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Abstract

We perform Bayesian inference of the parameters of a time-dependent model of ice flow and
calving at Helheim Glacier, East Greenland. We find that, while a time-independent calving para-
meterization can recover the mean observed terminus position, such a model is unable to recover
sub-annual variability, even when forced with seasonally varying climate. To address this, we
develop a simple stochastic model relating surface runoff rates and calving threshold. Again infer-
ring model parameters from observations, we find that this parameterization is able to reproduce
observations with respect to both mean position and characteristic temporal variability. This
result demonstrates the importance of considering potential sub-annual controls on calving
rates in numerical models, which may include variable undercutting rates or surface runoff-
dependent surface crevasse propagation.

1. Introduction

Mass loss from the Greenland ice sheet (GrIS) can be partitioned between surface mass
balance (SMB) and ice dynamics, with a large percentage (≈ 66% annually) being attributed
to ice dynamics (Mouginot and others, 2019). Warming surface temperatures result in direct
mass loss via surface melting, while losses due to ice dynamics occur due to discharge of gla-
cier ice into the ocean, where it is lost to calving and submarine melting. Marine-terminating
outlet glaciers drain ∼88% of the GrIS by area (Rignot and Mouginot, 2012). Therefore, under-
standing the dynamics of Greenland’s marine-terminating glaciers is critical for estimating
future mass loss from the GrIS.

A principal challenge in understanding the dynamics of marine-terminating glaciers is that
their behavior is governed by a myriad of interrelated physical processes affected by both mar-
ine and atmospheric forcings. Changing ocean circulation patterns have led to increased sub-
aqueous melting of tidewater glaciers, which has been linked to glacier thinning and flow
acceleration (e.g. Holland and others, 2008; Motyka and others, 2011; Rignot and others,
2012). In addition to causing direct mass loss, subaqueous melting impacts ice dynamics by
undercutting calving fronts, potentially amplifying calving rates (Fried and others, 2019;
Slater and others, 2021).

Frontal ablation from calving and submarine melting is affected not only by the marine
environment, including ocean thermal forcing and salinity, but also by surface processes.
Meltwater pooling in crevasses may result in fracture propagation and thereby cause iceberg
calving (van der Veen, 1998). Seasonal variations in meltwater input to the glacier bed
cause changes in subglacial water pressure and basal sliding speed (e.g. Sundal and others,
2011). While seasonal acceleration is more pronounced on land-terminating outlet glaciers
than marine-terminating glaciers (Davison and others, 2020), seasonal velocity variations
may still have an important impact on calving (Cook and others, 2014). More importantly,
surface runoff is linked to submarine melt rates via subglacial discharge (Xu and others,
2013). Hence, greater subglacial discharge results in greater subaqueous melting and
undercutting.

The multitude of interrelated physical processes acting on marine-terminating glaciers
makes modeling their dynamics challenging and obscures the primary causes of mass loss
and retreat. Recent modeling studies have made strides in coupling models of ice-dynamics,
subglacial hydrology, frontal plume melting and calving (e.g. Cook and others, 2021).
However, there are still significant uncertainties in state of the art models. Questions remain
as to which sliding laws and calving laws are most appropriate in numerical models (Amaral
and others, 2020; Åkesson and others, 2021), and work on understanding these processes is an
active area of research. Even if a specific model formulation is assumed correct, effort is needed
to rigorously constrain unknown model inputs and parameters.

In this work, we aim to understand the primary physical processes controlling seasonal ter-
minus position variability at Helheim Glacier from 2007 to 2019. Helheim Glacier is one of the
largest outlet glaciers in Greenland in terms of ice-flux (Mankoff and others, 2019). Helheim
has retreated ∼6 km since 2003 (Fig. 1), but this retreat has not been linear. Observations indi-
cate a seasonal signal in terminus position with advance during winter and retreat in summer
(Bevan and others, 2015; Kehrl and others, 2017). Processes driving this seasonal cycle are
uncertain, but modeling indicates that Helheim may be sensitive to factors such as the
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depth of water in surface crevasses, which could influence calving
rates on a seasonal time scale, and subglacial water pressure,
which could cause seasonal acceleration (Cook and others,
2014). Evidence based on geometry and nearby glaciers also sug-
gests that Helheim may soon undergo substantial retreat
(Williams and others, 2021).

To better understand the physical processes controlling ter-
minus position variability at Helheim, we model its dynamics
between 2007 and 2019 using the Ice-sheet and Sea-level System
Model (ISSM), a finite element based, thermo-mechanically
coupled ice-sheet model (Larour and others, 2012). To identify
the most important physical processes affecting terminus position,
we first estimate a number of time-independent model parameters
and their uncertainties by comparing modeled and observed ter-
minus positions. We find that static parameters do not capture
observed seasonal fluctuations in terminus position. To rectify
this issue, we perform sensitivity experiments using seasonally
varying model forcings. Based on the results of these sensitivity
experiments, we develop and test a stochastic model that relates
the calving stress threshold in a von-Mises calving law
(Morlighem and others, 2016) to surface runoff at Helheim, such
that the resulting instances of modeled terminus position exhibit
statistical agreement with observations of front position.

We structure the manuscript in an unconventional manner,
such that results of a given experiment are presented before
describing subsequent experiments. This presentation is intended
to help motivate each experiment given previous findings. In
Section 2, we present the numerical model and estimate a number
of time-independent model parameters and present the results.
Motivated by the time-independent parameter estimates, Section 3
focuses on experiments using seasonal forcings. Finally, building
on all previous results, we present a Markov model for estimating
time-dependent calving rates in Section 4.

2. Methods

2.1. Ice dynamics model

Ice dynamics at Helheim are modeled using ISSM (Larour and
others, 2012). Ice velocity is modeled using the shallow shelf
approximation (MacAyeal, 1989). Dirichlet boundary conditions
on velocity are imposed on the interior and lateral boundaries
of the computational domain using a composite ice velocity
map from 1985 to 2018 from the ITS_LIVE project (Gardner

and others, 2021a). Lateral boundaries are determined by flowline
velocity tracing. We use an anisotropic computational mesh
refined based on the ITS_LIVE velocity map with a maximum
resolution of ∼5 km in the interior and ∼200 m in the fast flowing
regions of Helheim and in the fjord. Sliding follows a linear,
Budd-like, friction law of the form

tb = b2Nu (1)
where τb is the basal stress, N is effective pressure, u is basal ice
velocity and b2

0 is an uncertain traction coefficient (Budd and
others, 1979). Effective pressure is given by

N = Pi − Pw (2)
where Pi is ice overburden pressure and Pw is water pressure.
Radar interferometry at Helheim indicates a relatively small
tidal influence on near terminus velocity, suggesting a strong
coupling to the bed (Voytenko and others, 2015). We therefore
assume that water pressure is a fixed fraction (85%) of overburden
pressure (Wright and others, 2016), and that there is not a strong
hydraulic connection to the ocean. However, we further examine
the role of subglacial water pressure in Section 3. Bed and surface
geometries for Helheim are based on BedMachine v3 (Morlighem
and others, 2017). Surface elevation from BedMachine yields a
nominal ice-sheet geometry corresponding to the year 2007,
which we select as the starting point for all model runs.

