J. Austral. Math. Soc. (Series A) 35 (1983), 357-368

ON MAXI-QUASIPROJECTIVE MODULES

MANABU HARADA

(Received 19 May 1982; revised 12 August 1982)

Communicated by R. Lidl

Abstract

We have defined a mini-injective module and given some structures of self mini-injective rings and certain relationships between such rings and QF-rings in [8] and [9].

In this short note we shall study the modules dual to mini-injective modules, which we call maxi-quasiprojective modules. We shall give a characterization and some structures, in terms of the above modules, of those rings whose every injective module has the lifting property of direct decompositions modulo the Jacobian radical (see [5], [6] and [7]). Furthermore, we shall show that the above rings are closely related to QF-rings (see [8] and [9]).

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 36.

Throughout this note, we assume that a ring R contains an identity and every module is a unitary right R-module. We always assume that R is a right artinian ring unless otherwise stated. However, some of the first part of this note is valid without this assumption.

A part of this paper was prepared when the author visited University of Sydney in 1981. The author would like to express his thanks to Professor M. Kelly and his colleagues for their kind hospitality, and to the referee for the useful suggestion to revise the paper.

1. Maxi-quasiprojective modules

Let *M* be an *R*-module. We denote the Jacobson radical of *M* by J(M). We put $\overline{M} = M/J(M)$. If *N* is a direct summand of *M*, N/J(N) may be regarded as an *R*-submodule of \overline{M} . Hence $\overline{N} = N/J(N) \subseteq \overline{M}$. An *R*-module *T* is called *hollow* if

© 1983 Australian Mathematical Society 0263-6115/83 \$A2.00 + 0.00

357

J(T) is a unique maximal submodule of T. Since R is artinian, \overline{M} is semi-simple. Let $\overline{M} = \sum_I \bigoplus N_{\alpha}$, where the N_{α} are simple. If there exists a direct decomposition $\sum_I \bigoplus M_{\alpha}$ of M with $\overline{M}_{\alpha} = N_{\alpha}$ for each $\alpha \in I$, we say that the direct decomposition $\overline{M} = \sum_I \bigoplus N_{\alpha}$ is *lifted* to M. If M has the above property for any direct decomposition of \overline{M} , we say that M has the *lifting property of direct decompositions* of \overline{M} [6]. In this case $M = \sum_I \bigoplus M_{\alpha}$ and the M_{α} are hollow modules. Hence $M_{\alpha} \approx e_{\alpha} R/e_{\alpha} A$, where the e_{α} is a primitive idempotent and A is a right ideal in R.

It is well known that every projective module has the lifting property of direct decompositions modulo the radical [12]. We note that if $N_{\alpha} \approx N_{\beta}$ for each pair α , β , every direct summand of \overline{M} is of the form $\Sigma_K \oplus N_{\delta}$ ($K \subseteq I$) and so M has trivially the lifting property of direct decompositions of \overline{M} . In order to avoid this trivial case, we assume that

(\sharp) each N_{α} is isomorphic to another N_{β} [7].

Now, we shall define a new class of modules. For any maximal submodule N of M, we consider a diagram

where ν is the natural epimorphism. If, for any f in Hom_R(M, M/N), there exists an element h in End_R(M) which makes the above diagram commute, we say that M is a maxi-quasiprojective module. It is clear that every quasi-projective module is maxi-quasiprojective and the converse is not true in general. For instance, let R be a local algebra over a field K such that $R/J(R) \approx K$ and let A be a right ideal of R. Then R/A is maxi-quasiprojective, but not quasi-projective, provided that A is not a two-sided ideal (see Remarks 2 and 3 below).

Let N and N' be two maximal submodules of M. Then the definition above is equivalent to the fact:

$$(\operatorname{Hom}_{R}(M, M) \supseteq) \operatorname{Hom}_{R}(M, M)^{*} \to \operatorname{Hom}_{R}(M/N, M/N')$$

is an epimorphism via natural epimorphisms ν and ν' , where $\operatorname{Hom}_{R}(M, M)^{*} = \{f \in \operatorname{Hom}_{R}(M, M) | f(N) \subseteq N'\}.$

We put $S = \operatorname{End}_{R}(M)$, $\overline{S} = \operatorname{End}_{R}(\overline{M})$ and $J_{0}(S) = \operatorname{Hom}_{R}(M, J(M))$. Then we have the natural monomorphism $\theta: S/J_{0}(S) \to \overline{S}$ (see [7]).

THEOREM 1. Let M be an R-module. Assume $M = \sum_I \bigoplus M_{\alpha}$ and the M_{α} are completely indecomposable; that is, End_R(M_{α}) is local. We further assume (\sharp). Then the following conditions are equivalent:

1) θ is an epimorphism.

- 2) M is maxi-quasiprojective and each M_{α} is hollow.
- 3) M has the lifting property of direct decompositions of \overline{M} .

