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Introduction. Let 5 be a semigroup, and let (X(S) denote the ^-semigroup algebra of S.
Beginning with the fundamental paper of E. Hewitt and H. Zuckerman [5], there has been a
considerable amount of research done concerning the Banach algebra ^(S) in the case when S is
abelian; see the bibliography [7]. However, until recently, there was very little information
known concerning tJ(S) when S was nonabelian and infinite. Now for certain classes of
infinite nonabelian semigroups with involution, recent progress has been made in the study of
the Banach *-algebra ll(S) and the "-representations of tJ(5). In [2], B. Barnes and J. Duncan
prove that ^(S) is Jacobson semisimple, study the spectrum of elements in ^(S), and construct
and study ""-representations of ^(S) when S is the free semigroup with a finite or countably
infinite set of generators (and also in some cases where the generators satisfy certain relations).
In [1], the present author considered the representation theory of t :(5) where S is an inverse
semigroup. This paper is a sequel to [1].

In the remainder of this paper S is an inverse semigroup. If aeS, we denote by a* the
unique element in S with the properties

aa*a = a and a*aa* = a*

(the usual notation for this element is a~*). The map a -* a* on S lifts to an involution/-*/*
on l\S) defined by the rule

f*(a)=W) (aeS).
Thus, in this case, ^(S) is a Banach ""-algebra. Since we consider only ""-representations of
tJ(S) on Hilbert space, we use " representation " to mean automatically " ""-representation on
Hilbert space ". In [1] we constructed specific examples of irreducible representations of t1(S)
for certain important inverse semigroups. We also developed a theory concerned with the
irreducible ""-representations of ^(S) determined by finite idempotents of S [1, §3]. An idem-
potent e e S is finite if eSe is a finite set. When e is a finite idempotent of S, there exists an ideal
/ of S such that e is primitive modulo / [1, Proposition 3.1]. This implies that there is a finite
group Ge associated with e. Moreover, the irreducible representations of t1(G!

e) determine in a
natural way irreducible representations of ^(S) . In this paper we prove that if S has a property
that we call the separation property, then the family of irreducible ""-representations of 0(S)
determined by the finite idempotents of S is a separating family for ^(S); i.e. the intersection
of the kernels of all the representations in the family is {0}. Our proof of this result provides a
second proof of the theorem that the ^-algebra of an arbitrary inverse semigroup has a
separating family of irreducible ""-representations (this was first proved in [1, Theorem 2.3]).
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132 BRUCE A. BARNES

Also, we explicitly construct the set of all irreducible representations of t1(5) determined by
finite idempotents for two interesting inverse semigroups of partial transformations. The first
example is the symmetric inverse semigroup on a countably infinite set. In this case the set of
finite groups Ge which induce irreducible representations of the ^-algebra is the set of all the
finite symmetric groups. The second example is a semigroup of partial transformations for
which the groups Ge are all trivial, with the result that the construction of the corresponding
irreducible representations is especially easy to describe.

Now we introduce some notation. We denote the set of idempotents of S by I(S). An
element e e I(S) is finite if the set eSe is finite. The set of all finite idempotents of S we denote
by FI(S).

We use exclusively the complex number field which we denote by C.
Let A be an algebra. An idempotent/in A is a minimal idempotent (abbreviation: m.i.) if

Af is a minimal left ideal of A. If A is a normed algebra which is Jacobson semisimple, then/
is a m.i. of A if and only if

fAf={kf:XeC}

[6, p. 45]. We use the notation soc (A) to denote the socle of A [6, p. 46]. Now assume that A
has an involution. A representation n of A on a Hilbert space H will often be denoted by the
pair (n,H). If two representations (n,H) and (T, K) are unitarily equivalent we write
(n,H)K(j,K).