We adopt a von Mises calving law in ISSM (Morlighem and
others, 2016) to determine the calving rate at the ice-front pos-
ition, which is tracked using a levelset method (Bondzio and
others, 2016). The calving rate c is given by

c = ‖u‖ s̃
s
. (3)

where σ is an uncertain stress threshold and s̃ is the tensile von
Mises stress. The latter is defined as

s̃ = ��
3

√
B ˜̇1e

1/3 (4)
where B is an uncertain, temperature-dependent ice hardness.
The effective tensile strain rate ˜̇1e is defined by

˜̇1
2
e =

1
2

max (0, 1̇1)
2 +max (0, 1̇2)

2( ) (5)

a

b

Fig. 1. Terminus position projected along a central flowline (a) and surface runoff (b) at Helheim glacier between 2003 and 2019. Shaded blue regions indicate
periods of terminus advance.
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where 1̇1 and 1̇2 represent the eigenvalues of the 2D horizontal
strain rate vector. At the calving front, a water pressure boundary
condition is applied automatically where the bed is below sea level
and a zero stress boundary condition is used otherwise.

2.2. Estimation of time-independent parameters

In order to better understand the physical processes controlling
terminus position variability at Helheim, we seek probability dis-
tributions for model parameters that best explain observed
changes in terminus position at Helheim from 2007 to 2019.
We first examine several static (time-independent) model para-
meters. Here, we define prior distributions that we use to sample
uncertainty in forcings including SMB, boundary conditions
(basal friction coefficient) and model parameters (calving stress
threshold, submarine melting and ice temperature). Prior distri-
butions are intended to be very broad in order to define a large
space of admissible parameter combinations. Prior distributions
are randomly sampled to generate training data for a surrogate
model, or emulator, that approximates the output of ISSM as
outlined in Section 2.3. Using this surrogate model, refined par-
ameter estimates are obtained by incorporating terminus position
observations as described in Section 2.5.

2.2.1. Surface mass balance
We use seasonally varying SMB ȧ0(x, y, i, j) from the Modèle
Atmosphérique Régional (MAR) indexed by year i and month j
(Tedesco and Fettweis, 2020). One way to parameterize the uncer-
tainty in SMB would be to introduce a simple scaling parameter
that multiples ȧ0(x, y, i, j) field. A limitation of this approach is
that it would not account for spatial variability in uncertainty in
the SMB field. For example, seasonal variability is greater near the
terminus than in the interior. To address this, we parameterize
uncertainty in SMB in a way that captures its natural spatial and
temporal variability. We introduce an SMB bias parameter pȧ and let

ȧ(x, y, i, j)=

|pȧ|ȧmin(x, y, j) pȧ,−1
|pȧ|ȧmin(x, y, j)+ (1−|pȧ|)ȧ0(x, y, i, j) −1≤ pȧ≤ 0
|pȧ|ȧmax(x, y, j)+ (1−|pȧ|)ȧ0(x, y, i, j) 0, pȧ≤ 1
|pȧ|ȧmax(x, y, j) pȧ. 1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

.

(6)

Here −1.33 ≤ pȧ ≤ 1.33, and amin(x, y, j) and amax(x, y, j)
represent the minimum and maximum SMB values at a given loca-
tion and month across all years between 2007 and 2019. In effect, pȧ
values greater than zero indicate seasonally high SMB, whereas
values less than zero indicate seasonally low values. A value of
zero recovers the default MAR SMB (Fig. 2). Values of pȧ above 1
or below − 1 allow us to explore sensitivity to SMB by allowing
for broader spectrum of seasonal mass-balance values slightly
beyond the minimum and maximum seasonal values in MAR.

2.2.2. Basal friction
We estimate a baseline basal traction coefficient b2

0 by inverting
for surface velocity (Morlighem and others, 2010). To maximize
spatial coverage of velocity observations, we again use the 1985–
2018 composite ice velocity field from ITS_LIVE (Gardner and
others, 2021a). The basal traction coefficient β2 is then given by

b2 = pb0
b2
0. (7)

Uncertainty in β2 is sampled by allowing pb0
to vary between 0.66

and 1.33. The parameter pb0
therefore uniformly scales the trac-

tion field from 66 to 133% of its default value. This range is

slightly broader than that tested in Downs and Johnson (2022),
where a 50% change in the basal traction coefficient was found
to cause a peak change 50% in near terminus velocity using a
similar model formulation on a marine-terminating glacier. We
adopt a slightly larger range than in previous work so as to pro-
vide sufficient training data for the surrogate model (Section 2.3).

2.2.3. Calving stress threshold
The calving stress threshold σ used in the von Mises calving law is
allowed to vary in the interval 25 × 103≤ σ≤ 2000 × 103 Pa.
A lower threshold of 25 × 103 Pa represents a physical extreme,
where ice calves nearly immediately when entering the sea. The
upper threshold of 2000 × 103 Pa represents the opposite physical
extreme in which ice rarely calves. Note that calving in ISSM
occurs only for ice in contact with the ocean.

2.2.4. Submarine melting
Since the ice front of Helheim is lightly grounded (Melton and
others, 2022), we choose to impose a frontal submarine melting
or undercutting rate as opposed to modeling melt on the under-
side of floating ice. Enderlin and Howat (2013) estimated a mean
submarine melt rate, ṁ, of ∼0.56 m d−1 at Helheim between 2000
and 2010. Rignot and others (2010) estimated melt rates of
between 1 and 4m d−1 at three grounded tidewater glaciers in
West Greenland. Based on this range of estimates for marine-
terminating glaciers in Greenland, we constrain the submarine
melting rate ṁ between 0 and 4m d−1. As with other parameters,
we use a broad range of plausible melt values for the prior distri-
bution as opposed to a specific range estimated for Helheim.

2.2.5. Ice temperature
To estimate a baseline ice temperature field T0, we solve for ver-
tically averaged steady-state ice temperature. As boundary condi-
tions, we use a 30-year averaged surface temperature field from
1980 to 2010 from Box (2013), and a uniform geothermal heat
flux of 70 mW m−2 at the basal boundary based on Martos and
5 others (2018). Using a built-in steady-state solver in ISSM, we
then solve for the steady-state 3D ice temperature and flow fields.
The resulting temperature field is vertically averaged for use in the
vertically integrated stress balance model. We explore uncertainty
in the resulting temperature approximation by parameterizing ice
temperature as follows:

T = min 0, T0 + DT( ). (8)

Here ΔT is a spatially uniform temperature offset with − 10°C ≤
10°C.