PROOF. 1) \rightarrow 2). We note that every element in S (resp. \overline{S}) is expressed as a column summable matrix with entries $f_{\alpha\beta}$, where the $f_{\alpha\beta}$ are elements in $\operatorname{Hom}_R(M_{\beta}, M_{\alpha})$ (resp. $\operatorname{Hom}_R(\overline{M_{\beta}}, \overline{M_{\alpha}})$). Hence it is clear that θ induces an epimorphism θ_{α} : $\operatorname{End}_R(M_{\alpha}) \rightarrow \operatorname{End}_R(\overline{M_{\alpha}})$. Since $\operatorname{End}_R(M_{\alpha})$ is local, so is $\operatorname{End}_R(\overline{M_{\alpha}})$. Furthermore, $\overline{M_{\alpha}}$ is semi-simple and so $\overline{M_{\alpha}}$ is simple. Therefore M_{α} is hollow. Let N_1 and N_2 be two maximal submodules of M. Then $N_i \supseteq J(M) \approx \overline{M}/N_1$ is a direct summand of \overline{M} . Accordingly, M is maxi-quasiprojective.

2) \rightarrow 3). Since M_{α} is hollow, $J(M_{\alpha}) \oplus \sum_{\beta \neq \alpha} \oplus M_{\beta}$ is a maximal submodule of M. Hence $\operatorname{Hom}_{R}(M_{\alpha}, M_{\beta}) \rightarrow \operatorname{Hom}_{R}(\overline{M}_{\alpha}, \overline{M}_{\beta})$ is an epimorphism for $\alpha, \beta \in I$. We assume $\overline{M}_{\alpha} \approx \overline{M}_{\beta}$. Then M_{α}, M_{β} being hollow, there exist epimorphisms $f: M_{\alpha} \rightarrow M_{\beta}$, $g: M_{\beta} \rightarrow M_{\alpha}$ by the above. Since R is artinian and so the M_{α} are of finite length, $M_{\alpha} \approx M_{\beta}$. Hence $\{M_{\alpha}\}_{I}$ is (semi-) *T*-nilpotent (see [11]). Therefore M has the lifting property of direct decompositions of M by [7], Corollary 1 to Theorem 2.

3) \rightarrow 1). This is clear from [7], Theorem 2.

THEOREM 2 (the dual to [8], Theorem 3). Let R be a right artinian ring. Then the following two conditions are equivalent:

1) Every injective E has the lifting property of direct decompositions of \overline{E} .

2) An injective cogenerator is maxi-quasiprojective and a direct sum of hollow submodules: that is, right QF-2* [5].

PROOF. Every injective is a direct sum of completely indecomposable modules. Hence the theorem is clear from Theorem 1 and [7], Theorem 2 and its remark (note that we do not use the assumption (#) for the implication 2) \rightarrow 3) in the proof).

REMARKS. 1. We can define an essentially quasi-projective module as the dual to uni-injective [8], when we replace a maximal submodule by an essential submodule. We note that if M is essentially quasi-projective, M is maxi-quasiprojective and if M is uniform and essentially quasi-projective, M is quasi-projective.

2. We take the ring defined in [8], Example 2. Let $L \supseteq K$ be two field satisfying the following conditions: [L:K] = 2 and there exists an isomorphism σ of Lonto K. Put $R = L \oplus Lu$ a vector space over L. We define a product on R as $(x_1 + x_2u)(y_1 + y_2u) = x_1y_1 + (x_2\sigma(y_1) + x_1y_2)u$, where the x_i and the y_i are in L. Then R is mini-injective as a right R-module [8]. $R^* = \text{Hom}_K(R, K)$ as right K-modules is a left R-K bimodule and $R^{**} \approx R$ as right R-K bimodules. Then R^*

[3]

is an indecomposable and left *R*-maxi-quasiprojective module, which is not hollow.

3. Let K be a field and

$$R = \begin{pmatrix} K & 0 & K \\ 0 & K & K \\ 0 & 0 & K \end{pmatrix}.$$

Put $e = e_{11}$ and $f = e_{22}$. Then $eR \approx fR$ and $S(eR) \approx S(fR)$ (= S), where S() means the socle of (). Put $M = (eR \oplus fR)/S'$, where $S' = \{s + s | s \in S\}$. Then M is maxi-quasiprojective, since $\overline{M} = e\overline{R} \oplus f\overline{R}$ and $e\overline{R} \approx f\overline{R}$ and M is an indecomposable module, which is not hollow (see [1]).

2. Lifting property of injectives

We shall study the right artinian rings whose every injective module has the lifting property of direct decompositions modulo the radical (see [5]).

First we shall give the dual to 1) of Theorem 5 in [8].

LEMMA 3. Let M_1 and M_2 be indecomposable modules of finite length.

1) If $M = M_1 \oplus M_2$ is maxi-quasiprojective, and $M_1 \approx M_2$, then no simple submodule in $\overline{M_1}$ is isomorphic to a submodule in $\overline{M_2}$.

2) If M_1 is maxi-quasiprojective, and $M_1/N_1 \approx M_1/N_2$ for maximal submodules N_i in M_1 , then there exists an automorphism f of M_1 with $f(N_1) = N_2$.