If A is an index set, then 12(A) is the set of all complex functions/on A such that

The set 12(A) is a Hilbert space with the usual operations and inner product [6, p. 296]. We let
(p(ji) be the function in t2(A) that takes the value 1 at n and is 0 elsewhere on A. Then
{<p(X): Ae A} is an orthonormal basis for t2(A) which we call the standard basis. We note that
there is an exception to this notation. As in [1], if S has a zero 6, then by convention we use
the notation l\S) to denote the space 12(S\{0}) as defined above. Similarly, by convention,
we use the notation ^(S) to denote the space t1(S\{0}).

If X is a nonempty set, we denote the symmetric inverse semigroup on Zby Jx [4, p. 29].
We let fFx be the set of all maps ae^x such that the domain of a is finite. If n is a positive
integer, then 2Fn denotes the set of all ae^x such that the domain of a contains at most n
elements. The set ̂ 0 consists of the empty map alone. If b e Jx, then we denote the domain
and range of b by Db and Rb, respectively.

The cardinality of a set B is denoted by | B |.

1. The separation property. In this section we introduce the separation property for a
semigroup S and verify that any subsemigroup of Jx that contains every finite idempotent in
Jx has the separation property.

DEFINITION 1.1. S has the separation property if for any finite subset {au ...,an} of
distinct elements of S, there existseeir/(5)suchthata1e ^ ake(2 ^k^ n)andaje ^ 0(ifShas
a zero, 9).
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REPRESENTATIONS OF AN ^-ALGEBRA 133

PROPOSITION 1.2. Let S be any subsemigroup ofJx such that FI(JX) <= S. Then S has the
separation property.

Proof. Let {au ..., an} be a set of distinct elements of S. Denote the domain of ak as Dk,
and let A\B denote the set difference of sets A and B. For each k, with 2 S k ^ n, let

Note that if Mt is empty, then Z>! c Dk and a^x) = ^(x) for all xeDv In this case, Dk\Dy
must be nonempty. Form a set Z as follows.

(1) If each Mk is empty (2 ^ fc ̂  «) then choose an element ykeDk\D1 for each A: and set

(2) Assume Mj is nonempty for some j . If Mt is nonempty, then choose an element
ykeMk. If Mk is empty, then choose an element ykeDk\Dl. Then let

Now let e be the finite idempotent map with domain Z; i.e. De = Z and e(x) = * for all
xeZ. It is easy to verify that ate # 6 and ate # ate, 2 ̂  k ^ n.

We give two examples of interesting inverse subsemigroups of Jx that have the separation
property. First, let <S be a total order on X. We denote by . / {X, 0) the collection of all maps
in Jx which are order-preserving with respect to the order 0. It is a straightforward exercise to
show that J (X, 6) is an inverse semigroup and that I(?fx) <= £ {X, 0). Thus, J (X, 0) has the
separation property by Proposition 1.2.

Now let ~ be an equivalence relation on X. Let J{X, ~) denote the collection of all maps
aefx with the property that for all xeDa, we have x ~ a{x). Again, it is easy to show that
J{X, ~ ) is an inverse semigroup with the separation property.

The separation property on S implies a very useful property of the algebra ^(S); namely,
that if/GtJ(S) and fe = 0 for all eeFI(S), then /= 0. As we shall see in §2, this property of
^(S) has a number of important ramifications concerning the structure and the representation
theory of t 1 ^ ) .

PROPOSITION 1.3. Assume that S has the separation property. Iffe^iS) andfe = Ofor all
eeFI(S), thenf= 0.

Proof. Assume fe = 0 for all eeFI(S), and / ^ 0. Then / has the form

(akeS,XkeC)

where ak ± a, for k ? j , and kk ^ 0 for all k (the sum may be either finite or infinite). Choose n
so large that

k>n

Since S has the separation property, there exists eeFI(S) such that aLe ^ 0 and axe ̂  ake,
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134 BRUCE A. BARNES

2^-k^n. Let M = {k : ake = axe\. Now/e = 0, so that £ Afe = 0. Then
kMkeM

k>n

This contradiction proves t h a t / = 0.
There are examples where S does not have the separation property, but ^(5) does have the

property that when fel\S) and/e = 0 for all eeFI(S), t h e n / = 0. The results in §2 depend
only on this property of t1(S'), and not on the stronger assumption that S has the separation
property. The separation property does seem to be the most easily stated and the most readily
verifiable assumption on a semigroup S that implies the desired property of tx(5).

