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Abstract

We have defined a mini-injective module and given some structures of self mini-injective rings and
certain relationships between such rings and QF-rings in [8] and [9].

In this short note we shall study the modules dual to mini-injective modules, which we call
maxi-quasiprojective modules. We shall give a characterization and some structures, in terms of the
above modules, of those rings whose every injective module has the lifting property of direct
decompositions modulo the Jacobian radical (see [5], [6] and [7]). Furthermore, we shall show that the
above rings are closely related to QF-rings (see [8] and [9]).

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 36.

Throughout this note, we assume that a ring R contains an identity and every
module is a unitary right /^-module. We always assume that R is a right artinian
ring unless otherwise stated. However, some of the first part of this note is valid
without this assumption.

A part of this paper was prepared when the author visited University of Sydney
in 1981. The author would like to express his thanks to Professor M. Kelly and
his colleagues for their kind hospitality, and to the referee for the useful
suggestion to revise the paper.

1. Maxi-quasiprojective modules

Let M be an ^-module. We denote the Jacobson radical of M by /(M). We put
M = M/J(M). If N is a direct summand of M, N/J(N) may be regarded as an
#-submodule of M. Hence N = N/J(N) C M. An /^-module T is called hollow if
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358 Manabu Harada [2 ]

J(T) is a unique maximal submodule of T. Since R is artinian, M is semi-simple.
Let M = 2/ © #„, where the JVa are simple. If there exists a direct decomposition
2/ © Ma of M with Ma = Na for each a £ / , we say that the direct decomposi-
tion M = 2/ © iVa is ///ifed to M. If M has the above property for any direct
decomposition of M, we say that M has the lifting property of direct decompositions
of M [6]. In this case M = 27 © Ma and the Afa are hollow modules. Hence
Ma « ea-R/eav4, where the ea is a primitive idempotent and ^ is a right ideal in
R.

It is well known that every projective module has the lifting property of direct
decompositions modulo the radical [12]. We note that if Na & Np for each pair a,
/}, every direct summand of M is of the form 1K © Ns (K C / ) and so M has
trivially the lifting property of direct decompositions of M. In order to avoid this
trivial case, we assume that

(#) each Na is isomorphic to another N^ [7].
Now, we shall define a new class of modules. For any maximal submodule ./V of

M, we consider a diagram

0 -» N -> M ^ M/N -> 0

\ T/
/.

M

where v is the natural epimorphism. If, for any/in HomR(M, M/N), there exists
an element h in End^(Af) which makes the above diagram commute, we say that
M is a maxi-quasiprojective module. It is clear that every quasi-projective module
is maxi-quasiprojective and the converse is not true in general. For instance, let R
be a local algebra over a field K such that R/J(R) **> K and let A be a right ideal
of R. Then R/A is maxi-quasiprojective, but not quasi-projective, provided that A
is not a two-sided ideal (see Remarks 2 and 3 below).

Let N and N' be two maximal submodules of M. Then the definition above is
equivalent to the fact:

(Hom^M, M) 3) HomR(Af, M)* -* nomR{M/N, M/N')

is an epimorphism via natural epimorphisms v and v', where Hom^(Af, A/)* =
{/ e HomR(M, M) \f(N) Q_N'}. _

We put S = EndR(M), S = EndR(M) and /0(S) = HomR(M, /(M)). Then
we have the natural monomorphism 6: S/J0(S) -» 5 (see [7]).

THEOREM 1. Let M be an R-module. Assume M =2, © Ma and the Ma are
completely indecomposable; that is, End R(Ma) is local. We further assume (#). Then
the following conditions are equivalent:

1) 0 is an epimorphism.
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13] On maxi-quasiprojective modules 359

2) M is maxi-quasiprojective and each Ma is hollow.
3) M has the lifting property of direct decompositions of M.