PROOF. 1) Assume there exists a maximal submodule N_i of M_i such that $M_1/N_1 \approx M_2/N_2$. Then there exist f_1 in $\operatorname{Hom}_R(M_1, M_2)$ and f_2 in $\operatorname{Hom}_R(M_2, M_1)$ which induce the given isomorphism and satisfy $f_1(N_1) \subseteq N_2$ and $f_2(N_2) \subseteq N_1$. Put $h = f_2 f_1 \in \operatorname{End}_E(M_1)$. Then $h(N_1) \subseteq N_1$ and $M_1 = h(M_1) + N_1$. If h is not an isomorphism, h is nilpotent, for M_1 has finite composition length. Hence $M_1 = h^n(M_1) + N_1 = N_1$ for some n, which is a contradiction. Therefore h is an isomorphism and f_i is also an isomorphism, a contradiction.

2) If we apply the above argument for $M_1 = M_2$, we have 2).

LEMMA 4. Let M_1 be an indecomposable module of finite length. We put $M = M_1^{(I)}$ a direct sum of |I|-copies of M_1 . We assume that M_1 is maxi-quasiprojective and N a maximal submodule of M. Then there exists a decomposition $M = \sum_I \bigoplus M'_{\alpha}$ of M such that $N = M_1 \bigoplus \sum_{I-(1)} \bigoplus M'_{\alpha}$, where $M'_{\alpha} \approx M_1$ for all $\alpha \in I$ and N_1 is a maximal submodule of M'_1 , where |I| means the cardinal of I.

360

PROOF. We shall show that N contains a non-zero direct summand of M if $|I| \ge 2$. Since N is a maximal submodule, $N \supseteq J(M)$. We denote M/J(M) by \overline{M} (note that, for a submodule K of M, $\overline{K} = (K + J(M))/J(M)$). Let $M = \sum_{I} \bigoplus M_{\alpha}$, and put $M_{\alpha} \cap N = N_{\alpha}$. If $M_{\alpha} \subseteq N$ for some α , we are done. Hence we may assume $M = N + M_{\alpha}$ for any $\alpha \in I$. Then $M/N = (N + M_{\alpha})/N \approx M_{\alpha}/N_{\alpha}$ and so N_{α} is a maximal submodule of M_{α} . Now, since \overline{M}_{α} is semi-simple,

(1) $\overline{M}_{\alpha} = \overline{N}_{\alpha} \oplus \overline{A}_{\alpha}$, where $J(M_{\alpha}) \subseteq A_{\alpha} \subseteq M_{\alpha}$ and \overline{A}_{α} is a simple submodule.

Since $N \supseteq \Sigma_I \oplus N_{\alpha} \supseteq J(M)$, $\overline{N} = \Sigma_I \oplus \overline{N}_{\alpha} \oplus \overline{N}_0$ and $\overline{N}_0 \neq 0$, for N is maximal and $|I| \ge 2$. Let \overline{N}_0^* be a simple submodule of \overline{N}_0 ; $N_0^* \supseteq J(M)$. We take the decomposition

(2)
$$\overline{M} = (\Sigma_I \oplus \overline{N}_{\alpha}) \oplus (\Sigma_I \oplus \overline{A}_{\alpha}).$$

Let p and p_{α} be the projection of \overline{M} onto $\Sigma_I \oplus \overline{N}_{\alpha}$ and \overline{A}_{α} , respectively. Since \overline{N}_0^* is simple, there exists a finite subset I' of I such that $p_{\alpha}(\overline{N_0^*}) = \overline{A_{\alpha}}$ for $\alpha \in I'$ and $p_{\beta}(\overline{N_0^*}) = 0$ for $\beta \in I - I'$. We may assume $I' = \{1, 2, \dots, n\}$. Hence there exists a set of isomorphisms $g_i: \overline{A_1} \to \overline{A_i}$ $(i \ge 2)$ such that $\overline{N_0^*} = \{p(n) + a_1 + g_2(a_1)\}$ $+\cdots + g_n(a_1) | n \in \overline{N_0^*}, a_1 = p_1(n) \in \overline{A_1}$. On the other hand, there exists f_i : $M_1 \rightarrow M_i$ such that $f_i(N_1) = N_i$ and f_i induces g_i on $\overline{A_1}$ by Lemma 3. We put $M_1(f) = \{m_1 + f_2(m_1) + \dots + f_n(m_1) | m_1 \in M_1\}$. Then it is clear that $M_1(f) \approx$ M_1 and $M = M_1(f) \oplus \sum_{I = \{1\}} \bigoplus M_{\alpha}$. Let $\overline{m}_1 = \overline{n}_1 + \overline{a}_1$, where $\overline{n}_1 \in \overline{N}_1$ and $\bar{a}_1 \in \bar{A}_1$. Then there exists *n* in N_0^* such that $\bar{n} = p(\bar{n}) + \bar{a}_1 + g_2(\bar{a}_1)$ + ... + $g_n(\bar{a}_1)$. Hence $\overline{m_1 + f_2(m_1) + \cdots + f_n(m_1)} = \bar{n}_1 + f_2(\bar{n}_1)$ $+\cdots+f_n(\bar{n}_1)+\bar{a}_1+f_2(\bar{a}_1)+\cdots+f_n(\bar{a}_1)=\bar{n}_1+f_2(\bar{n}_1)+\cdots+f_n(\bar{n}_1)+\bar{n}$ $p(\bar{n}) \in \Sigma_1 \oplus \overline{N}_{\alpha} \oplus N_0^* \subseteq \overline{N}$, and so $M_1(f) \subseteq N$. Let **F** be the set of all direct sums of indecomposable modules K_{α} isomorphic to M_1 , which are contained in N and are locally direct summands of M; that is, any finite sum of the K_{α} is a direct summand of M. Then F is non-empty by the above, and we can find a maximal member in F with respect to the relation to the members of direct components by Zorn's lemma, say $\Sigma_I \oplus M'_{\alpha} (\subseteq N)$. Since M_1 has the finite length, $\{M_{\alpha}\}_I$ is a semi-T-nilpotent set [11]. Hence $\Sigma_J \oplus M'_{\alpha}$ is a direct summand of M by [11], Theorem, say $M = \sum_{J} \oplus M'_{\alpha} \oplus M^*$. Hence $N = \sum_{J} \oplus M'_{\alpha} \oplus (N \cap M^*)$ and $N \cap$ M^* is a maximal submodule of M^* . M^* is also a direct sum of submodules isomorphic to M_1 by [16]. Therefore |I - J| = 1 by the above and the maximality of $\Sigma_I \oplus M'_{a}$.