2. The semigroup algebra when S has the separation property. In this section we prove
that if S has the separation property, then the set of all irreducible representations of ^(S)
which are determined by finite idempotents of S is a separating family for ^(S). At the same
time we derive a second proof of the result that tJ(iS) has a faithful representation on Hilbert
space when S is an arbitary inverse semigroup [1, Theorem 2.3]. This implies that l\S) is an
y4*-algebra in the sense of C. Rickart [6, p. 181]. It follows from [6, Theorem (4.1.19)] that
^(S) is Jacobson semisimple.

For the remainder of this section let n denote the left regular representation (LRR) of ^(S)
on 12(S) as constructed in [1, §2]. As in [1], let {(p(b): beS, b # 0} be the standard ortho-
normal basis for 12(S). If a, beS\{9}, then by definition

n(a)(p(b) = (p(ab) if a*ab = b,

n(a)(p(b) = 0 if a*ab*b.

The only result we assume from [1] is that n is a representation of iHS) on 12(S).

LEMMA 2.1. If hell{S) and h = A1a1 + ...+/lm«m, where ak^aj (k^j) and ^¥=0
(1 ^ k ^ tri), then n(h) ^0. Asa consequence, if S is finite, then n is a faithful representation of
HS) on 12{S).

Proof. Let ek = a*kak (1 ̂  k ^ m). With respect to the usual ordering of idempotents in
S, the set {eu ..., em} contains a maximal element which we may assume to be el. Then

niaj)^^ = 0 if ej =£ eu and

n(aj)q>{ei) = <P(flfi) = <P(flj) i f ej = ev

Therefore,

rcW<pOi) = YX*-MaD'-isuch tha t c i = ej) * °-
When 5 is finite, then Lemma 2.1 implies that n is a faithful representation of ^(S)

12(S). Thus tx(5) is Jacobson semisimple in this case. We state this result as a lemma.

LEMMA 2.2. IfS is finite, then lx(S) is Jacobson semisimple.

on
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The result in Lemma 2.2 also follows from a more general theorem [4, Theorem 5.26].

THEOREM 2.3. Assume that S has the separation property. Let A = ^(S).

(1) If k is a m.i. of eAe for some eeFI(S), then Ak is a minimal left ideal of A.
(2) IffeA andfAk = {0} whenever k is a m.i. of eAe for some eeFI(S), thenf= 0.

Proof. If ee JF7(S), then by Lemma 2.2, eAe = ^(eSe) is Jacobson semisimple. Let k be
a m.i. of eAe. Note that the existence of at least one such k is assured by the application of
standard Wedderburn theory to the finite-dimensional, Jacobson semisimple algebra eAe. We
prove that Ak is a minimal left ideal of A. Suppose h = gk, geA, h^O. Then he = gke =
gk = h. By Proposition 1.3 there exists/eF/(S) such that h*f¥= 0. Then fh # 0 and/A =fhe
is contained in the finite dimensional algebra fAe. Thus/he is a finite linear combination of
maps infSe. Lemma 2.1 implies that n{fh) i= 0, and therefore, n{h*fh) # 0. Then

h*fh = eh*fheeeAe.
Also, note that

h*fh = (eh*fge)k.

Since A: is a m.i. of eAe, there exists teeAe such that th*fh = k. Therefore whenever heAk,
h # 0, then Ah - Ak. This proves (1).

