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001431


irreducible subgroups of E8 and E6

Three antisymmetric bilinear functions from V × V to E are given by mapping
(u, v) to [f1(u), f1(v)], [f2(u), f2(v)], and [f1(u), f2(v)]+ [f2(u), f1(v)]. The induced
maps from Λ2V to E may be written as αF , βF , and γF for some constants α, β,
and γ.

Let (x, y) be a solution in C
2 \ (0, 0) to the equation αx2 + γxy + βy2 = 0.

Write f for the homomorphism xf1 + yf2 :V → E . Then

[f(u), f(v)] = (αx2 + γxy + βy2)F (u ∧ v) = 0.

Therefore, f(V ) is a 7-dimensional abelian subalgebra of (E , [ , ]).
The actions (on E) of elements in the abelian subalgebra f(V ) commute. There-

fore, the maps s and n that replace an element of E by the semisimple and nilpotent
parts of its Jordan decomposition are linear on f(V ) (see [5, p. 18]). These maps
are clearly G-invariant functions from f(V ). In other words, they are G-module
homomorphisms.

We have: dim(s(f(V )) � 6 < dim(f(V )), since s(f(V )) is a toral subalgebra in
a Lie algebra of rank 6. Hence, irreducibility of f(V ) gives s(f(V )) = 0. There-
fore f(V ) acts as a set of commuting nilpotent endomorphisms of any E-module
([5, p. 30]). In particular, if W is any E-module, then Wf(V ) is a proper G-
submodule. If W is 27-dimensional then Wf(V ) = 0, since W is irreducible as
a G-module. However the simple algebra E acts faithfully on W . Hence, f(V ) = 0:
a contradiction.

We now show that there exist embeddings with adjoint character 21 + 27 +
7ω + 7ω̄ + 8ω + 8ω̄. Our method is to classify embeddings in characteristic 13. This
characteristic is convenient both because 13 
 | |L2(8) :3| and because all irreducible
representations of L2(8) :3 can be written over F13. Larsen’s (0, p)-correspondence
shows that there is a bijection between conjugacy classes of embeddings in char-
acteristics 0 and 13. Moreover, corresponding embeddings have the same adjoint
character restrictions.

Write U for a 27-dimensional space over a finite field k of order 13. Let G be the
group L2(8) : 3. Write ψ for the character of the irreducible kG-module of degree
27. Construct an embedding G = L2(8) : 3 < GL(U) ∼= GL27(k) that has charac-
ter ψ. The following steps implement such a construction. Make a 9-dimensional
representation of L2(8) over k (for example by using [3, Recipe 2.2]). Decompose
the skew square of the 9-dimensional representation and locate an irreducible con-
stituent which gives the 7-dimensional representation of L2(8) that has rational
character values. Find the images of generators of L2(8) under an automorphism
of order 3. Apply the standard basis program in the usual way (see for example,
[12, Section 4]) to extend the 7-dimensional representation of L2(8) to L2(8).3. The
27-dimensional representation of L2(8).3 is found as the non-trivial constituent of
the symmetric square of the 7-dimensional representation.

The groups GL(U) and G act naturally on the Lie algebra Hom(U,U). Under
the identification Hom(U,U) ∼= U ⊗U∗, the Lie product on Hom(U,U) is identified
with an invariant Lie product on U ⊗ U∗ that is given by [u1 ⊗ v1, u2 ⊗ v2] =
〈u1, v2〉u2 ⊗ v1 − 〈u2, v1〉u1 ⊗ v2 (see [9]). Let L be the Lie algebra (U ⊗ U∗, [ , ]).

Write k for the algebraic closure of k and k̂ for the subfield of k that has order
132. We indicate that the scalars should be extended to either k or k̂ by applying
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an overline or a hat to the name of a k-space, k-module, or k-algebra. For example,
the Lie algebras L and L̂ are obtained from L by extending scalars to these fields.

Computation 4.3. There are six G-invariant subalgebras of (L, [ , ]) that have
type E6. Moreover, every G-invariant subalgebra with type E6 has character

27 + 21 + 7ω + 7ω̄ + 8ω + 8ω̄.