We assume that an *R*-module is a direct sum of indecomposable modules M_{α} of finite length. Then we can rearrange this decomposition as follows:

(3)
$$M \approx \sum_{\alpha \in I} \oplus M_{\alpha}^{(J_{\alpha})}, \quad M_{\alpha} \approx M_{\beta} \text{ if } \alpha \neq \beta.$$

THEOREM 5. Let M be as in (3). Then M is maxi-quasiprojective if and only if the M_{α} are maxi-quasiprojective for all α and no simple submodule in \overline{M}_{α} is isomorphic to a simple submodule in \overline{M}_{β} if $\alpha \neq \beta$ (and hence |I| is finite).

PROOF. Assume M is maxi-quasiprojective. Then so is any direct summand of M by the definition. Hence we have the property above. Since R is artinian, I is finite. Let N be a maximal submodule in M. By the assumption, $\overline{M}_{\alpha}^{(J_{\alpha})}$ is a direct sum of homogeneous components in \overline{M} . Hence $\overline{N} = \overline{N}_1 \oplus \sum_{\alpha \neq 1} \oplus \overline{M}_{\alpha}^{(J_{\alpha})}$ for some homogeneous component $M_1^{(J_1)}$, where N_1 is a maximal submodule in $M_1^{(J_1)}$, and so $M/N \approx M_1^{(J_1)}/N_1$. We take another maximal submodule N' of M such that $M/N \approx M/N'$. Then as above, we obtain $\overline{N'} = \overline{N'}_1 \oplus \sum_{\alpha \neq 1} \oplus \overline{M}_{\alpha}^{(J_{\alpha})}$, where N'_1 is a maximal submodule of $M_1^{(J_1)}$ by Lemma 4:

$$M_1^{(J_1)} = M_1^{\prime (J_1 - 1)} \oplus M_1^{\prime} \supseteq N = M_1^{\prime (J_1 - 1)} \oplus N_1^{\prime} \text{ and} M_1^{(J_1)} = M_1^{\prime \prime (J_1 - 1)} \oplus M_1^{\prime \prime} \supseteq N^{\prime} = M_1^{\prime \prime (J_1 - 1)} \oplus N_1^{\prime \prime},$$

where $N'_1 \subset M'_1$ and $N''_1 \subset M''_1$ and $M_1 \approx M'_1 \approx M''_1$. Hence we obtain an automorphism f of $M_1^{(J_1)}$ by the assumption, which induces the given isomorphism between M'_1/N'_1 and M''_1/N''_1 . Therefore M is maxi-quasiprojective.

COROLLARY 1. Let M be as above and let N be a submodule of M containing J(M). We assume that M is maxi-quasiprojective and each M_{α} is cyclic hollow. Then there exists a decomposition of M such that $M = \sum_{I} \bigoplus M'_{\beta} \supset N = \sum_{I_1} \bigoplus M'_{\beta} \bigoplus \sum_{I_2} \bigoplus J(M'_{\gamma})$: $I = I_1 \cup I_2$ and the M'_{α} are indecomposable. Let N' be another submodule of M containing J(M). If $M/N \approx M/N'$, there exists an automorphism f of M which induces the above isomorphism and f(N) = N'.

PROOF. We take the same argument as the proof of Lemma 4. Since M_{α} is hollow, \overline{A}_{α} is either simple or zero. Hence, if $N \neq J(M)$, N contains a non-zero direct summand of M from the method after (1) in the proof of Lemma 4. We can use the same argument for the remainder.

COROLLARY 2 (the dual to [8], Theorem 5). Let $E = \sum_{J=1}^{n} \bigoplus E_i$ be a minimal injective cogenerator with E_i indecomposable. We assume that E is finitely generated and maxi-quasiprojective. Then

1) All simple submodules in \overline{E}_i are isomorphic to one another and are not isomorphic to any one in \overline{E}_i for $i \neq j$.