The given condition in (2) implies by an easy argument that/e = 0, for all eeFI(S). Then
/ = 0 by Proposition 1.3.

COROLLARY 2.4. Let S be an inverse semigroup. Then ^(S) has a faithful representation on
Hilbert space. As a result, 11(S') is Jacobson semisimple.

Proof. First assume that S has the separation property. Let /be the *-radical of A = t1(S)
[6, Definition (4.4.9)]. Now we prove that J = {0}. Suppose geJ,g^0. By Theorem 2.3,
there exists a minimal idempotent k of eAe for some eeFI(S) such that gAk ^ {0}. Ifghk # 0,
he A, then Ak = Aghk <= / . But if n is the LRR of A, then by Lemma 2.1, n(k) # 0. It follows
by [6, Theorem (4.6.7)] that k$ J. This contradiction proves the result when Shas the separation
property.

To prove the general case, note that if S is an inverse semigroup, then S can be embedded
as an inverse subsemigroup of 5" = Js [4, Theorem 1.20]. It follows that there is a •-iso-
morphism T of tJ(S) into ^(S'). Since S' has the separation property [Proposition 1.2], then
there is a faithful representation y of ̂ (S1) on Hilbert space. Then y o T is a faithful represen-
tation of l\S) on Hilbert space. It follows from this and [6, Theorem (4.1.19)] that tx(S) is
Jacobson semisimple.

Define
&(S) = {aeS: a*aeFI(S)}.

If ae ^"(S), then
aa*Saa* = a(a*a)(a*Sa)(a*a)a*.

Therefore, since (a*a)S(a*a) is finite, we have aa*e.F/(S). Thus, if ae&iS), thena*e^(5) .
If a e ̂ (S) and beS, then

(ab)*(ab)S(ab)*(ab) c b*(a*a)S(a*a)b,
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and this last set is finite. Therefore abe2F(S). This verifies that &(S) is an ideal of S.

PROPOSITION 2.5. Assume that S has the separation property. Let A = l\S). Then

(1) 1*(&(S)) is the closure ofsoc(A), and
(2) the left annihilator ofH&{S)) is {0}.

The proof of this proposition is a routine application of Theorem 2.3.
Let A = ^(S). Denote by Jt the set of all elements keA such that k is a m.i. oieAe for

some eeFI(S) and k = k*. \ikeM, then by Theorem 2.3 (1) we have that A: is a selfadjoint
m.i. of A. There is a standard method for constructing an irreducible representation of A on a
Hilbert space using the left ideal Ak, where k is a selfadjoint m.i. of A [6, Theorem (4.10.3)].
We denote this representation by nk and the representation space by Hk. In this construction,
Ak is naturally imbedded in Hk. If < •, •> is the inner product on Hk and fg, he A, then
{nk{f)gk,hky is the unique scalar X such that kh*fgk = Xk. It is easily verified that

ker(«») = {feA :fAk = {0}}.

PROPOSITION 2.6. Assume that S has the separation property.

(1) The collection of irreducible representations {nk:keJ(}isa separating family for A.
(2) If(n,H) is an irreducible representation of A such that ^(^(S)) <£ ker(7t), then there

exist keJt such that (n, H) « (nk, Hk).

Proof. Part (1) follows from [6, Lemma (4.10.1)] and Theorem 2.3.
Now we prove (2). There exists keJt such that k$ker(n). Then n(k) is a nonzero

projection on H. Choose x0 e H, with || x01| = 1, such that n(k)x0 = x0. Consider the positive
functional a and /} defined on A by the equations

/?(/) = (*(/)*o,*o) (feA),

<*(/) = <X(/)M> (feA).
Note that a(/) = X, where kfk = Xk. By [6, Lemma (4.5.8)], {n, H) and (nk, Hk) are equivalent
to the representations of A determined by the positive functionals j8 and a, respectively. If
feA, then

= (</>o>*o)

= (n(fMk)xo,n(k)xo)