PROOF. 1) -> 2). We note that every element in 5 (resp. S) is expressed as a
column summable matrix with entries /O/S, where the /a/S are elements in
HomR(Mp, Ma) (resp. HomR(M^, Ma)). Hence it is clear that 6 induces an
epimorphism 0a: EndR(Ma) -» EndR(Ma). Since EndR(Ma) is local, so is
EndR(Ma). Furthermore, Ma is semi-simple and so Ma is simple. Therefore Ma is
hollow. Let TV, and N2 be two maximal submodules of M. Then NtD J(M) ^
M/Nl is a direct summand of M. Accordingly, M is maxi-quasiprojective.

2) -» 3). Since Ma is hollow, J(Ma) © 2 ^ , , © Mp is a maximal submodule of
M. Hence HomR(Ma, M^) -> HomR(Ma, Mp) is an epimorphism for a, f$ E /.
We assume Ma « M^. Then Ma, M^ being hollow, there exist epimorphisms / :
Ma -» A/ ,̂ g: M^ -* Ma by the above. Since R is artinian and so the Ma are of
finite length, Ma «* M^. Hence {A/,,}/ is (semi-) T-nilpotent (see [11]). Therefore
M has the lifting property of direct decompositions of M by [7], Corollary 1 to
Theorem 2.

3) — 1). This is clear from [7], Theorem 2.

THEOREM 2 (the dual to [8], Theorem 3). Let Rbe a right artinian ring. Then the
following two conditions are equivalent:

1) Every injective E has the lifting property of direct decompositions of E.
2) An injective cogenerator is maxi-quasiprojective and a direct sum of hollow

submodules: that is, right QF-2* [5].

PROOF. Every injective is a direct sum of completely indecomposable modules.
Hence the theorem is clear from Theorem 1 and [7], Theorem 2 and its remark
(note that we do not use the assumption (#) for the implication 2) -* 3) in the
proof).

REMARKS. 1. We can define an essentially quasi-projective module as the dual
to uni-injective [8], when we replace a maximal submodule by an essential
submodule. We note that if M is essentially quasi-projective, M is maxi-quasipro-
jective and if M is uniform and essentially quasi-projective, M is quasi-projective.

2. We take the ring defined in [8], Example 2. Let L D K be two field satisfying
the following conditions: [L: K] = 2 and there exists an isomorphism a of L
onto K. Put R = L © Lu a vector space over L. We define a product on R as
(x, + x2u)(y] + y2u) = xlyl + ( x ^ ^ , ) + x}y2)u, where the x, and the.y, are in
L. Then R is mini-injective as a right /^-module [8]. R* = HomK(R, K) as right
AT-modules is a left R-K bimodule and R** <* R as right « - # bimodules. Then fl*
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is an indecomposable and left .R-maxi-quasiprojective module, which is not
hollow.

3. Let i t be a field and

K 0 K
0 K K
0 0 K

Put e = en and / = e22. Then eR &fR and S(eR) » S(/R) ( = S), where S( )
means the socle of ( ). Put Af = (eR ®fR)/S', where S' - {s + s\s G S}. Then
Af is maxi-quasiprojective, since Af = eR® fR and eR & fR and Af is an inde-
composable module, which is not hollow (see [1]).

2. Lifting property of injectives

We shall study the right artinian rings whose every injective module has the
lifting property of direct decompositions modulo the radical (see [5]).

First we shall give the dual to 1) of Theorem 5 in [8].

LEMMA 3. Let Af, and M2 be indecomposable modules of finite length.
1) / / Af = Af, © Af2 is maxi-quasiprojective, and Af, & M2, then no simple

submodule in My is isomorphic to a submodule in M2.
2) / / Mx is maxi-quasiprojectwe, and Ml/Nl » MxfN2 for maximal submodules

.ty in Af,, then there exists an automorphism f of Af, with f(Nx) — N2.

PROOF. 1) Assume there exists a maximal submodule Nt of Af, such that
Mi/Nl » M2/N2. Then there exist/, in Hom^Af,, Af2) and/2 in Hom^(Af2, Af,)
which induce the given isomorphism and satisfy/,(#,) C N2 and f2(N2) C iV,. Put
h =f2fx e End£(Af,). Then h(Nx) C Af, and Af, = h(M{) + iV,. If h is not an
isomorphism, h is nilpotent, for Af, has finite composition length. Hence Af, =
hn(M\) + Nx— N\ for some n, which is a contradiction. Therefore h is an
isomorphism a n d / is also an isomorphism, a contradiction.