2.3. Surrogate model: mapping parameters to model misfit

To facilitate robust parameter estimation via Markov Chain
Monte Carlo (MCMC) sampling, we train a Gaussian Process
(GP, Rasmussen and Williams, 2006) surrogate model, or emula-
tor, to approximate the output of ISSM for arbitrary parameter
inputs. We can think of ISSM as a function that maps a set of par-
ameter inputs to some output of interest. In our case, we are inter-
ested in estimating the misfit between modeled and observed
terminus positions at Helheim from 2007 to 2019 using ice
front positions from Cheng and others (2021). That is, ISSM
can be used to calculate the following residual, which we call
the ‘true’ model residual

y = F (x) = 1
12

∫2019
2007

ℓ(t)− ℓo(t)( )2dt, (9)
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wherex is avectorof parameters and y is ametricmeasuring themis-
fit between the modeled and observed terminus positions projected
along a central flowline (Fig. 3), ℓ(t) and ℓo(t) respectively, and

x = pȧ, pb0
, s, ṁ, DT

[ ]T
. (10)

Since ISSM is expensive for the purposes of parameter estimation
using MCMC, we train a computationally efficient surrogate
model G(x) using the GPyTorch module for Python (Gardner and
others, 2021) to approximate the truemodel residualF (x). The sur-
rogate model maps a set of input parameters to a Gaussian
distribution

P(y|x) = G(x) � N (m(x), s2(x)) (11)
wherem(x) refers to the mean estimatedmodel residual and s2(x) is
the estimated variance for a particular input x.

As training data, we perform 3000 evaluations of the full
model using Latin-hypercube sampling (Iman, 2008) to span the
space of admissible parameter combinations. In particular, for the
purposes of training the surrogate model, we sample from the
prior distribution, which we take to be a Cartesian product of

uniform distributions over individual parameters, with bounds
given as in Section 2.2. One can think of the surrogate as interpolat-
ing the full model between training data points. Additional details
on the GP surrogate are provided in Appendix A.

2.4. Likelihood

It is a much easier problem to predict model error than directly pre-
dicting terminus position in the surrogate model. However, this
means we have to define a sensible likelihood over model error. As
a heuristic for defining the likelihood, we seek model parameters
that yield a modeled terminus position with an average misfit of
∼1 km or less. Therefore we define the ‘observed’ error yo as follows

yo � N (0, s2
o) (12)

where σo = 1 km. The standard deviation σo should not be confused
with the calving stress threshold σ. This yields a Gaussian likelihood
of the form

P(yo|y) = 1

s
����
2p

√ exp
−y2

2s2
o

( )
. (13)

Fig. 2. Idealized, conceptual example of summer
SMB at a given point in time along a flowline for
different values of pȧ . Values of − 1, 0 and 1 map
to ȧmin, ȧ0 and ȧmax.

Fig. 3. Location map, bedrock elevation and composite ice velocity map from 1980 to 2018 for Helheim glacier in East Greenland. The cyan line shows the central
flowline along which terminus position is projected, while the cyan dot is used for point measurements in certain numerical experiments.
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2.5. Posterior distribution

The surrogate model returns an estimate of the model misfit with
an associated uncertainty. For a given point x in parameter space,
the misfit y = G(x) is an imprecise estimate of the true model
residual. Intuitively, when sampling from the posterior distribu-
tion, uncertainty in the surrogate model contributes to greater
uncertainty in parameter estimates. Therefore, uncertainty in
the GP surrogate should be incorporated into estimates of the
posterior distribution. In order to obtain the posterior distribu-
tion over parameters x, we first define a joint distribution over
inputs x and outputs y

P(x, y|yo)/ P(x)P(y|x)P(yo|y). (14)

Here P(x, y|yo) is the probability of a given input–output pair
given the observation yo, P(x) is the prior distribution, and
P(y|x) is the probability that the surrogate model predicts y for

a given input x. To obtain the posterior distribution over x, we
marginalize over y

P(x|yo)/
∫
y
P(x)P(y|x)P(yo|y) dy. (15)

When the likelihood and surrogate prediction are both
Gaussian distributed, this integral can be computed analytically
(Appendix B).

2.6. Static parameter estimation: results

Estimates of the posterior distribution demonstrate thatmodeled ter-
minus position at Helheim is most sensitive to parameters affecting
frontal ablation, particularly the calving stress threshold, σ, in the
vonMises calving law.We achieve close agreement betweenmodeled
and observed terminus positions for values of σ in a range between
200 and 600 kPa, with a peak probability at 400 kPa (Fig. 4o).

Fig. 4. Estimates of the posterior distribution obtained by running MCMC sampling using a Gaussian Process surrogate model fitted to an ensemble using static or
time-independent parameters. Diagonal subplots a, f, j, m and o show marginal distributions for individual variables obtained using either the most probable
surrogate model function (blue line) or accounting for surrogate model uncertainty (red line). Subplots below the diagonal show pairwise marginal distributions
accounting for surrogate model uncertainty. Corresponding subplots above the diagonal show the same pairwise marginal distributions estimated using the
Gaussian Process mean function (e.g. a.2 shows the same marginal distribution as a.1). Red dots in subplots above the diagonal show 50 ensemble members
sub-sampled from the prior based on their posterior probability and plotted in Figure 5.
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The subaqueous melt rate, ṁ, has a multimodal marginal dis-
tribution with one cluster centered at ∼0.5 m d−1 and another at
∼2 m d−1, but melt rates below ∼1 m d−1 are most probable
(Fig. 4a). Temperature offsets above 5° C are most probable
(Fig. 4f). The sensitivity of the model to ice temperature may
be partially due to its influence on ice flow. However, we find
that modeled terminus position is fairly insensitive to another
ice flow parameter, pβ, which rescales the basal traction coefficient
obtained by inversion for surface velocities (Fig. 4m). This sug-
gests that the model’s sensitivity to the ice temperature may pri-
marily be due to the temperature dependence of the von Mises
calving law (see Eqn (3)). In particular, softer, warmer ice corre-
sponds to lower calving rates given the same strain rate and calv-
ing stress threshold. We note that inversions for the basal traction
coefficient, b2

0, are not performed for each temperature offset ΔT.
Hence, strain fields differ somewhat between different tempera-
ture offsets. However, in the sliding dominant flow regime near
the Helheim terminus, we expect that the impact of ice tempera-
ture on flow is of secondary importance.