This computation provides an alternative proof of Lemma 4.2.

Proof. The modified version of Algorithm 2.3 (see Remark 2.4) is applied twice to
locate all G-invariant subalgebras of L that have type E6. In the first application
the kG-modules called V and W in Algorithm 2.3 are taken to have characters
27 + 21 + 7+ + 7+ + 8+ + 8+ and 7+, respectively. In the second application the
modules V and W are taken to have characters 27+21+7ω +7ω̄ +8ω +8ω̄ and 7ω.
The two applications correspond to the two possible characters that are allowed by
Lemma 4.1.

In both applications, the space HomkG(W,L), that is computed at Step 1, is
three-dimensional (because each of the characters 7+, 7ω, and 7ω̄ has multiplicity 3
in U ⊗U∗). Hence, at Step 2, X is a 3-dimensional k-space. At Step 3, M is taken
to be the sum of all copies of irreducible constituents of V in U ⊗ U∗. In the first
application M has degree 620 and character 3× 7+ + 4× 8+ + 9× 21 + 14× 28. In
the second application M has degree 673 and character 3× 7ω + 3× 7ω̄ + 4× 8ω +
4 × 8ω̄ + 9 × 21 + 14 × 28.

At Step 4, three random vectors of W are chosen, since the modification of Re-
mark 2.4 is being used. The map g :X ⊗X ⊗X → E is defined by the formula given
below Remark 2.4. The inverse image g−1(M) is calculated at Step 6. In the first
application it has dimension 4 and in the second application it has dimension 14.

Let S be the set of non-zero vectors in X whose tensor cube belongs to f−1(M).
The set of perfect cubes (of the form x ⊗ x ⊗ x, for some x ∈ X) spans a copy of
the symmetric cube of X, which we write as S3(X). Therefore, the tensor cubes of
elements of S belong to S3(X) ∩ f−1(M). In the two applications of our algorithm,
the space S3(X) ∩ f−1(M) was computed and found to have dimension 0 and 7
in the respective cases. In particular, the first application terminates at this step:
there are no invariant subalgebras of type E6 with the first of the two characters
under consideration. This verifies Lemma 4.2 computationally.

The second application proceeds with the computation of the set of representa-
tives of the 1-dimensional spaces spanned by elements of S. This set S is obtained as
the set of solutions to a system of 3 homogeneous cubics in three variables. A series
of substitutions reduces this system to a polynomial of degree 7 in one variable. The
polynomial has six distinct roots, all of which belong to the field k̂. The six roots
give rise to six elements of S. The elements of S determine six particular copies of
Ŵ in L̂. Each of these copies of Ŵ does generate a 78-dimensional subalgebra of
L̂. In each case the algorithm of [11] locates a Cartan subalgebra (that splits over
k̂) and a root system of type E6.

In Computation 4.3 an application of the standard version of Algorithm 2.3 would
be ineffective. This is because the kG-module W ⊗W has structure 1ω̄ + 21 + 27.
Let M1 be the unique submodule of L with character 1ω̄. At Step 5, the vectors of
the form [fi(w1), fj(w2)] all belong to the space M +M1. Accordingly, at Step 6,
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S would be computed from the weak condition that its elements have tensor squares
in a particular subspace of co-dimension 1 in S2(X). The modified algorithm leads
to a much more stringent restriction that the tensor cube of a vector should belong
to a subspace of co-dimension 21 in S3(X).

Write Ê1, Ê2, Ê3, Ê4, Ê5, and Ê6 for the G-invariant subalgebras of L̂ of type E6.
For each i, the k-algebra Ei is obtained from Êi by extension of scalars.

The next theorem is our main goal. The remaining rather technical arguments
serve merely to count the number of conjugacy classes of embeddings.

Theorem 4.4. For each algebra Ei, the action of G gives an embedding of G into
the algebraic group E6(k).

Proof. Computation 4.3 gives an embedding G � Aut(E i). Now, Aut(E i) has struc-
ture E6(k).2 (see [13]). However, G ∼= L2(8).3 has no homomorphic image of order
2. Therefore the embedding into Aut(E i) gives an embedding into E6(k).

