ADJOINTS OF A GEOMETRY

BY

ALAN L. C. CHEUNG

To give a geometric interpretation to the inverted incidence relation between the flats of a geometry has for years been a tempting idea in combinatorial geometries [1]. If G is a geometric lattice, the inverted lattice G' is not necessarily geometric. The problem has been to determine whether there is some geometric lattice G^{Δ} , to be called an *adjoint* of G, into which G' may be embedded. The present note shows how any adjoint G^{Δ} of a geometric lattice G must be related to G-extensions in such a way that the natural correspondence between flats of G and principal G-extensions is preserved. It follows that an adjoint may fail to exist, even for a geometry with as few as eight points.

An appropriate definition of an adjoint is the following:

An *adjoint* of a geometric lattice G is a geometric lattice G^{Δ} of the same rank into which there is an embedding (i.e. a one-one order-preserving function)

$$e:G' \to G^{\Delta}$$

of the inverted lattice G', mapping the points of G' onto the points of G^{Δ} .

From these simple restrictions, that the ranks of G and $G^{\hat{\Delta}}$ are equal, and that the embedding is onto the points of $G^{\hat{\Delta}}$, three apparently stronger properties follow:

(i) e is cover-preserving

(ii) e is rank-preserving

(iii) e is \wedge -preserving.

Throughout our discussion we'll identify, whenever convenient, elements of G or elements of G', with elements of G^{Δ} , and therefore identify the copoints of G with the points of G^{Δ} .

The G-extensions have been described [2] in several equivalent ways, namely, in terms of linear subclasses, modular filters, elementary quotients and elementary strong maps. Here we need consider only linear subclasses and modular filters.

A linear subclass of G is a set C of copoints of G with the following property: for any copoints x, y and z of G, if x, y and z cover $x \land y \land z$, then $x, y \in C \Rightarrow z \in C$.

363

A modular filter of G is a set $M \subseteq G$ with the following properties:

(i) $x \in M, y \ge x \Rightarrow y \in M$

(ii) if $x, y \in M$ is a modular pair, then $x \land y \in M$.

4

[September

The correspondence between linear subclasses and modular filters of G is given by the following [2]:

PROPOSITION. Let C be a linear subclass of G. Then the set M consisting of all elements x such that every copoint $z \ge x$ is in C is a modular filter of G. Conversely, if M is a modular filter of G, then the set of copoints in M is a linear subclass of G. \Box

A G-extension (and the corresponding linear subclass, etc.) is said to be *principal* if the modular filter has a least element.

The G-extensions, or, without further mention, the linear subclasses of G ordered by inclusion, form a lattice. We denote this lattice by E(G). We shall see how any adjoint of G is embeddable in this lattice of extensions.

PROPOSITION. If G^{Δ} is an adjoint of G, the copoints of G which, as points of G^{Δ} , lie beneath a flat x of G^{Δ} form a linear subclass \hat{x} of G. The embedding $x \rightarrow \hat{x}$ of $G^{\Delta} \rightarrow E(G)$ is \wedge -preserving.

Proof. In a geometric lattice, a set D of points is said to be linearly closed if the points in any line determined by any two points in D is in D. It's obvious that any flat $x \in G^{\Delta}$, when considered as a set of points of G^{Δ} , is linearly closed, which is the same as saying that the set of copoints of G identified with x is a linear subclass of G.

This embedding

$$G^{\Delta} \rightarrow E(G)$$

is \wedge -preserving because G^{Δ} and E(G) are closure systems on the Boolean algebra of copoints of G, with $G^{\Delta} \subseteq E(G)$. \Box

Note that the embedding $G^{\Delta} \rightarrow E(G)$ is not necessarily cover-preserving nor is it v-preserving. (The rank three geometry of six points in general position exhibits this phenomenon.)

Consider the 8-point geometry G:

where the only 4-point planes are

ABCD, ABEF, ABGH, CDEF and CDGH.

364

Consider the lines AB and CD. Let L be the linear subclass of G generated by the principal linear subclasses $\langle AB \rangle$ and $\langle CD \rangle$ and let M be the modular filter corresponding to L. Since ABEF, ABGH, CDEF and CDGH $\in M$, EF is covered by ABEF and CDEF, GH is covered by ABGH and CDGH, so EF, GH $\in M$. Since EF, GH form a modular pair in G, so $\phi = EF \land GH \in M$. Hence L consists of all copoints of G, i.e. L=1 (of E(G)).

THEOREM. The above 8-point geometry G has no adjoint.

Proof. Suppose G has an adjoint G^{Δ} . Consider the flats x and y of G^{Δ} corresponding respectively to the lines AB and CD of G. Since $AB \vee_G CD = ABCD$, which covers AB and CD (in G), so x, y cover $x \wedge y$ in G^{Δ} . Since $x \vee y = 1$ in E(G) and G^{Δ} is embedded in E(G), we know that $x \vee y = 1$ in G^{Δ} . But in G^{Δ} , 1 does not cover x and y which contradicts the semimodularity of G^{Δ} .

BIBLIOGRAPHY

1. H. H. Crapo, Orthogonal Representations of Combinatorial Geometries in Atti del Convegno di Geometria Combinatoria e sue Applicazione, (Perugia, 11–17 Settembre 1970).

2. H. H. Crapo and G.-C. Rota, On the Foundation of Combinatorial Theory: Combinatorial Geometries (M.I.T. Press, Cambridge, Mass., 1970).

3. D. A. Higgs, A lattice order for the set of all matroids on a set, Canadian Math. Bull., V.9. p. 684-685, (1966).

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, CANADA