The marginal distribution for the SMB bias parameter pȧ
closely resembles the uniform prior distribution, meaning that
SMB has a negligible influence on modeled terminus positions
on the decadal time scale of interest (Fig. 5j). For the most
part, there are not strong correlations between variables.
Exceptions include a positive correlation between the undercut-
ting rate ṁ and temperature offset ΔT for values of ṁ from 0
to 1 m d−1 (Fig. 4b.1), and a negative correlation between ṁ
and the basal traction scaling parameter pβ for ṁ . 1 m d−1

(Fig. 4d.1).
To understand the impact of surrogate model uncertainty,

MCMC sampling is performed using two different strategies. In
the first, we account for uncertainty in the GP surrogate model
as outlined in Section 2.5. In the second, we neglect uncertainty
in the surrogate model and use the most probable or mean GP
surrogate model function when sampling the posterior (Fig. 4
all subplots above the diagonal). Accounting for surrogate

uncertainty generally leads to broader distributions than using
the mean function, but they are otherwise almost identical, sug-
gesting that surrogate model uncertainty does not significantly
impact parameter estimates. By validating the surrogate model
against test data not included in training, we find that the surro-
gate reliably estimates the true model misfit within the 2σ uncer-
tainty bounds.

Without performing additional model runs, we sanity check
the posterior distribution by weighting prior ensemble members
according to their probability and sub-sampling 50 of the prior
ensemble members to compare to observations (Fig. 5). While
these high probability ensemble members match the observed ter-
minus position within a few kilometers, we find that they do not
reproduce observed short-term variations in terminus position.
Indeed, beyond imposing a seasonally varying SMB field, we
have not introduced any other time-dependent inputs that
would be likely to cause such short-term variations. This is
addressed in the following sections.

3. Experiments using seasonal forcings

Experiments using time-independent parameter values help us
identify the most important parameters controlling terminus pos-
ition at Helheim. However, they do not allow us to capture its
short-term variability. To address this, we test the model’s sensi-
tivity to a number of seasonally varying forcings.

3.1. Frontal melt rate

The average subaqueous melt rate depends on both ocean thermal
forcing and subglacial freshwater flux. Xu and others (2013) par-
ameterize the average submarine melt rate as

ṁ = (Aqasg + B)Tb
h (16)

Fig. 5. Observed terminus position at Helheim from 2003 to 2019 is indicated by the thick red line. Modeled terminus positions for all prior ensemble members are
shown as faint black lines. Thin multi-colored lines show terminus positions for an approximation of the posterior distribution, which we obtain from the prior
ensemble by weighting the prior ensemble members according to their probability and sub-sampling 50 ensemble members.
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where qsg is the subglacial water flux, Th is ocean thermal forcing
and A, B, α, β are uncertain parameters. Equation (16) is based on
an empirical fit to a three-dimensional simulation of ice melting
and turbulent upwelling from a freshwater plume. Since subglacial
discharge is unknown and we do not model subglacial hydrology,
we instead parameterize subaqueous melt as a function of surface
runoff qs(t). Substituting surface runoff for freshwater flux we
have

ṁ = ATb
h

qs(t)
max (qs(t))

max (qs(t))

( )a

+BTb
h (17)

where max(qs(t)) refers to the maximum runoff over the simu-
lated time period. We regroup uncertain terms, letting
ṁmax − ṁmin = ATb

h max (qs)
a and ṁmin = BTb

h yielding

ṁ = qs(t)
max (qs(t))

( )a

(ṁmax − ṁmin)+ ṁmin. (18)

Here, ṁmax and ṁmin are uncertain parameters representing the
maximum and minimum seasonal subaqueous melt rates respect-
ively, and we let α = 0.5 (Xu and others, 2013). Surface runoff for
the Helheim catchment area is estimated using Mankoff and
others (2020).

To test the sensitivity of terminus position to the subaqueous
melt rate, we perform a set of 49 model runs using ṁmax values
ranging from 0.5 to 3.5 m d−1. For each value of ṁmax, the min-
imum seasonal melt value ṁmin is obtained by multiplying
ṁmax by values between 0 and 1. Other parameter values are
determined based on the static parameter estimates already
obtained.

3.2. Water pressure

Moon and others (2014) classify Helheim as a type three glacier
characterized by acceleration during the early melt season fol-
lowed by a subsequent slowdown later in the summer.
Acceleration during the early melt season is associated with
increased input of water into the subglacial drainage system and
may result from enhanced sliding caused by high basal water pres-
sure. Velocity declines later in the melt season, ostensibly as the
subglacial drainage system adapts to high meltwater input, then
gradually rises again during the winter (Davison and others,
2020). To simulate this seasonal cycle, we parameterize subglacial
water pressure, expressed as a fraction of overburden pressure, by

Pfrac = 0.85

+ pPw
sin −2pt − 2+ 1

2
sin (− 2pt − 2)

[ ]( )
s(x, y, t).

(19)

Here, 0 ≤ pPw
, 0.15 is an uncertain parameter determining the

magnitude of seasonal pressure oscillations, t is time in years and
s(x, y, t) is an indicator function that is one when and where sur-
face melt occurs and zero otherwise:

s(x, y, t) = 1
1+ exp (5 ȧ(x, y, t)).

(20)

Note that in winter, if SMB is uniformly positive, this scaling
function is near zero. During the melt season, s(x, y, t)≈ 1 in
regions that are melting. Thus, this indicator function confines
water pressure oscillations to the ablation zone of Helheim.

Other parameter values are determined based on existing static
parameter value estimates.

3.3. Seasonal forcings: results

Modeled velocity is sensitive to the mean undercutting rate, yet
does not display a seasonal response to variable melt rates. For
a high mean seasonal melt rate of 3.5 m d−1, near terminus ice
accelerates by ∼300% over a matter of ∼4 years (Fig. 6b). For
mean melt rates below 2 m d−1, velocity remains steady through-
out the simulation, whereas melt rates above 2 md−1 cause accel-
eration of at least 200% for near terminus velocity. The timing of
acceleration is controlled by the magnitude of melt (Fig. 6b). In
particular, larger mean melt rates correspond to peak acceleration
earlier in the simulation.

Although the model is sensitive to the undercutting rate, sea-
sonal variations in undercutting do not yield discernible seasonal
cycles in terminus position (Fig. 6a). A mean melt rate of 3.5 m
d−1 (ṁmax = ṁmin = 3.5 m d−1) yields a retreat of 8 km over
the period from 2007 to 2017, whereas an undercutting rate of
0 m d−1 (ṁmax = ṁmin = 0 m d−1) yields a 6 km advance.
Acceleration corresponding to higher melt rates is likely a
response to terminus retreat. Yet large seasonal variations in
undercutting of several meters per day of melt do not reproduce
characteristic seasonal oscillations.

Seasonal variations in water pressure result in velocity varia-
tions qualitatively similar to near-terminus velocity observations
on tidewater glaciers in Greenland (Davison and others, 2020).
Velocity begins to rise late in the melt season and continues rising
through winter, into the following spring (Fig. 7b). This is fol-
lowed by a sharp decline in velocity during the next melt season.