2) If we apply the above argument for Af, = Af2, we have 2).

LEMMA 4. Let Af, be an indecomposable module of finite length. We put
M = Aff7* a direct sum of \I\-copies of Mv We assume that Af, is maxi-quasipro-
jective and N a maximal submodule of Af. Then there exists a decomposition
Af = 2/ © M'aof M such that N = Mt® 27_{i} © M'a, where M'a * Af, for all
a G I and Nl is a maximal submodule of M[, where | /1 means the cardinal of I.
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is) On maxi-quasiprojective modules 361

PROOF. We shall show that N contains a non-zero direct summand of M if
| / | > 2. Since N is a maximal submodule, N D / (M). We denote M/J(M) by AT
(note that, for a submodule A of A/,*7 = (A: + J(M))/J(M)). LetAf = 27 © Ma,
and put Afo n N = Na. If A/a C N for some a, we are done. Hence we may
assume M = N + Ma for any a E /. Then M/JV = (N + Ma)/N « Ma/iVa and
so A^ is a maximal submodule of Ma. Now, since Ma is semi-simple,

(1) Ma = Na © v4a, where/(A/a) C >4a C Ma andAa is a simple submodule.

Since N D lf ® A^ D AM), N = 2 , © JV̂  © No and 7^ ¥= 0, for JV is maximal
and | / | » 2. Let Aft be a simple submodule of No; Aft D /(Af). We take the
decomposition

(2) M=%®Na)®{2l(BAa).

Let p and />„ be the projection of M onto 27 © A^ and Aa, respectively. Since Aft
is simple, there exists a finite subset / ' of / such that pa( Aft) = Aa for a £ / ' and
Pfii^o) = 0 for j8 G / — / ' . We may assume/' = {1,2,.. . ,«}. Hence there exists
a set of isomorphisms g,: Al -»^4, (j > 2) such that Aft = {p(n) + a, + g2(«i)
+ • • • +gn(a,) |« G Aft, a, =/»](«) £ ^ i } - On the other hand, there exists /•:
Af, -» Af, such that /i(A

r
1) = A?, and / induces g, on Ax by Lemma 3. We put

Mx(f) = {m, +/2(m,) + l"/B(»«i)|»Ji G A/,}. Then it is clear that M^f) *
Af, and Af = Af,(/) © 2,_{1) © Ma. Let «!, = «, + a,, where n, e A', and
a, G Y4,. Then there exists n in Aft such that n = />(M) 4- a, + g2(fli)
+ • • • +«„(«!)• Hence w, + / 2 ( w , ) + • • • + / „ ( « , ) = n, + / 2 (« , )

p(n) G 2, © ATa © Aft C N, and so Af,(/) C AT. Let F be the set of all direct
sums of indecomposable modules Ka isomorphic to Mx, which are contained in N
and are locally direct summands of M; that is, any finite sum of the Ka is a direct
summand of Af. Then F is non-empty by the above, and we can find a maximal
member in F with respect to the relation to the members of direct components
by Zorn's lemma, say 2/ © M'a (C N). Since Af, has the finite length, {Afo}7 is a
semi-7-nilpotent set [11]. Hence 2y © M'a is a direct summand of Af by [11],
Theorem, say M = 2j® M'a® M*. Hence N = lj © M'a © (N n Af*) and N n
M* is a maximal submodule of A/*. M* is also a direct sum of submodules
isomorphic to A/, by [16]. Therefore \I — J\— 1 by the above and the maximality
of lj © M'a.

We assume that an /{-module is a direct sum of indecomposable modules Afa of
finite length. Then we can rearrange this decomposition as follows:

(3) M«2ae/
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THEOREM 5. Let M be as in (3). Then M is maxi-quasiprojective if and only if the
Ma are maxi-quasiprojective for all a and no simple submodule in Ma is isomorphic
to a simple submodule in Mp ifa ^ /$ (and hence \I\ is finite).