2) If $\overline{E_i}$ is simple for all *i*, every primitive idempotent *e* in *R* is non-small [3]; that is, *eR* is not a small submodule in the injective envelope E(eR) of *eR* and *R* contains all simple submodules up to isomorphism and $r(J) \subseteq l(J)$, where J = J(R), $l(J) = \{x \in R | xJ = 0\}$ and $r(J) = \{x \in R | Jx = 0\}$.

PROOF. 1) Since E is a minimal cogenerator, $E_i \approx E_j$ for $i \neq j$ and $\sum_{i=1}^n \bigoplus E_i$ contains all simple R-modules up to isomorphism by Lemma 3. Hence we obtain 1) from Lemma 3.

2) If \overline{E}_i is simple for all *i*, *R* is right QF-2* [5]. Hence we obtain the non-isomorphic representative set of indecomposable and injective modules $\{e_1R/e_1A_1, e_2R/e_2A_2, \dots, e_nR/e_nA_n\}$ from Theorem 2 and [5], Theorem 3, where $\{e_i\}$ is the set of mutually orthogonal and non-isomorphic primtive idempotents and $\{A_i\}$ is a set of right ideals. We assume that e_i is small. Then $\tilde{E} = E(e_i R) \supset J(\tilde{E}) \supseteq e_i R \supseteq e_i A_i$. Since $e_i R/e_i A_i$ is injective, $\tilde{E}/e_i A_i$ contains a direct summand $e_i R/e_i A_i$ contained in $J(\tilde{E}/e_i A_i)$, which is a contradiction. Let $E(R) \approx \Sigma_K \oplus (e_i R/e_i A_i)^{m_i}$, where $(e_i R/e_i A_i)^{m_i}$ is a direct sum of m_i -copies of $e_i R/e_i A_i$, and $K \subseteq \{1, 2, ..., n\}$. Since e_i is non-small, K contains *i*. Hence E(R) is a cogenerator, and so R contains all simple modules up to isomorphism. We may assume that $R \subseteq \sum_{i=1}^{k} \oplus e_i R/e_i A_i$ and $r(J) \subseteq \sum_{i=1}^{k} \oplus \overline{a}_i r(J)$, where $a_i \in$ $e_i R$, $\bar{a}_i = a_i + e_i A_i$ and e_i may equal e_j for some j. We assume that $a_1 r(J) \not\subseteq$ the socle $S(e_1R/e_1A_1)$ of e_1R/e_1A_1 . Since e_1R/e_1A_1 is uniform, $\bar{a}r(J) \supseteq S_1 =$ $S(e_1R/e_1A_1)$. E(R) being an injective cogenerator, there exists f in Hom_R $(e_1R/e_1A_1, e_iR/e_iA_i)$ for some *i* such that $f(S_1) = 0$ and $f(\bar{a}_1\mathbf{r}(J)) \neq 0$. f is given by the left-sided multiplication of an element b in $e_i R e_1$. Since $f(S_1) = 0$, f is not an isomorphism. Hence $b \in e_i J e_1$ by the construction of $e_i R / e_i A_i$ (note that $e_i R/e_i A_i \approx e_i R/e_i A_j$ if $i \neq j$). $f(\bar{a}_1 r(J)) = b\bar{a}_1 r(J) \subseteq \bar{e}_i J r(J) = 0$, a contradiction. Therefore $\bar{a}_1 r(J) \subseteq S_1$ and $\bar{a}_1 r(J) J \subseteq S_1 J = 0$. Similarly, we have $\bar{a}_i \mathbf{r}(J)J = 0$ for all *i* and so $\mathbf{r}(J)J = 0$. Thus, $\mathbf{r}(J) \subseteq \mathbf{l}(J)$.

The following theorem is the dual to [8], Theorem 13.

THEOREM 6. Let R be a right artinian ring. Then the following conditions are equivalent:

1) R is a QF-ring.

2) R is right QF-2 and QF-2* and a minimal injective cogenerator is maxi-quasiprojective (see Theorem 9 below).

3) Every injective E has the lifting property of direct decompositions of \overline{E} and $l(J) \subseteq r(J)$.

4) Every injective R-module and every injective left R-module have the lifting property of direct decompositions modulo the radical.

PROOF. 1) \rightarrow 2). Since R is an injective cogenerator and a projective module as a right R-module by [2], we obtain 2).

2) \rightarrow 1). Let *e* be a primitive idempotent. *R* being QF-2 and QF-2^{*}, E(*eR*) is hollow. Hence E(*eR*) = *eR* by 2) and Corollary 2 to Theorem 5. Therefore *R* is self-injective (see the proof of [8], Theorem 13).

1) \rightarrow 3) and 4). Since every injective module is projective by [2] and l(J) = r(J) by [15], we have 3) and 4).