To evaluate the influence of seasonal water pressure variations,
we compare near terminus velocities for runs with different mag-
nitudes of seasonal water pressure oscillations to a baseline run
wherein water pressure is a fixed fraction of 85% of overburden
pressure. The degree of flow acceleration depends on the magni-
tude of pressure oscillations (Fig. 7). For a seasonal water pressure
oscillation of 13% of overburden pressure, in which water pressure
peaks at 98% of overburden pressure during the melt season, near
terminus velocity at Helheim is up to 225% higher than in the
baseline run with no seasonal water pressure variation.

For the largest tested water pressure oscillations of ∼13% of
overburden pressure, there is an up to a twofold increase in
near terminus velocity over the course of the year. Acceleration
of this magnitude is inconsistent with observations at Helheim,
where seasonal accelerations of up to 50% are more realistic
(Kehrl and others, 2017). However, lower amplitude pressure
oscillations of ∼8% of overburden pressure yield a seasonal accel-
eration more consistent with observations. Despite large, near-
terminus variations in velocity, there is not a clear seasonal signal
in terminus position (Fig. 7a), indicating that pressure variations
may not be responsible for observed seasonal variations in ter-
minus position at Helheim.

4. A Markov model for time-dependent calving

There is a strong correlation between observed terminus advance/
retreat and surface meltwater runoff at Helheim glacier between
2003 and 2019 (Fig. 1). Generally speaking, high runoff is asso-
ciated with terminus retreat, while low runoff is associated with
terminus advance. As we demonstrated in Section 2.2, modeled
terminus position at Helheim is most sensitive to the calving
stress threshold σ in the Von Mises Calving law. Hence, we
hypothesize that modeled advance or retreat is primarily a func-
tion of the imposed stress threshold σ in the model, which directly
affects the calving rate.
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Motivated by these observations, we define a Markov model
that relates σ to surface runoff in a stochastic sense. The
Markov model will output one of two states on a biweekly time
step. These states are (1) a state in which Helheim is more suscep-
tible to calving for which σ = σmin or (2) a state in which Helheim
is less susceptible to calving for which σ = σmax. The calving stress
thresholds σmax≥ σmin are tuned so that if σ = σmin, modeled ter-
minus position at Helheim is likely to retreat due to high calving
rates. Similarly, if σ = σmax, modeled terminus position is more
likely to advance or remain stagnant. Determination of these calv-
ing stress threshold values is discussed in subsequent sections.
Given the current state of the terminus (more or less susceptible
to calving) and the surface runoff, the aim of the model is to pre-
dict whether the glacier will be more or less susceptible to calving
the following week.

Conceptually, we hypothesize a link between surface runoff
and calving rates due to one of a number of possible physical pro-
cess, which we address in greater detail in Section 5. For example,
one hypothesis is that surface runoff could lead to deeper surface
crevasses via hydro fracturing, reducing resistance to tensile stress.
This hypothesis was previously proposed and investigated by
Cook and others (2014), who found that a surface crevasse-based
calving law was sensitive to the modeled water depth in crevasses.

Suppose that Si∈ {σ = σmin, σ = σmax} represents the state at
time i. Then the Markov model M maps the state Si to a new

state at time i + 1

Si+1 = M(Si, ri) (21)

where ri is the surface runoff input (Fig. 8). Transition probabil-
ities from one state to the next, denoted by P(Si+1|Si, ri), depend
on the previous state as well as biweekly surface runoff input.
Since surface runoff is a continuous variable, and we have limited
observational data, we bin surface runoff data into K = 10 bins B1,
B2, · · · , BK and seek the following transition probabilities

P(Si+1|Si, ri [ Bk) (22)

with Si, Si+1∈ {σ = σmin, σ = σmax} and 1≤ k≤N. Transition
probabilities are determined using maximum likelihood estima-
tion, wherein transition probabilities are selected to maximize
the probability of generating the observed sequences of states
for each runoff bin (Appendix C). When determining the transi-
tion probabilities, which we also refer to as training the Markov
model, we cannot directly observe σ, and instead rely on observa-
tions of terminus position assuming that observed terminus
retreat corresponds to a lower calving stress threshold state (σ =
σmin), and observed terminus advance corresponds to a higher calv-
ing stress threshold (σ = σmax). Put otherwise, terminus position
observations are converted into a sequence of advancing/retreating

a

b

c

Fig. 6. (a) Modeled terminus position at Helheim between 2007 and 2017 for experiments using seasonally varying undercutting rates. Line colors correspond to the
mean undercutting rate over the duration of the simulation. (b) Percentage change in velocity at the cyan point marked in Figure 3a, relative to initial velocity. (c)
Seasonal undercutting rates for a subset of 7 out of the 49 simulations displayed in panels (a) and (b).
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Fig. 8. The Markov model outputs a calving stress threshold on a biweekly time step given calving stress threshold from the previous time step as well as surface
runoff. Given the state at time i, denoted Si and predicts the state at the next time step Si+1 given the surface runoff ri.

a

b

c

Fig. 7. (a) Modeled terminus position at Helheim from 2007 to 2017 for runs using different magnitudes of seasonal water pressure oscillations. (b) Seasonal speed
anomaly at the cyan point marked in Figure 3. The seasonal speed anomaly is computed by dividing the velocity at a given time by the velocity in a baseline run
with no water pressure oscillations. (c) Seasonal water pressure oscillations expressed as a fraction of overburden.

Journal of Glaciology 389

https://doi.org/10.1017/jog.2022.68 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2022.68


states, which are assumed to correspond directly to high/low stress
threshold states respectively. Calving stress threshold parameters
σmin and σmax need to be estimated to produce realistic results, as
the Markov model only determines the transition between states
but not what values of σmin and σmax best reproduce observations.
We discuss how these parameters are estimated in the next section.

4.1. Dynamic parameter estimates

We estimate a number of parameters that control time varying
model forcings using the same methodology as in Section 2.2.
As before, we perform 3000 model runs, which are used to
train a surrogate model that approximates the true model residual
given arbitrary parameter combinations as input. The surrogate
model is subsequently used to sample from the posterior distribu-
tion, which allows us to identify parameter combinations that
yield a good fit to observations of terminus position.

Our two primary parameters of interest are the calving stress
thresholds σmin and σmax, which the Markov model outputs on
a biweekly time step. Each ensemble member is forced with differ-
ent randomly sampled values of these stress threshold parameters
as well as a different realization of the Markov model given the
same observed surface runoff input data. The parameters σmin

and σmax therefore control maximum and minimum calving
rates, respectively, while the Markov model determines the sea-
sonality of calving in a stochastic sense by controlling transitions
between the high and low calving stress threshold states.

In practice, for each ensemblemember, σmax is drawn from a uni-
form prior distribution with 25 × 103≤ σmax≤ 2000 × 103 Pa. Then,
we let smin = smaxpsmin where the parameter 0 ≤ psmin ≤ 1 is also
drawn from a uniform prior distribution. This sampling strategy
enforces the constraint σmin≤ σmax. Once calving parameters have
been randomly sampled from the prior distribution at the beginning
of each simulation, the Markov model is used to transition between
states on a biweekly time step. Thus, once values of σmin and σmax

are sampled, the Markov model yields a full time-dependent calving
stress threshold input that is used to force ISSM.