PROOF. Assume M is maxi-quasiprojective. Then so is any direct summand of
M by the definition. Hence we have the property above. Since R is artinian, / is
finite. Let N be a maximal submodule in M. By the assumption, M^ is a direct
sum of homogeneous components in M. Hence N — N{ © 2 a # i © M^Ja) for some
homogeneous component M\J^, where Nt is a maximal submodule in A/]7'*, and
so M/N » M\Jt)/Nx. We take another maximal submodule N' of M such that
M/N * M/N'. Then as above, we obtain N' = N[® 2 ^ , © M~V-\ where N[ is
a maximal submodule of A/,(/l). Now we obtain two decompositions of M\Jl) by
Lemma 4:

l ) © M [ D A r = M[(J< ~l) ® N[ and

; ' ' © M[' DN' = M["-J^]) © iV,",

where N[ C M[ and N" C M," and M, *» Af[ « A/,". Hence we obtain an auto-
morphism / of A/,(/l) by the assumption, which induces the given isomorphism
between M[/N[ and M"/N". Therefore M is maxi-quasiprojective.

COROLLARY 1. Let M be as above and let N be a submodule of M containing
/(Af). We assume that M is maxi-quasiprojective and each Ma is cyclic hollow.
Then there exists a decomposition of M such that M = 2/ © M'p D N = 2/ © M'^
© 2/ 2 © J(M'yy. I = / , U I2 and the M'a are indecomposable. Let N' be another
submodule of M containing J(M). If M/N «« M/N', there exists an automorphism f
of M which induces the above isomorphism and f(N) = N'.

PROOF. We take the same argument as the proof of Lemma 4. Since Ma is
hollow, Aa is either simple or zero. Hence, if N ¥= J(M), N contains a non-zero
direct summand of M from the method after (1) in the proof of Lemma 4. We can
use the same argument for the remainder.

COROLLARY 2 (the dual to [8], Theorem 5). Let E = 2 } = 1 © £, be a minimal
injective cogenerator with Et indecomposable. We assume that E is finitely generated
and maxi-quasiprojective. Then

1) All simple submodules in Et are isomorphic to one another and are not
isomorphic to any one in Ejfor i ¥=j.
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2) / / Ej is simple for all i, every primitive idempotent e in R is non-small [3]; that
is, eR is not a small submodule in the injective envelope E(eR) of eR and R contains
all simple submodules up to isomorphism and r(7) C 1(7), where 7 = J(R),\(J) =
{ x e R\xJ = 0} andr(J) = {x GR\Jx = 0}.

PROOF. 1) Since E is a minimal cogenerator, Et •# Ej for / ¥^j and 2"=, © Ei

contains all simple /^-modules up to isomorphism by Lemma 3. Hence we obtain
1) from Lemma 3.

2) If Ei is simple for all /, R is right QF-2* [5]. Hence we obtain the
non-isomorphic representative set of indecomposable and injective modules
{exR/exAx, e2R/e2A2,...,enR/enAn} from Theorem 2 and [5], Theorem 3,
where {e,} is the set of mutually orthogonal and non-isomorphic primtive
idempotents and {At} is a set of right ideals. We assume that e, is small. Then
E — E(e,i?) D J(£) D etR D etAt. Since ejR/ejAi is injective, E/eiAi contains a
direct summand e^R/e^j contained in 7(£/e,ylJ), which is a contradiction. Let
E(/i) « 2K © (ejR/ejAj)m', where (ejR/ejAj)mJ is a direct sum of wy-copies of
ejR/ejAj, and A^C {1,2,...,«}. Since e, is non-small, A contains /. Hence E(/?)
is a cogenerator, and so R contains all simple modules up to isomorphism. We
may assume that R C 2f=1 © e,^A,^, and r ( / ) C 2f=1 © a,r(/), where a, G
«,-/?, a, = a, + e,vl, and e, may equal ey for somey. We assume that a,r(7) <£ the
socle S(e,/?/e,^4,) of eiR/e]Al. Since eiR/elAl is uniform, ar ( / ) D 5 , =
S(e,^/e,^,) . E(/?) being an injective cogenerator, there exists / in
HornR(e,R/exAx, e;/?/e,^,) for some i such that/(5,) = 0 and/(a,r(/)) ¥= 0 . /
is given by the left-sided multiplication of an element b in etRev Since/(5,) = 0,
/ i s not an isomorphism. Hence b G eiJel by the construction of eiR/eiAi (note
that e,R/eiAi * ejR/ejA] if / ¥=j). /(a,r(/)) = baxr{J) C etJx{J) = 0, a con-
tradiction. Therefore a,r(7) C 5, and a , r ( / ) / c 5,7 = 0. Similarly, we have
a,r(J)J = 0 for all / and so r(J)J = 0. Thus, r ( / ) C 1(7).