= (n(kfk)xo,xo)

= (a(f)n(k)xo,xo)

= «(/)•

Therefore, n « nk.
If S is an inverse subsemigroup of Jx for some set Xand FI(JX) c & t n e n &(S) is the

set of all maps in S that have a finite domain; i.e. !f(S) = &xnS. Also, S has the separation
property by Proposition 3.1, so that Propositions 2.5 and 2.6 apply to ^(S). In particular, the
closure of the socle of l\S) is {'(^nS1), and if (n, H) is an irreducible representation of ll(S)
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such that ^ ( . ^ n S ) $L ker(Ti), then n is equivalent to a representation of tx(5) of the form nk.
These remarks apply to the examples J{X, 0) and J(X, ~ ) mentioned in §1.

3. Construction of certain irreducible representations of the symmetric inverse semigroup
on a set. Let N be the set of positive integers. In this section we explicitly construct certain
irreducible representations ofl1^^) that are induced by the known irreducible matrix repre-
sentations of the finite symmetric groups. Moreover, we show that the set of representations
constructed is a separating family for ll(SN). A similar construction can be effected for
' 1(^)> where X is a set of any given cardinality. To carry out the procedure in this general
case, some total order must be designated for X. In the case at hand, X = N, we use the
natural ordering on N.

Fix a positive integer n. Let Sn be the symmetric group acting on the set of numbers
M = {1,2, . . . , n}. When dealing with Sn or the representations of Sn, we use the notation and
terminology in [3]. Fix a set of positive integers {mum2,..., mk} with the properties
mt ^ m2 ^ ... ^mkandn = m1 + ...+mk. Let F be the frame [3, p. I l l ] corresponding to the
collection {w,, . . . , mk}. Denote by AF the set of standard tableaux with entries from M
[3, p. 118]. In [3, Chapter IV], an irreducible matrix representation of Sn is constructed using
the set AF. This representation lifts to an irreducible algebra representation of ^(S^ on some
vector space. We use Young's orthogonal matrix representation of Sn [3, pp. 133-135] which
lifts to an irreducible representation of l\Sn) on the Hilbert space 12(AF).

We allow a tableau in the frame F to have any set of n distinct positive integers as entries.
This is a more general concept of tableau than that in [3], where entries are restricted to elements
of M. If T is a tableau, then let {T} denote the set of entries in T. When aeJN and T
is a tableau with {T} c Da, we let aTbe the tableau formed by replacing each entry m in 7" by
a(m). Let £lF be the set of all tableaux of the form \j/T where Te AF and i// is an order-
preserving map such that D^, = {T}. The tableaux in QF are called the standard tableaux (for
the given frame F). The standard tableaux are exactly those tableaux T with entries in N with
the property that the numbers increase in every row of rfrom left to right and in every column
of T downward.

If Kand / a re any two finite subsets of N such that \K\ = | J\, then there exists a unique
order-preserving (abbreviation: o.p.) map in ̂ N with domain Kand range /. We use this fact
in what follows. Also, we identify Sn as a subset of ./N by identifying <reSn with the map
asfn having domain M= {1,2,... ,n} and taking values a(m) = a(m), 1 S m ^ n.

If aeyN, and Kis a subset of N such that K<= Da, then a | Kdenotes the restriction map
determined by restricting a to K.

DEFINITION 3.1. Let a be a map in JN. Assume that TeQF and {T} c Da. Let
(i) x t>e t n e unique o.p. map with domain M and range {aT},
(ii) ty be the unique o.p. map with domain {T} and range M, and

(iii) o = X*\
Then

We call the product x^ the standard decomposition of a\ {T}.
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Let eM be the map in JN with domain M taking values eM(k) = k, ksM. Then eM is the
identity of Sn.