Previously, we saw that the model is somewhat sensitive to the
subaqueous melt rate. Hence, we let ṁ vary seasonally using Eqn
(18), and we seek to estimate the minimum and maximum sea-
sonal undercutting rates ṁmin and ṁmax respectively in conjunc-
tion with calving parameters. Finally, since static parameter
estimates indicated that modeled terminus position was also
somewhat sensitive to ice temperature, we estimate the ice tem-
perature offset parameter ΔT. The parameters ṁmin, ṁmax and
ΔT are also drawn from uniform prior distributions using identi-
cal parameter ranges used for prior distributions for static
parameters.

4.2. Markov model: results

Forcing the model with time-dependent values of σ from the
Markov model yields more realistic short-term variations in ter-
minus position than using a fixed, time-independent value (Figs
5, 10). By varying the calving stress threshold based on surface
runoff, we achieve highly variable seasonal calving rates. This,
in turn, yields seasonal advance and retreat cycles similar to
those seen in observations (Fig. 10). While the Markov model
controls the timing of seasonal fluctuations in terminus position,
the maximum and minimum calving stress threshold parameters
σmax and σmin must be constrained to produce realistic results.
Most posterior samples have σmax values between ∼250 and
1000 kPa (Fig. 9m). Probable values of σmin depend on σmax,
but mostly fall between 100 and 500 kPa (Fig. 9o).

The most likely value of σmax is ∼400 kPa, which is similar to
the most probable time-independent value of σ found in Section

2.2. Consider that if we let σmax≈ σmin, then we essentially iden-
tify the same highly probable static values of σ obtained before.
However, while this results in a good fit to terminus position
observations in the mean sense, this scenario does not yield real-
istic seasonal fluctuations. Hence, more interesting are posterior
samples with σmax > σmin, which show greater temporal variability
in terminus position, and we see that σmax values of ∼500 kPa
combined with σmin values of anywhere from ∼100 to 400 kPa
are probable as well.

Marginal distributions for the maximum and minimum sea-
sonal undercutting rates, ṁmax and ṁmin respectively, show that
undercutting rates likely do not exceed ∼1 m d−1 at Helheim
(Figs 9a, f). While terminus position is sensitive to ΔT, it is
not well constrained by terminus position observations alone.
Overall, the marginal distribution for ΔT favors higher tempera-
ture offsets above 0°, with a peak probability at ∼7.5°C (Fig. 9j).
Qualitatively, the marginal distribution for ΔT is similar to that
obtained earlier for static parameters, with clusters at ∼− 7.5, 0
and 7.5° (Figs 9j, 4f).

Ice temperature shows a number of interesting correlations
with other parameters. For example, for a ΔT of ∼7.5°C, posterior
samples contain a wide range of values for ṁmax and ṁmin (Figs
4c.1, c.2). In contrast, for a ΔT of –7.5°C, posterior samples
have a much narrower range of possible melt values. We also
see a negative correlation between ice temperature and undercut-
ting rates. This is likely because higher ice temperatures corres-
pond to lower ice hardness and therefore lower calving rates
(Eqn (3)). Hence, higher ice temperatures compensate for lower
calving stress thresholds.

4.3. Comparison of static and dynamic posterior parameter
distributions

Forcing the model with samples from the posterior distribution
for time-dependent parameters yields realistic seasonal fluctua-
tions that match observations in a qualitative sense (Fig. 10).
In contrast, forcing the model with parameters drawn from the
posterior for time-independent parameters (Section 2.2) repro-
duces the general trend of retreat at Helheim, yet does not appear
to capture observed terminus position variabliity (Fig. 5). Here,
we are interested in more formally assessing if the Markov
model approach better captures the temporal variability of the
observations.

To characterize the temporal variability of terminus position at
Helheim, we detrend the observed terminus position by subtract-
ing a linear function from the observation so that the initial and
final terminus positions are both 0.We then compute themean and
variance of the detrendend observation, which yields a univariate
normal distributionN (Lo, s2o)with amean close to 0.The samepro-
cedure is repeated for 50 ensemble members from both the time-
dependent and time-independent posterior distributions. That is,
for each ensemble member, we detrend the modeled terminus pos-
ition and compute a distribution N (Li, s2i ) that characterizes its
temporal variability. We then compute the following metric z that
compares the temporal variabililty between the model and observa-
tions for all ensemble members from both posterior distributions:

z = 1
50

∑50
i=1

DKL N (Li, s
2
i ))‖N (Lo, s

2
o)

( ) (23)

The Kullback–Leibler (KL) divergence DKL(P||Q) between two
probability distributions P and Q can be thought of as a measure
of similarity between those distributions. It has a value of 0 when
P and Q are identical, and larger values indicate a greater discrep-
ancy between probability distributions. Hence, a lower value of z
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reflects greater similarity between distributions characterizing the
temporal variability for the modeled and observed terminus posi-
tions. For two univariate Gaussian distributions, the KL divergence
has a simple closed form (Appendix D). Computing this metric for
both posterior probability distributionsyields a value of 0.53 for the
time-dependent posterior versus 0.87 for the time-independent
posterior, indicating that the time-dependent posterior better cap-
tures the temporal variability in the observed terminus position.

As another test of the ability of the Markov model to capture
seasonal terminus position variability, we examine seasonal rates
of modeled advance/retreat for both time-dependent and time-
independent parameters. For this purpose, we compare the aver-
age rate of advance/retreat for 50 ensemble members from both
posterior distributions. For the time-independent parameters, we
see a relatively steady average rate of retreat throughout the simula-
tion with little temporal variability (Fig. 11). In contrast, for the
time-dependent parameters, we see seasonal fluctuations in average

modeled terminus position driven by variable calving rates, and per-
iods of advance/retreat tend to align with the observations.

5. Discussion

Bayesian inference of time-independent model parameters indi-
cates that variations in terminus position at Helheim from 2007
to 2019 are driven predominantly by frontal ablation rather
than ice flow or SMB. Terminus position is highly sensitive to
the imposed calving stress threshold σ, which directly affects calv-
ing rates in a von Mises calving law (Fig. 4o). Modeled terminus
position is somewhat sensitive to the undercutting rate ṁ and ice
temperature offset ΔT (Figs 4a, f). It is likely that the sensitivity of
terminus position to temperature is primarily due to its effect on
calving rates rather than ice flow, given that terminus position is
relatively insensitive to variations in the basal traction field on the
timescale of interest.