The following theorem is the dual to [8], Theorem 13.

THEOREM 6. Let R be a right artinian ring. Then the following conditions are
equivalent:

\)Risa QF-ring.
2) R is right QF-2 and QF-2* and a minimal injective cogenerator is maxi-quasi-

projective {see Theorem 9 below).
3) Every injective E has the lifting property of direct decompositions of E and

1(7) C r(7).
4) Every injective R-module and every injective left R-module have the lifting

property of direct decompositions modulo the radical.
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PROOF. 1) -» 2). Since R is an injective cogenerator and a projective module as
a right /^-module by [2], we obtain 2).

2) -» 1). Let e be a primitive idempotent. R being QF-2 and QF-2*, E(e/?) is
hollow. Hence E(e/{) = eR by 2) and Corollary 2 to Theorem 5. Therefore R is
self-injective (see the proof of [8], Theorem 13).

1) -> 3) and 4). Since every injective module is projective by [2] and l(J) = T(J)
by [15], we have 3) and 4).

3) -» 1). We know from 3) and Theorem 2 that minimal injective cogenerator
are maxi-quasiprojective and R is a QF-2* ring. Hence we shall use the same
notation as in the proof of Corollary 2 to Theorem 5. Since R C E(/{) ss
l]=i © (ejR/ejAj)mi, 2?=i © eR/eiAi is faithful. We shall show that exAx D
T(J) = 0. We assume elAl (~) T(J) ¥= 0 and take a non-zero element x in e,v4, n
r ( J ) . Then etRx = eiRelx CJx = 0ifi=£l. Hence exRx g e , ^ , . Let y be an

element in elRel such that J>JC 6 exAx. Since x £ r( / ) , y £ e,7e,. e ^ / e , ^ ,
being maxi-quasiprojective and y inducing an element in EndR(eiR/e1J), there
exists an element z in elRel such that y — z G e,7e, and z(elAl) C e,y4, by
Lemma 3. Henceyz = zx E. exAx, which is a contradiction. Similarly, etAt n r ( / )
= 0 for all i. Now, 1(7) C r ( / ) and 1(/) is an essential right ideal in R. Hence
eiAi = 0 for all i, and so R - E(R).

COROLLARY 1. Let R be a right artinian ring. Then R is a QF-ring if and only if
every injective E and every projective P have the lifting and extending property of
direct decompositions of E and S(P), respectively. Furthermore, ifl(J) = i(J) (for
example, J2 = 0 or R is commutative), we can replace the two conditions above by
either one.

PROOF. This is clear from Theorem 6 and [8], Theorem 5.

As is well known, R is a QF-ring if and only if R is self-injective as a right
/{-module. However, R is actually quasi-injective as a right /{-module from the
definition of quasi-injective, and so R is injective as a right /{-module by Baer's
criterion. Hence the concept dual to the above is the following: A (minimal)
injective cogenerator is quasi-projective. Thus we have the following corollary.

COROLLARY 2. Let R be as above. Then R is a QF-ring if and only if the minimal
injective cogenerator is quasi-projective.