3) \rightarrow 1). We know from 3) and Theorem 2 that minimal injective cogenerator are maxi-quasiprojective and R is a QF-2* ring. Hence we shall use the same notation as in the proof of Corollary 2 to Theorem 5. Since $R \subseteq E(R) \approx$ $\sum_{j=1}^{n} \bigoplus (e_j R/e_j A_j)^{m_j}$, $\sum_{i=1}^{n} \bigoplus eR/e_i A_i$ is faithful. We shall show that $e_1 A_1 \cap$ r(J) = 0. We assume $e_1 A_1 \cap r(J) \neq 0$ and take a non-zero element x in $e_1 A_1 \cap$ r(J). Then $e_i Rx = e_i Re_1 x \subseteq Jx = 0$ if $i \neq 1$. Hence $e_1 Rx \not\subseteq e_1 A_1$. Let y be an element in $e_1 Re_1$ such that $yx \notin e_1 A_1$. Since $x \in r(J)$, $y \notin e_1 Je_1$: $e_1 R/e_1 A_1$ being maxi-quasiprojective and y inducing an element in End $_R(e_1 R/e_1 J)$, there exists an element z in $e_1 Re_1$ such that $y - z \in e_1 Je_1$ and $z(e_1 A_1) \subseteq e_1 A_1$ by Lemma 3. Hence $yz = zx \in e_1 A_1$, which is a contradiction. Similarly, $e_i A_i \cap r(J)$ = 0 for all i. Now, $l(J) \subseteq r(J)$ and l(J) is an essential right ideal in R. Hence $e_i A_i = 0$ for all i, and so R = E(R).

COROLLARY 1. Let R be a right artinian ring. Then R is a QF-ring if and only if every injective E and every projective P have the lifting and extending property of direct decompositions of \overline{E} and S(P), respectively. Furthermore, if l(J) = r(J) (for example, $J^2 = 0$ or R is commutative), we can replace the two conditions above by either one.

PROOF. This is clear from Theorem 6 and [8], Theorem 5.

As is well known, R is a QF-ring if and only if R is self-injective as a right R-module. However, R is actually quasi-injective as a right R-module from the definition of quasi-injective, and so R is injective as a right R-module by Baer's criterion. Hence the concept dual to the above is the following: A (minimal) injective cogenerator is quasi-projective. Thus we have the following corollary.

COROLLARY 2. Let R be as above. Then R is a QF-ring if and only if the minimal injective cogenerator is quasi-projective.

PROOF. We assume that the minimal injective cogenerator is quasi-projective. Then every injective is quasi-projective by [10] and the proof of [4], Proposition 2.4. Put E = (R). Then $E \approx \sum_{i=1}^{k} \bigoplus e_i R/e_i A_i$, where the e_i are primitive

idempotents, the A_i are right ideals and $e_i Re_i e_i A_i \subseteq e_i A_i$ from the proof of [6], Corollary 3 in page 790. We may assume that $R \subseteq \sum_{i=1}^{k} \bigoplus e_i R/e_i A_i$ as a right *R*-module and *R* is basic (see [13] and [14]). We note, from Corollary 2 to Theorem 5, that the set $\{e_i\}$ contains the set of all non-isomorphic primitive idempotents. Let $1 = \sum \tilde{a}_i$, where $a_i = e_i a_i$ and $\bar{a}_i = a_i + e_i A_i$. Then $J = J(R) \subseteq$ $\Sigma \oplus \bar{a}_i J$. We shall show $\bar{a}_j Jel(J) = 0$ for all *i* and *j*. Then, since l(J) = $\Sigma_K \oplus e_i | (J)$, where $K \subseteq \{1, 2, \dots, k\}$, $| (J) \subseteq r(J)$. We note that $e_i Re_i = C_i$ $\operatorname{Hom}_{R}(e_{i}R, e_{i}R)$ and each element in $e_{i}Re_{i}$ induces an element in Hom $_{R}(e_{i}R/e_{i}A_{i}, e_{i}R/e_{i}A_{i})$ from the above. Now, $\bar{a}_{1}Je_{1}l(J) = \bar{e}_{1}(a_{1}Je_{1}l(J)) =$ $(e_1a_1Je_1)(\bar{e}_1l(J))$, where we obtain this equality by regarding $e_1a_1Je_1 \subseteq$ End_R (e_1R/e_1A_1) . Since l(J) is semi-simple, so is $e_1l(J)$. Further $e_1a_1Je_1 \subset$ $J(End_{R}(e_{1}R))$ and each element in $J(End_{R}(e_{1}R))$ induces an element in J(End_R(e_1R/e_1A_1)). Hence $(e_1a_1Je_1)(\tilde{e}_1l(J)) = 0$, for e_1R/e_1A_1 is uniform. Next we consider $e_1a_1Je_2l(J)$. If $e_2R \approx e_1R$, then we have $\bar{e}_1a_1Je_2l(J) = 0$ from the above (note $e_1R/e_1A_1 \approx e_2R/e_2A_2$). We assume $e_2R \approx e_1R$. Case 1: $e_2l(J) \subseteq e_1R$ e_2A_2 . Then $e_1A_1 \supseteq e_1Rel(J) \supseteq e_1a_1Je_2l(J)$, since $e_1Re_2e_2A_2 \subseteq e_1A_1$. Hence $\bar{a}Je_2|(J) = 0$. Case 2: $e_2|(J) \not\subseteq e_2A_2$ and $e_1a_1Je_2|(J) \not\subseteq e_1A_1$. Then e_1R/e_1A_1 and $e_2 R/e_2 A_2$ contain the simple module isomorphic to $\bar{e}_2 l(J)$, which is a contradiction. Hence, if $e_2 l(J) \not\subseteq e_2 A_2$, $e_1 a_1 J e_2 l(J) \subseteq e_1 A_1$. Therefore $\bar{a}_1 J e_2 l(J)$ = 0. Similarly, $a_i J e_i | (J) = 0$, and so $| (J) \subseteq r(J)$. Since quasi-projective is maxi-quasiprojective, we have the corollary from Theorems 2 and 6.