Fig. 9. Estimates of the posterior distribution obtained by running MCMC sampling using a Gaussian Process surrogate model fitted to an ensemble using dynamic
or time-dependent parameters. Diagonal subplots a, f, j, m and o show marginal distributions for individual variables obtained using either the most probable
surrogate model function (blue line) or accounting for surrogate model uncertainty (red line). Subplots below the diagonal show pairwise marginal distributions
accounting for surrogate model uncertainty. Corresponding subplots above the diagonal show the same pairwise marginal distributions estimated using the
Gaussian Process mean function (e.g. a.1 and a.2 represent the same marginal distributions). Red dots in subplots above the diagonal show 50 ensemble members
sub-sampled from the prior based on their posterior probability and plotted in Figure 10.
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By constraining static parameter values, we achieve good fit
between modeled and observed terminus positions in the mean
sense. However, we are not able to reproduce short-term varia-
tions in observed terminus position (Fig. 5). Helheim undergoes
marked seasonal cycles in terminus position, including advance
during winter and retreat during summer, that are not adequately
captured in the model (Bevan and others, 2012; Kehrl and others,
2017). Exploring seasonally varying model forcings, we conclude
that seasonal oscillations in subaqueous melt-driven undercutting
as well as seasonal water pressure oscillations do not explain sea-
sonal trends in terminus position. As expected, ice velocity is
highly sensitive to seasonal water pressure oscillations, yet ter-
minus position does not respond directly to ice acceleration or
deceleration. Additionally, terminus position is sensitive to the
undercutting rate but seasonal variations in subaqueous melt do
not yield seasonal terminus position oscillations.

The sensitivity of modeled terminus position to the calving
stress threshold σ and its relative insensitivity to other model
parameters motivates the idea of dynamically adjusting calving
rates by using a seasonally varying σ. Although this approach is
somewhat ad hoc, there is physical justification for the idea of
imposing seasonally variable calving rates.

For example, pooling of water in surface crevasses can help
drive them downward, causing mechanical weakening of the ice
that induces calving (Benn and others, 2007). Calving laws
based on this physical mechanism have been found to reproduce
terminus position observations better than other calving laws in
some numerical experiments (Amaral and others, 2020). In this
work, we adopted a von Mises calving law versus a surface
crevasse calving law due to its numerical stability. Nonetheless,
a surface crevasse calving model may provide a better physical
basis for seasonal terminus position variations at Helheim,

Fig. 10. Observed terminus position at Helheim from 2003 to 2019 is indicated by the thick red line. Modeled terminus positions for all prior ensemble members are
shown as faint black lines. Thin multi-colored lines show terminus positions for an approximation of the posterior distribution, which we obtain from the prior
ensemble by weighting the prior ensemble members according to their probability and sub-sampling 50 ensemble members.

Fig. 11. The average rate of terminus position advance (positive) or retreat (negative) for 50 ensemble members drawn from the time-independent posterior
(Section 2.2) is shown in red. Similarly, the average rate of terminus advance/retreat for 50 ensemble members drawn from the posterior distribution for time-
dependent parameters (Section 4) is shown in blue. Shaded regions indicate periods of observed terminus advance.
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explaining why we might expect higher calving rates during the
melt season due to pooling of surface runoff in crevasses.

Meltwater in surface crevasses is only one of several possible
physical processes that explain highly variable calving rates on
weekly to monthly time scales. Undercutting affects glacier
calving by changing buoyant forces at the terminus, which can
significantly amplify calving rates (Hanson and Hooke, 2000;
O’Leary and Christoffersen, 2013; Slater and others, 2021). The
pattern and magnitude of undercutting at the glacier front depend
on subglacial runoff (Xu and others, 2013; Rignot and others,
2016). Hence, enhanced subglacial runoff during the melt season
could lead to greater undercutting and higher calving rates.

Other factors that could affect calving rates on a seasonal
timescale include variations in mélange rigidity or basal crevas-
sing. Backstress from the ice mélange may inhibit calving
(Amundson and others, 2010; Walter and others, 2012).
Moreover, the extent and rigidity of the ice mélange vary season-
ally, which could play a role in seasonally varying calving rates
(Howat and others, 2010). Finally, James and others (2014) sug-
gest that calving at Helheim could be tied to the development
of basal crevasses due to buoyancy effects. Buoyancy at the ter-
minus of Helheim in turn depends on subglacial water pressure
on a seasonal timescale (Melton and others, 2022).

Recently, experiments have been conducted using discrete
element models of calving in three dimensions using a particle
model (Benn and others, 2017; van Dongen and others, 2020).
Notably, these models can resolve individual fractures and relate
the stress state of the ice to its complex geometry at high reso-
lution. Such models can reproduce a variety of hypothesized calv-
ing mechanisms such as enhanced calving due to undercutting as
well as buoyancy-driven calving events (Benn and others, 2017).
Discrete element models support the idea that stress or strain
fields in continuum models may provide a sufficient criteria for
estimating calving rates (Benn and others, 2017). However, this
requires detailed knowledge of frontal geometry as well as the
full, three-dimensional stress field (e.g. from a full Stokes stress
balance). Hence, commonly used shelfy-stream models, with ver-
tically integrated stress balances, may not resolve the necessary
information needed to accurately predict calving rates (Benn
and others, 2007). Moreover, the ability of models to resolve
undercut regions is limited by model resolution.

Discrete models of calving are currently impractical for
large-scale modeling studies due to high computational demand,
and they are challenging to couple to standard continuum models
of ice flow. However, they demonstrate the extreme state depend-
ence of calving – from the fine scale geometry of undercut cavities
down to the location of individual fractures. The intractability of
representing the complex state of the glacier front means that we
cannot expect to model calving in a completely deterministic
sense, and indeed, it is the goal of most continuum calving mod-
els, including the one formulated in this work, to provide a rea-
sonable approximation of calving rates given limited state
information.

The multitude of interrelated processes potentially controlling
calving and terminus position at Helheim motivates a stochastic
approach to estimating calving rates. Rather than a single time-
dependent calving rate, we generate a set of plausible “calving
scenarios” using a Markov model. Since we cannot account for
all of the physical processes governing calving dynamics, we
aim to predict the timing and magnitude of calving events merely
in a statistical sense. Many of the hypothesized calving mechan-
isms depend either directly or indirectly on surface runoff. For
example, water depth in crevasses depends directly on surface
runoff, while the geometry of undercut regions depends on sub-
glacial discharge. Thus, we opt to relate calving rates to surface
runoff, which is not only a proxy for seasonality but a potential

driver of calving behavior. This approach is conceptually similar
to the calving law in Sikonia (1982), which explored a similar
relationship between river runoff, taken as a proxy for subglacial
discharge, and calving rates at Columbia glacier in Alaska.