PROOF. We assume that the minimal injective cogenerator is quasi-projective.
Then every injective is quasi-projective by [10] and the proof of [4], Proposition
2.4. Put E = (R). Then £«»2f= 1 © e,./?/*?,/!,, where the e, are primitive
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idempotents, the At are right ideals and e^/ie,^,^, C ejAj from the proof of [6],

Corollary 3 in page 790. We may assume that R C 2f=1 © eiR/eiAl as a right

/^-module and R is basic (see [13] and [14]). We note, from Corollary 2 to

Theorem 5, that the set {e,} contains the set of all non-isomorphic primitive

idempotents. Let 1 = 2 at, where at — etat and a, = a, + etAt. Then J = J(R) C

2 © a,V. We shall show ajJe\{J) = 0 for all i and j . Then, since 1(7) =

2^©e , l ( / ) , where KQ {l,2,...,/fc}, 1(/) c r ( / ) . We note that ejRe,=
HomR(ejR, ejR) and each element in ê -Re, induces an element in
Hom^e.-H/e,-^,, e^R/ejAj) from the above. Now, dxJexl(J) = ex(axJexl(J)) =
(elaiJel)(ell(J)), where we obtain this equality by regarding elalJel C
EndR(exR/exAx). Since 1(/) is semi-simple, so is e,l(/). Further exaxJex C
J(EndR(exR)) and each element in J(EndR(e,/?)) induces an element in
J(EndR(ejR/exAx)). Hence (exaxJex)(exl(J)) = 0, for exR/exAx is uniform. Next
we consider exaxJe2\(J~). If e2R «* exR, then we have exaxJe2l(J) — 0 from the
above (note exR/exAx «* e2/?/e2yl2). We assume e2R <# exR. Case 1: e2l(J) C
^2^42- Then exAx D e,/?el(/) D exaxJe2l(J), since e,/?e2e2y42 C ^ ^ ^ Hence
aJe2l(J) = 0. Case 2: e2l(/) g e2^2 and exaxJe2l(J) <£ exAx. Then exR/exAx

and e2R/e2A2 contain the simple module isomorphic to e2\(J), which is a
contradiction. Hence, if e2l(/) %e2A2, exaxJe2l(J) QexAx. Therefore axJe2l(J)
= 0. Similarly, a,./e/l(7) = 0, and so 1(/) C r( / ) . Since quasi-projective is
maxi-quasiprojective, we have the corollary from Theorems 2 and 6.

Finally, we take an algebra. Let K be a field and let R be a ^T-algebra of finite
dimension. In this case we note that we have the duality functor HomJC(-, K) =
(-)*. Then every injective right /^-module E has the lifting property of direct
decompositions of E if and only if every projective left .R-module has the
extending property of direct decompositions of the socle; namely, R is left
mini-injective and so R is a QF-algebra by [9] (we note that we may restrict
ourselves to the cases where every module is finitely generated by [7]). Therefore
the following theorem is clear from the above and [9], Theorem 1. We shall give
the dual proof for the sake of completeness.

THEOREM 7. Let R be an algebra over a field K with [R: K] finite. Then the
following conditions are equivalent:

1) R is a QF-ring.
2) A minimal injective cogenerator is maxi-quasiprojective.
3) R is a right self mini-injective ring.

PROOF. 1) -> 3). This is clear from [2].
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3) -» 2). Since R* is an injective cogenerator as a left .ft-module, we obtain 2)
for the left /^-modules.

2) -> 1). We may assume that R is basic and we use the same notations above.
Since R is an algebra of finite dimension, every indecomposable injective is
finitely generated and isomorphic to (/?e,)*. We denote (i?e,)* by £,. Then
S, = End ,,(£,) is anti-isomorphic to e,-/?«,-. Let Nt be a maximal submodule of Et

and put 5, = {x G S,\x(Nt) C N,}. Since Nf = (Re^Tj)* for some minimal left
ideal Tt of Ret and TJiR) = 0 by Corollary 2 to Theorem 5, J(S,)A, C Nt, and so