Finally, we take an algebra. Let K be a field and let R be a K-algebra of finite dimension. In this case we note that we have the duality functor $\operatorname{Hom}_{K}(-, K) = (-)^{*}$. Then every injective right R-module E has the lifting property of direct decompositions of \overline{E} if and only if every projective left R-module has the extending property of direct decompositions of the socle; namely, R is left mini-injective and so R is a QF-algebra by [9] (we note that we may restrict ourselves to the cases where every module is finitely generated by [7]). Therefore the following theorem is clear from the above and [9], Theorem 1. We shall give the dual proof for the sake of completeness.

THEOREM 7. Let R be an algebra over a field K with [R:K] finite. Then the following conditions are equivalent:

3) R is a right self mini-injective ring.

PROOF. 1) \rightarrow 3). This is clear from [2].

¹⁾ R is a QF-ring.

²⁾ A minimal injective cogenerator is maxi-quasiprojective.

3) \rightarrow 2). Since R^* is an injective cogenerator as a left *R*-module, we obtain 2) for the left *R*-modules.

2) \rightarrow 1). We may assume that R is basic and we use the same notations above. Since R is an algebra of finite dimension, every indecomposable injective is finitely generated and isomorphic to $(Re_i)^*$. We denote $(Re_i)^*$ by E_i . Then $S_i = \operatorname{End}_R(E_i)$ is anti-isomorphic to $e_i R e_i$. Let N_i be a maximal submodule of E_i and put $\tilde{S}_i = \{x \in S_i | x(N_i) \subseteq N_i\}$. Since $N_i = (Re_i/T_i)^*$ for some minimal left ideal T_i of Re_i and $T_i J(R) = 0$ by Corollary 2 to Theorem 5, $J(S_i)N_i \subseteq N_i$, and so $J(S_i) \subseteq \tilde{S_i}$. Then End_R $(E_i/N_i) = \tilde{S_i}/J(S_i)$ from 2). Hence End_R (E_i/N_i) is antiisomorphic to a K-subfield of $\overline{e_i R e_i}$. We put $E_i / N_i \approx \overline{e_i R}$. Then $[\overline{e_{i'}Re_{i'}}:K] \leq [\overline{e_iRe_i}:K]$. Thus we obtain a chain of idempotents $\{e_1, e_2, \dots, e_i, \dots\}$ such that $E_i = (Re_i)^*$ and E_i contains a maximal submodule N_i with $E_i/N_i \approx e_{i+1}R$. If $e_iR \approx e_{i+k}R$ for some *i* and *k*, $E_{i-1} \approx E_{i+k-1}$ by Lemma 3. Hence $e_{i-1} \approx e_{i+k-1}$. We know from this fact that the mapping: $i \rightarrow i'$ gives us a permutation of $\{1, 2, ..., n\}$, where $\sum_{i=1}^{n} \bigoplus (Re)^{*}$ is a minimal injective cogenerator. Hence $[\overline{e_i'Re_{i'}}: K] = [\overline{e_iRe_i}: K]$. Let N_1 and N_2 be two maximal submodules of E_i . Then $E_i/N_1 \approx E_i/N_2$ by Corollary 2 to Theorem 5. Hence there exists an automorphism x of E_i such that $x(N_1) = N_2$ by Lemma 3. On the other hand, $S_i = \tilde{S}_i$ from the argument above. Hence $N_2 = x(N_1) \subseteq N_1$, and so N_1 is a unique maximal submodule of E_i . Therefore R is right QF-2*. Accordingly, every injective E has the lifting property of direct decompositions of E by Theorem 2. Then we obtain a non-isomorphic representative set of indecomposable injectives $\{e_1R/e_1A_1, e_2R/e_2A_2, \dots, e_nR/e_nA_n\}$ by [5], Theorem 3 and [6], Theorem 3. Hence $\{(e_i R/e_i A_i)^*\}_{i=1}^n$ is a non-isomorphic representative set of indecomposable and projective left R-modules. Therefore $\sum_{i=1}^{n} \oplus (e_i R/e_i A_i)^* \approx R$ as left R-modules. Accordingly, $[R:K] = \sum_{i=1}^{n} [(e_i R/e_i A_i)^*:K] = \sum_{i=1}^{n} [e_i R/e_i A_i:K]$. Hence $e_i A_i = 0$ for all *i*, and so *R* is self-injective.

3. Self mini-injective rings

We shall add a characterization of right QF-2 and self mini-injective rings.

THEOREM 8. Let R be a right artinian and basic ring. Then R is a right QF-2 and self mini-injective ring if and only if l(J) = Ru = uR for some u in R.