For Helheim, forcing the model with time-dependent calving
stress threshold values using the Markov model yields realistic
short-term variations in terminus position. Applying the model
other Greenland marine-terminating glaciers in Greenland
would be relatively straightforward given terminus position and
runoff observations. Training the Markov model and randomly
generating new realizations or ‘calving scenarios’ for use in ice
dynamics models is computationally trivial given appropriately
tuned values, or preferably probability distributions, for σmin

and σmax. At Helheim, we find that σmax values in the vicinity
of 500 kPa combined with σmin values of anywhere from ∼100
to 400 kPa yield a good fit to observations (Fig. 10). For a fixed
strain field, this implies up to a fivefold increase in modeled calv-
ing rates at Helheim from one 2-week period to the next using a
von Mises calving law. It is likely that other glaciers would require
different calving stress threshold values to achieve realistic results,
and the main computational expense in this work is in estimating
these parameters.

It is unclear if a similar relationship between terminus position
and surface runoff exists for other marine-terminating glaciers, or
if Helheim is a unique case. Potentially, the Markov model
approach to modeling calving could be extended to incorporate
additional observable inputs (e.g. ice velocity or the presence/
absence of the melange). More sophisticated parametric models
relating the calving stress threshold to observed inputs could
also be used in place of the Markov model.

The link between calving rates and surface runoff at Helheim
implies that it could be highly sensitive to future atmospheric
warming. Enhanced surface melt caused by warmer future tem-
peratures could lead to higher calving rates and accelerated retreat.
Our results highlight the need to validate and tune calving laws
using observations, as without proper tuning, we are not able to
replicate seasonal terminus position variability at Helheim.
Although we have not tested the stochastic calving model on
other glaciers, this may provide an avenue for future work.
Once trained, the stochastic calving model could also be used to
explore retreat scenarios dependent on future surface runoff.

6. Conclusions

To investigate the physical processes controlling terminus pos-
ition variability at Helheim between 2007 and 2019, we performed
Bayesian inference of a collection of model parameters controlling
ice flow, SMB and frontal ablation. Estimates of time-independent
parameters show that model is sensitive to parameters controlling
frontal ablation, particularly the calving stress threshold in the
von Mises calving law, indicating the primary importance of calv-
ing dynamics at Helheim. Forcing the model with optimal time-
independent parameters reproduces the mean observed terminus
position at Helheim, yet fails to capture its short-term variability.
An examination of observed seasonal calving behavior at Helheim,
as well as a review of the physical processes driving calving led us to
hypothesize a link between calving rates and surface runoff. Using a
simple statistical model relating calving rates to observed surface
runoff, we are able to reproduce Helheim’s mean terminus position
as well as its characteristic temporal variability.
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Appendix A.

Suppose that we have N potentially noisy evaluations of the full model F

yi = F (xi)+ ei , (A.1)

where i = 1, 2, · · · , N. Here, we assume that the noise ϵi is Gaussian distrib-
uted with mean 0 and variance σ2, denoted as

e � N (0, s2). (A.2)

Let X be a matrix of training inputs given by

X = [x1, x2, · · · , xN ] (A.3)

and y be a vector of corresponding full model outputs

y = [y1, y2, · · · , yN ]T . (A.4)

Given these training data, we would like to approximate the full model at new
input locations x∗i for i = 1, 2, · · · , K. For convenience, we define a matrix
containing these points

X∗ = [x∗1 , x
∗
2 , · · · , x∗K ]. (A.5)

We adopt a Gaussian process surrogate G, which takes in the matrix of inputs
X∗ and returns a multivariate normal distribution of outputs

y∗ = G(X∗) � N m, P( ). (A.6)

Since the GP surrogate returns a distribution rather than a simple vector of

outputs, we are able to estimate uncertainty in surrogate model predictions.
Training G requires defining a covariance kernel k(x, x′) :Rn × Rn 	 R

that encodes our assumptions about how outputs of G are correlated given
the proximity of the inputs. We use a Matern Kernel of the form

k(x, x′) = 1
G(n)2n−1

���
2n

√

l
d(x, x′)

( )n

Kn

���
2n

√

l
d(x, x′)

( )
(A.7)

with ν = 1.5 and l a learned length scale hyper parameter. With this assump-
tion we have

y
y∗

[ ]
� N 0,

K(X, X)+ s2I K(X, X∗)
K(X∗, X) K(X∗, X∗)

[ ]( )
. (A.8)

Here, the entries in the matrices K(X, X ), K(X, X∗), and K(X∗ , X∗) are given
by

[K(X, X)]i,j = k(xi , xj) (A.9)

[K(X, X∗)]i,j = k(xi , x
∗
j ) (A.10)

[K(X∗, X∗)]i,j = k(x∗i , x
∗
j ) (A.11)

and K(X, X∗) = K(X∗, X)T . Thus, using the properties of multivariate nor-
mal distributions, the mean and covariance of the outputs y∗ are given by

m = K(X∗, X) K(X, X)+ s2I
[ ]−1

y (A.12)

and

P = K(X∗, X∗)− K(X∗, X) K(X, X)+ s2I
[ ]−1

K(X, X∗), (A.13)

respectively.

Appendix B.

Suppose that f( y) and g( y) are probability density functions for Gaussian dis-
tributions with means m1 and m2 and standard deviations σ1 and σ2 respect-
ively. Then we have the following identity

∫
g(y)f (y) dy =

−s2
1s

2
2(m1 −m2)

2

(s2
1 + s2

2)
2 − s2

1s
2
2

s2
1 + s2

2

( )
log 2p(s2

1 + s2
2)

( )
2s2

1s
2
2

s1s2

. (B.1)

To compute the posterior distribution, the variance of the surrogate prediction
P(y|G(x)) is a function of x

P(x)/
∫
y
P(x)P(y|G(x))P(y) dy (B.2)

= P(x)
∫
y
P(y|G(x))P(y) dy. (B.3)

P(x)/ F(x). (B.4)

Appendix C.

Suppose we have an observed sequence of states sn1 ; s1, s2, · · · , sn generated
by a Markov model with m states {1, 2, · · · , m} and an unknown transition
matrix T with entries

ti,j = P(j|i). (C.1)
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Using the Markov property, the probability of observing the sequence sn1 is

P(sn1) = P(s1)
∏n
2

P(st |st−1). (C.2)

Rewritten in terms of transition probabilities, we can write the likelihood that
the sequence was generated by a given transition matrix

L(T) = P(s1)
∏n
2

tst−1,st . (C.3)

Defining Ni,j to be the number of times state i is followed by state j in sn1 , we
have:

L(T) = P(s1)
∏m
i=1

∏m
j=1

t
Ni,j

i,j . (C.4)

Given the constraints

∑
j

ti,j = 1 (C.5)

it can be shown that L(T ) is maximized when

ti,j =
Ni,j∑m
j=1 Ni,j

. (C.6)

Appendix D.

Given two univariate normal distributions, N (m1, s
2
1) and N (m2, s

2
2), we

have

DKL N (m1, s
2
1)‖N (m2, s

2
2)

( ) = log
s2

s1
+ s2

1 + (m1 − m2)
2

2s2
2

− 1
2
. (D.1)
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