C 5,. Then End/^/Zv,.) = S,/J(S,) from 2). Hence End^(£,/A^) is anti-
isomorphic to a A-subfield of e,J?e,. We put Ej/Ni « e,/?. Then
[erRer : A"] < [e,/?e, : Af]. Thus we obtain a chain of idempotents
{eue2,. ..,en...} such that £, = (Ret)* and £, contains a maximal submodule Â
with Ej/Nj *zej+lR. If e,-/? «« ei+kR for some / and k, £,_, «» Ei+k^] by Lemma
3. Hence ^(_, « e,-+t_1. We know from this fact that the mapping: / -»/' gives us
a permutation of {1,2,...,«}, where 2"=) © (Re)* is a minimal injective cogen-
erator. Hence [ej.Rei,: K] = [eiRei: K\. Let A', and N2 be two maximal submod-
ules of £,. Then Et/Nx « Et/N2 by Corollary 2 to Theorem 5. Hence there exists
an automorphism x of £, such that x(N{) = N2 by Lemma 3. On the other hand,
5, = 5, from the argument above. Hence N2 = x(Nt) c Nt, and so Nt is a unique
maximal submodule of Et. Therefore R is right QF-2*. Accordingly, every
injective E has the lifting property of direct decompositions of E by Theorem 2.
Then we obtain a non-isomorphic representative set of indecomposable injectives
{eiR/elAl, e2R/e2A2,...,enR/enAn) by [5], Theorem 3 and [6], Theorem 3.
Hence {(e,/?/e,vl,)*}" is a non-isomorphic representative set of indecomposable
and projective left /^-modules. Therefore l"=i © (e,/?/e,^,)* » R as left fl-mod-
ules. Accordingly, [R: K] = 2r=,[(e,/?/e,/l,)* : A] = 2"=1[e,/?A,vl,: AT]. Hence
e,-i4,. = 0 for all /, and so R is self-injective.

3. Self mini-injective rings

We shall add a characterization of right QF-2 and self mini-injective rings.

THEOREM 8. Let R be a right artinian and basic ring. Then R is a right QF-2 and
self mini-injective ring if and only if\(J) = Ru = uR for some u in R.

PROOF. Let R - 2"=1 © efR be as above. We assume that R is a right QF-2
and self mini-injective ring. Then etl(J) — utR and M, Ge,i?e,.. We know from
[8], Theorem 3 that \(J) Qv(J). Therefore, since utR is a unique minimal right
ideal, Rut C utR. erRer being a division ring, a mapping: M, -» «,r(r EerRer) is
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extendable to an element in HomR(M,/?, utR). Then, since R is right self mini-in-
jective, there exists an element x in eiRei with xui = utr. Therefore Rut = utR.
Put u = 2"=, M,. Then e,u = we,. = «,.. Hence uR = 2"=1 © utR = 2"=1 © AM, =
/?M = 1(/). Conversely, we assume 1( J) — uR = Ru. Then 1(/) is a homomorphic
image of R/J as right /{-modules. Hence uR « /?/y from the composition length.
Therefore 1(/) = 2"=1 © e^J), e,l(/) is a unique minimal right ideal, and so R
is right QF-2. Furthermore, et\{J) & ej\{J) if / ¥=j. Hence e,l(/) is a two-sided
ideal, and so 1(7) = uR — Ru implies Re^ = etuR = et\(J). Therefore R is a
right self mini-injective, since End^(e,M/?) =ejRei as above.

THEOREM 9. Let R be a right artinian ring. Then R is a QF-ring if and only if R is
a right QF-2, QF-2* and self mini-injective ring.

PROOF. We assume that R satisfies the second condition of the theorem. We
may assume that R is basic. Let R = 2"=1 © e,R, where the e, are primitive
idempotents and e,R <# e}R if i =tj. Since R is QF-2 and QF-2*, E{etR) «

for somey and some right ideal A. Then we have the diagram

a

where / is the inclusion and v is the natural epimorphism. Since etR is projective,
there exists/: etR -* e}R such that i = vf. i being a monomorphism,/is the same.
Hence S(e,i?) «* S(ejR) by the assumption. Therefore / =j by [8], Theorem 5.
The fact that etR C etR/etA implies etA = 0. Hence R is self-injective.
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