The action of G on Êi does give an embedding of G into the Chevalley group
E6(k̂). However, in this case the proof is more tricky because the automorphism
group of the Lie algebra includes diagonal automorphisms of order 3. One approach
is to show that the action of G gives an embedding into 2E6(k); this is an easy
corollary of the following computation.

Computation 4.5. Each algebra Ei has a G-invariant k-form. Moreover, the six
k-forms obtained from these algebras are isomorphic kG-algebras.

Proof. For each algebra Ei we compute a ‘standard basis’. We then verify that the
k-span of this basis is closed under both the action of G and the Lie product.

Observe that if a scalar multiple cv of some vector v belongs to a kG-form of Ei

and σ1 = vG, then cσ1 is a set of vectors in the k-form. Moreover, if further sets of
vectors are defined inductively by σn = [σ1, σn−1], then cnσn is also a set of vectors
in the k-form. Our strategy is to find a ‘seed vector’ with the properties of v, and
compute sets σ1, σ2, . . . until we reach a spanning set for Ei. A lexicographically
earliest maximal independent subset of vectors provides a standard basis for any
available k-form.

We locate an appropriate seed vector v by an application of the MeatAxe to
output a vector that spans the nullspace of an element of kG and lies in the 21-
dimensional G-submodule of Ei. With this choice of seed, it turns out that σ2 spans
Ei. (It is not surprising that the Lie square of a 21-dimensional constituent should
span a 78-dimensional algebra). We select a maximal independent subset β ⊂ σ2.
We check that the Lie product can be rescaled so that all elements of [β, β] are
k-linear combinations of elements of β. This verifies the existence of an appropriate
scale factor c and gives a kG-form of Ei.

The six k-forms that we obtain are observed to have identical structure constants,
and to support identical actions of G with respect to the bases constructed as
above.

The k-form of Ei must be the Lie algebra of 2E6(k) (since according to Compu-
tation 4.3 there is no G-invariant action on the Lie algebra of E6(k)).

Computational Theorem 4.6. There are two conjugacy classes of embeddings
of G in E6(k) that are irreducible on a 27-dimensional module of 3.E6(k).
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Proof. Let E be a G-invariant Lie algebra over k such that G is irreducible on a 27-
dimensional E-module. Consider the embedding G � E � Aut(E) � GL(E), where
E is a Chevalley group isomorphic to E6(k). Computation 4.5 shows that there is
just one Aut(E) class of embeddings of G in E. However, there are two cosets of E
in Aut(E) — see [13]. We complete the proof by showing that if α ∈ Aut(E) \ E,
then Gα is not an E-conjugate of G. Hence the conjugates of G by each of the two
cosets of E in Aut(E) give two E-classes of embeddings of G in E.

For suppose that α ∈ Aut(E), e ∈ E, and Gα = Ge. Then eα−1 acts on G.
Therefore it acts on G′ ∼= L2(8). However, G is the full group of automorphisms
of L2(8). Hence, there exists g ∈ G such that x = geα−1 centralizes G′. View x
as a linear transformation of E . By Schur’s lemma, x acts as a scalar c on U , an
absolutely irreducible 9-dimensional G′-submodule of E . (As a G′-module, E has
3 non-isomorphic 9-dimensional constituents. The element x must act on each of
these constituents so as to commute with the action of G′.) However, we compute
that [U,U ] is 36-dimensional and

[[U,U ], U ] = [[[U,U ], U ], U ] = E .
It follows that x acts on E as the scalar c3 and also as the scalar c4. In particular,
c = 1. Therefore x acts as the identity on E . We deduce that α = ge ∈ GE ⊂ E.
This completes the proof, as we observed above.

As a corollary, Larsen’s (0, p)-correspondence gives the following theorem.

Theorem 4.7. There are two conjugacy classes of embeddings of L2(8).3 in E6(C)
that are irreducible on a 27-dimensional module.

Acknowledgment. I would like to thank the referee for an important correction to
Theorem 3.2.
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