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Abstract. This paper discusses an autoregressive model for the analysis of irregularly observed
time series. The properties of this model are studied and a maximum likelihood estimation
procedure is proposed. The finite sample performance of this estimator is assessed by Monte
Carlo simulations, showing accurate estimators. We implement this model to the residuals after
fitting an harmonic model to light-curves from periodic variable stars from the Optical Gravita-
tional Lensing Experiment (OGLE) and Hipparcos surveys, showing that the model can identify
time dependency structure that remains in the residuals when, for example, the period of the
light-curves was not properly estimated.
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1. Introduction
Time series observations are ubiquitous in astronomy, and have been used for several

different purposes. For example, to distinguish between different types of supernovae, to
detect and characterize extrasolar planets (e.g. Jordán et al. 2013) and to classify variable
stars (e.g. Elorrieta et al. 2016). These time series are usually modeled using a parametric
and/or physical model that assumes independent and homoscedastic errors, but in many
cases this assumption is not accurate and there remains a time dependent structure
on the errors. This commonly occurs when the proposed model cannot explain all the
variability of the data. In this work we propose an autoregressive model for irregularly
observed data to detect time dependencies on the data. In the next § 2, we introduce the
model and its properties. Then, in § 3 we present results on simulated data and on real
light-curves from variable stars observed at the OGLE and Hipparcos surveys. In § 4 we
offer some discussion.

2. Methods
2.1. Irregular Autoregressive (IAR) model

Denote ytj
an observation measured at time tj , and consider an increasing sequence of

observational times {tj} for j = 1, . . . , n. We define the irregular autoregressive (IAR)
process by

yt1 = σ εt1 , ytj
= φtj −tj −1 ytj −1 + σ

√
1 − φ2(tj −tj −1 ) εtj

for j = 2, . . . , n, (2.1)

where εtj
are independent Gaussian random variables with zero mean and unit variance.

Note that
E(ytj

) = 0 and V ar(ytj
) = σ2 for all ytj

, (2.2)
and the covariance between ytk

and ytj
is E(ytk

ytj
) = σ2 φtk −tj , for k � j.
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Thus, for any two observational times t, s we can define the autocovariance function as

γ(t − s) = E(yt ys) = σ2 φt−s , (2.3)

as well as the autocorrelation function (ACF), ρ(t − s) = γ (t−s)
γ (0) = φt−s .

Given the results above, the sequence {ytj
} corresponds to a second-order or weakly

stationary process. In addition, under some conditions, the process is strictly stationary
and ergodic.

2.2. Estimation
The likelihood of the data {yt1 , . . . , ytn

} can be expressed as

f(yt1 , . . . , ytn
; θ) = f(yt1 ; θ)f(yt2 |yt1 ; θ) × . . . × f(ytn

|ytn −1 ; θ), (2.4)

where θ = (σ2 , φ) is the parameter vector of the model, with

f(yt1 ;σ
2 , φ) ∼ N(0, σ2) and (2.5)

f(ytj
|ytj −1 ;σ

2 , φ) ∼ N(φtj −tj −1 ytj −1 , σ
2 (1 − φ2(tj −tj −1 ))) for j = 2, . . . , n. (2.6)

Based on equation (2.1), minus the log-likelihood of this process can be written as

�(θ) =
n

2
log(2π) +

1
2

n∑
j=1

log νtj
+

1
2

n∑
j=1

e2
tj

νtj

, (2.7)

where we define et1 = yt1 , etj
= ytj

− φtj −tj −1 ytj −1 for j > 1 and their variances as
νtj

= V ar(etj
).

Observe that the finite past predictor of the process at time tj is given by

ŷt1 = 0, and ŷtj
= φtj −tj −1 ytj −1 , for j = 2, . . . , n. (2.8)

Therefore, etj
= ytj

− ŷtj
is the prediction error with variance νt1 = V ar(et1 ) = σ2 ,

νtj
= V ar(etj

) = σ2 [1 − φ2(tj −tj −1 ) ], for j = 2, . . . , n. (2.9)

By direct maximization of the log-likelihood (2.7), we can obtain the maximum likeli-
hood estimator of σ2 ,

σ̂2 =
1
n

n∑
j=1

(ytj
− ŷtj

)2

τtj

, where τtj
= νtj

/σ2 . (2.10)

It is not possible to find the maximum likelihood estimator of φ by direct maximization
of the likelihood, but iterative methods can be used (for details see Ch. 5 of Palma et al.
2016). We developed a script in the statistical language/software R to estimate φ.