PROOF. Let $R = \sum_{i=1}^{n} \bigoplus e_i R$ be as above. We assume that R is a right QF-2 and self mini-injective ring. Then $e_i l(J) = u_i R$ and $u_i \in \overline{e_i R e_{i'}}$. We know from [8], Theorem 3 that $l(J) \subseteq r(J)$. Therefore, since $u_i R$ is a unique minimal right ideal, $Ru_i \subseteq u_i R$. $\overline{e_{i'} R e_{i'}}$ being a division ring, a mapping: $u_i \to u_i r(r \in \overline{e_{i'} R e_{i'}})$ is [11]

extendable to an element in $\operatorname{Hom}_R(u_iR, u_iR)$. Then, since R is right self mini-injective, there exists an element x in e_iRe_i with $xu_i = u_ir$. Therefore $Ru_i = u_iR$. Put $u = \sum_{i=1}^n u_i$. Then $e_iu = ue_{i'} = u_i$. Hence $uR = \sum_{i=1}^n \bigoplus u_iR = \sum_{i=1}^n \bigoplus Ru_i = Ru = l(J)$. Conversely, we assume l(J) = uR = Ru. Then l(J) is a homomorphic image of R/J as right R-modules. Hence $uR \approx R/J$ from the composition length. Therefore $l(J) = \sum_{i=1}^n \bigoplus e_i l(J)$, $e_i l(J)$ is a unique minimal right ideal, and so R is right QF-2. Furthermore, $e_i l(J) \approx e_j l(J)$ if $i \neq j$. Hence $e_i l(J)$ is a two-sided ideal, and so l(J) = uR = Ru implies $Re_i u = e_i uR = e_i l(J)$. Therefore R is a right self mini-injective, since $\operatorname{End}_R(e_i uR) = e_i Re_i$ as above.

THEOREM 9. Let R be a right artinian ring. Then R is a QF-ring if and only if R is a right QF-2, QF-2* and self mini-injective ring.

PROOF. We assume that R satisfies the second condition of the theorem. We may assume that R is basic. Let $R = \sum_{i=1}^{n} \bigoplus e_i R$, where the e_i are primitive idempotents and $e_i R \approx e_j R$ if $i \neq j$. Since R is QF-2 and QF-2*, $E(e_i R) \approx e_i R/e_i A$ for some j and some right ideal A. Then we have the diagram

$$e_i R$$

$$\downarrow i$$

$$e_j R \xrightarrow{\nu} e_j R / e_j A \to 0$$

where *i* is the inclusion and *v* is the natural epimorphism. Since $e_i R$ is projective, there exists $f: e_i R \to e_j R$ such that i = vf. *i* being a monomorphism, *f* is the same. Hence $S(e_i R) \approx S(e_j R)$ by the assumption. Therefore i = j by [8], Theorem 5. The fact that $e_i R \subset e_i R/e_i A$ implies $e_i A = 0$. Hence *R* is self-injective.

References

- [1] H. Asashiba and T. Sumioka, 'On Krull-Schmidt's theorem and the indecomposability of amalgamated sums,' to appear.
- [2] S. Eilenberg and T. Nakayama, 'On the dimension of modules and algebras II,' Nagoya Math. J. 9 (1956), 1-16.
- [3] M. Harada, 'Non-small modules and non-cosmall modules,' Proc. of Ring Theory 1978, pp. 669–689 (Antwerp, Marcel Dekker, New York).
- [4] M. Harada, 'Note on quasi-injective modules,' Osaka J. Math. 2 (1965), 351-356.
- [5] M. Harada, 'On one-sided QF-2 rings I,' Osaka J. Math. 17 (1980), 421-431.
- [6] M. Harada, 'On lifting property on direct sums of hollow modules,' Osaka J. Math. 17 (1980), 783-791.
- [7] M. Harada, 'On modules with lifting properties,' Osaka J. Math. 19 (1982), 189-201.
- [8] M. Harada, 'Self mini-injective rings', Osaka J. Math. 19 (1982), 587-597.
- [9] M. Harada, 'A characterization of QF-rings,' to appear.

- [10] J. P. Jans and L. E. Wu, 'On quasi-projectives,' Illnois J. Math. 11 (1967), 439-448.
- [11] H. Kanbara, 'Note on Krull-Remak-Schmidt-Azumaya's theorem,' Osaka J. Math. 9 (1972), 409-413.
- [12] E. Mares, 'Semi-perfect modules,' Math. Z. 83 (1963), 347-360.
- [13] K. Morita, 'Duality for modules and its applications to the theory of rings with minimum conditions,' Sci. Rep. Tokyo Kyoiku Daigaku Sect. A (1958), 83-142.
- [14] M. Oshima, 'Notes on basic rings', Math. J. Okayama Univ. 2 (1952-53), 103-110.
- [15] T. Nakayama, 'On Frobenius algebras II,' Ann. of Math. 42 (1941), 1-21.
- [16] R. B. Warfield, Jr., 'Decompositions of injective modules,' Pacific J. Math. 31 (1969), 263-276.

Osaka City University Sumiyoshi-Ku, Osaka 558 Japan