LEMMA 3.2. Let a,b be maps in , /N. Assume TeSlF and {T} c Db and {bT} c: Da. Let
b\{T} = yp^i and a\ {bT} = XiO'ilAi be the corresponding standard decompositions. Then
ifriX = eM and °b\ {T} has standard decomposition

Proof. By definition x is unique o.p. map with domain M and range {bT} and \]/l is the
unique o.p. map with domain {bT} and range M. It follows that t/^x = eM. Then

ab\{T}=(a\{bT})(b\{T})

Recall that AF is the set of standard tableaux with entries from {1,2, . . . ,«} relative to the
frame F. Let y be Young's orthogonal representation of Sn on the finite Hilbert space t2(AF);
see [3, pp. 133-135] where y is explicitly constructed in terms of matrices with respect to the
basis {(p(T): Te Af}. If Te£lF and x is a o.p. map with {T} c= Dv then XT£&F- When

m

is anY finite sum in t2(Qf), define

(l )= t
\k=l ) k l

Now we define ny(a) for ae . / N . First we define ny(a) on the basis {(p(T): TeilF}.
Let TeClF. Then

{ } T

(2) if {T} c Z)a, and a| {7} = z<r̂  is the standard decomposition of a\ {T}, let

ny{a)(p{T) =

It is not difficult to verify that the natural linear extension of ny(a) to the inner product
space of finite linear combinations of {q>(T): TeClF} is a bounded operator with norm at
most 1.
Thus ny(a) extends in the usual way to a bounded linear operator on 12(QF) with || ny(a) | S 1 •

1 X k . then let

Then ny(J) is a bounded linear operator on l2(fiF). In fact, | ny(f) || ^ H/H. /e t 1 ^) - N o w

we prove that/-> ny(f) is a representation of ^( . /N) o n t2(QF). We do this in (3.3) and (3.4)
below.

(3.3). ny(fg) = ny{f)ny(g)
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Proof. It suffices to prove that ny(ab)q>{T) = ny(a)ny(b)(p(T) when a,beSN and TeQF.
If {T} * D6 or {ftT} * A,, then { r} * Z>fl6 so that, by (1), ny(a)ny(b)cp(T) = 0 = ny(,ab)(p(T).
Suppose that {T} c Dfc and {bT} c= Z>a. Let Z> | {T} = xffi/f and a \ {bT} = XxO^^ be the
corresponding standard decompositions. Then, by Lemma 3.2, we have ip^x = eM and
ab\ {T} has standard decomposition jdo^a^. Then

(3.4). n1(f*) = n1(f)*,

Proo/. It suffices to show that

(i)

whenever a e / N and 71,
Assume first that {T} tt Do. In this case ny(a)<p(T) = 0, and we prove that ((p(T),

ny(a*)cp(S)) = 0. If {5 } $ Da.> then ^(a*)<p(S) = 0. Suppose that {S }<zDa. = Ra. Let
a* | {S} = XiT^i be the standard decomposition of this map. Since RX1 = {a*S} <= Da, we
have RXi # {T}. Therefore

(<p(T),(p(XiW)) = 0, for all WeA^. (2)

By definition
ny(a*)q>(S) =

Also,

where SteAF, XkeC Then

k=l

TheTdoreby(2),((p(T),ny(a*)(p(S)) = 0. This proves that (1) holds when {T}<£Da. Similarly,
(1) holds when {S} * Dfl..

Now assume that {T} <= Da and {5 } c £>a,. Let

a | {T} = xff«A and a

be the standard decompositions of these maps. There exist
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such that

Note that {xTk} = {aT} and {xlSJ} = {a*S} for all A:j. Thus, if {aT}*{S}, then
{71} # {a*S }, so that (nJa)<p(T)> fl»(S)) = ° = (PJT), ^ ( a ' X S ) ) - Assume that {aJ} = {S }.
Then {T} = {a*S}. In this case, from the definitions of Xu ^i»X. ar>d "A; w e have

X = i/* and x* = $•
Also, a* | {S} = (a | {T})*. Then

Note that whenever W, VeClF, and f is an o.p. map from {^} to {F}, then {£<p(W), (p(V)) =
). Therefore,

This completes the verification of (1) in all cases.
Let n be a positive integer. Denote by / the closed ideal lx(^n_1) of A. Let Qj be the

natural quotient map of A onto A\J. The algebra /4// is isomorphic to ix{S\8Fn-^). If A is a
selfadjoint m.i. of A/J, then (nh,Hh) is an irreducible representation of /4//(the notation here is
the same as that used in §2 in the remarks preceding Proposition 2.6). Therefore, / - »
{nh o gj)(/) is an irreducible representation of A on Hh. Representations of this sort are
discussed in [1, §3].

As before, we have Sn identified with the set of all one-to-one maps of M onto M. Then
is a subalgebra of A, and in fact, l 1 ^ ) c eMAeM.

LEMMA 3.5. Let h! be a selfadjoint m.i. o/l1(5B). Assume that (T, K) is a representation of A
with the properties that

®l1{*n-1)c kerfr), and
(ii) there exists xoeK such that z{Ah')x0 is dense in K.

Let h = QjQi'), where J = V-{3Fn_ t ) . Then h is a selfadjoint m.i. of A\J and

Proof. If ge A, then eMgeM =f+k for some felx(Sn) and some ke/. Therefore,
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h'gh' = h'eMgeMh' = h'fh' + h'kh'

= Xh' + h'kh',

where A is a scalar and h'kh'eJ. Consequently, hQj(g)h = Qjifi'gh') = kh. This proves that h
is a selfadjoint m.i. of A/J. Now the lemma follows from [1, Theorem 3.2].

THEOREM 3.6. Let Si. be the collection of all the representations {%v 12(CIF)), where y is any
irreducible representation o/t1(5'n) and n is any positive integer.

(1) Any representation in Si is an irreducible representation ofll(f^).
(2) If(x, K) is an irreducible representation ofl\JN) such that 11(#'N) $ ker (T), then (x, K)

is equivalent to some representation in 0t.
(3) The collection 01 is a separating family of irreducible representations for \l(J^).

Proof. First we prove that the representations in ^ are irreducible. Let n be a positive
integer, and let y be an irreducible representation of tx(5n) on 12(AF), where Fis the correspond-
ing frame. Choose h' a selfadjoint m.i. of l\Sn) such that y{h) & 0. Choose Te AF such that
y(h')(p(T) ^ 0. Since y is irreducible on t2(AF), there exists / e t 1 ^ ) such that y(fh')q>(T) =
<p(T). Now we prove that <p(T) is cyclic vector for ny in (2(fiF). Assume Rt e S1F. There exist
7\e AF and an order-preserving map i/̂  : M-* {Rt} such that ^1<p(T'1) =q>(^iT1) = q>(Ri).
There exists ffel'(5n) such that ny(g)(p{T) = (piT^. Thus, ny(\l/lg)<p(T)=<p(Ri). Suppose
RkeClF, 1 ^k^m. Consider the vector ^(piRj) + ...+Am<p(Rm). By the previous argument,
we can choose/*611P'N) (1 = ^ ^m) s u ch

= cp(Rk) (1 g fe ̂  m).
Thus,

where k = At/j + . . . + A ^ . It follows from Lemma 3.5 that (ny, t
2(fif)) is irreducible.

Let (x,K) be a representation of t1(^"N) such that ^"N <j: ker(t). There exists eeFI(SN)
such that T(e) 5̂  0. We may assume that e is a minimal element in the set

: T( / ) # 0}

with respect to the usual ordering on /(./N). Suppose/, geFI(SN) and | i),. | = | Z)fl |. Then
there exists ae . / N such tha t /= a*a and 3 = aa*. Therefore,

It follows from the choice of e that T( / ) = 0 if/eF/(yN) and | Z), | < | De |, while T( / ) # 0 if
I Dy I = I De I. Let« = I £>e I. By the previous argument, the ideal ker (T) n JN of i/N is ^ _,.
Therefore, t^^n-1) c ker(T). Also, x(eM) ̂  0 where M = {1,2,...,«}. Consequently there
exists a selfadjoint m.i. h' of t 1 ^ ) such that x(h') & 0. Let y be the irreducible representation of
ix{S^ on t2(AF) determined by h', where Fis the corresponding frame. Let / = V-{^n_ J, and
let A = QjQi'). Then, by Lemma 3.5,
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This proves (2).
Part (3) follows from (2) and Proposition 2.6.

4. A separating family of irreducible representations of J(N, 0). Let N be the positive
integers, and let 0 be the usual total order on N. Recall that ./(N, 6) is the inverse subsemi-
group of yN consisting of those maps a e . / N which are order-preserving. For the remainder
of this section we let S denote i/(N, 6). As another application of the results in section 2 and
the results in [1, §3], we construct the set of all irreducible representations ll{S) that are deter-
mined by finite idempotents of S. In this particular case, the construction is quite easy.

Fix n a positive integer. Let Fn be the se: of all subsets K of N such that \K\ = n. Now we
define a representation nn of l\S) on the Hilbert space l2(Fn). Let {(p{K) : KeTn) be the stan-
dard orthonormal basis of this Hilbert space. If ae S and TeTn, define

nn(a)<p(T) = (p(aT), if TczDa,

nn(a)<P(T) = 0, if T$Da.

It is easy to show that a -* nn(a) is a representation of S on t2(Fn). This semigroup represen-
tation extends to a representation of l\S) on l2(Fn) in the usual way. We denote this extension
by 7rn also. We have na # nm if n # m.

THEOREM 4.1. (1) For each n ^ 1, the representation (nn, t
2(Fn)) is irreducible.

(2) If (T,K) is an irreducible representation ofl1^) such that C(FNnS) <t ker(T), then
(T, K) a (7tn, t

2(Fn)), for some n.
(3) The collection (nn, l

2(Fn)) (n ^ 1) is a separating family of irreducible representations
for l\S).

Proof. Fix a positive integer n. Let A = ^(S), and let J =l\&r
n_lnS). Choose

e G F/( S) such that | De | = n. Note that if a e S, then either eae = eoveaee&'n-i. Therefore,
if g eA, then ege = Ae+k, where AeC and keJ. Let h = Qj(e). Then

hQj(g)h = QAege) = Q,(Ae+fc) = kh.

This proves that A is a selfadjoint m.i. of A/J. Let T = De. Now we prove that <p(T) is a
cyclic vector for ntt. Suppose Rj e Fn and Xj e C (1 ^ j ^ m). There exist ^ e 5 such that T is
the domain of ij/j and ^/jT = RJ for l^j^m. L e t / = ^ ^ H - . . .+Ami^met1(5). Then

J = l

Therefore (p(J) is cyclic for 7rn. It follows from [1, Theorem 3.2] that {nn, t
2(Fn))«(7ih o g

This proves (1).
Now assume that (x,K) is an irreducible representation of l\S) such that l\!FKc\S) $.

ker(r). Then there exists eeFI(S) such that t(e) # 0. We may assume that e is a minimal
element of the set
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Then, as in the proof of part (2) of Theorem 3.6, it follows that lY{&r
n-lnS) cker(r) where

n = |Z>e|. Again, let / = l1(^r
n_1r\S). A repetition of the proof of part (1) shows that

ft = Qj(e) is a selfadjoint m.i. of A/J, and that (nn, I
2(rj) as (nhoQJtHh). But also, by [1,

Theorem 3.2] we have (x, K) x (nh » Qj, Hh). This proves (2).
Part (3) is an immediate consequence of Proposition 1.2, Proposition 2.6, and (2).
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