2.3. Harmonic model for fitting light curves of variable stars
In fitting light curves of periodic variable stars, the standard approach is to use an
harmonic model. This model requires first to find the period of the variable star, which can
be estimated using the Generalized Lomb-Scargle periodogram (Zechmeister et al. 2009).
For more details in the procedure on periodic light-curve estimation, see for example
Debosscher et al. (2007), or Richards et al. (2011).
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Table 1. Maximum likelihood estimation of simulated IAR series with mixture of Exponential
distribution for the observational times, with λ1 = 130 and λ2 = 6.5, w1 = 0.15 and w2 = 0.85.

Case Sample size Parameter Estimate φ̂ SD(φ̂) σ̂

1 50 0.9000 0.8878 0.0456 0.8451
2 50 0.9900 0.9848 0.0085 0.5919
3 50 0.9990 0.9958 0.0033 0.5215
4 100 0.9000 0.8933 0.0284 0.8306
5 100 0.9900 0.9875 0.0050 0.5513
6 100 0.9990 0.9974 0.0018 0.3799

The residuals after subtracting a linear trend and an harmonic model with one fre-

quency and four components denoted as y(t), are y(t) = z(t)−α̂−β̂t−
4∑

j=1
(âj sin(2πf1jt)+

b̂j cos(2πf1jt)), where â is a maximum likelihood estimator and z(t) is the observation
at time t. Note that when fitting the IAR model to these residuals, y(t), a large estimate
of the parameter φ can reveal that the model used to fit the data is not the appropriate
one due to a remaining time-dependency in the time series.

3. Results
3.1. Simulation study

This section shows the results from several Monte Carlo experiments assessing the finite
sample performance of the proposed maximum likelihood estimator.

The simulated processes correspond to the model (2.1) where the observation times
follow a mixture of two independent exponential distributions with means 1/λ1 and 1/λ2 ,
and random weights w1 and w2 , respectively. Table 1 shows a summary of the simulations
based on 1000 repetitions with λ1 = 130, λ2 = 6.5, w1 = 0.15 and w2 = 0.85.

The Monte Carlo simulations suggest that the finite-sample performance of the pro-
posed methodology is accurate. In particular, the estimation bias is small even for the
reduced sample sizes used in Table 1. Note that we restrict to high values of the parame-
ter φ. The reason for this is the choice of the distribution of the observational time gaps,
which tend to be large.

3.2. Implementation of the IAR model to variable stars from OGLE and Hipparcos
In order to show an application of our model to the fitting of light curves from variable
stars, we select forty variable stars from the OGLE and Hipparcos surveys for which the
harmonic model gives a precise fit of the light-curve. In this way, we are confident that the
estimate of the period is correct. Figure 1(a) shows an example of one of the variable stars
selected. We then apply our IAR model to the residuals of the best harmonic model (2.3).
For the forty chosen light-curves we obtain small values close to zero for the parameter
φ, as shown in the boxplot on the right in Figure 1(c). We then vary the frequency f1 in
the interval [f1 − 0.45f1 , f1 + 0.45f1 ], and after doing so we fit the harmonic model with
the wrong frequency. The residuals of the harmonic model have now temporal structure
that can be captured with the IAR model, and in particular by the inferred value of φ.
Figure 1(b) shows for each value of the frequency (with the right frequency f1 at the
center of the plot at zero), the estimated φ parameter of the IAR model applied to the
residuals of the harmonic fit. Note that as we move away from the correct frequency, the
value of φ increases. Figure 1(c) shows in the boxplot on the left the distribution of φ for
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Figure 1. a) Example of the light curve of a Classical Cepheid. The continuous blue line is
the harmonic fit. b) On the x-axis is the % of variation from the correct frequency, and on the
y-axis is the estimate of the parameter φ of the IAR model. c) Boxplot of the distribution of φ,
for the light-curves using the correct frequency (on the right) and for the light-curves using the
incorrect frequency (on the left).

the light-curves with the incorrect frequency. This distribution is now more spread-out,
taking larger values away from zero.

4. Discussion
In this work we have introduced an autoregressive model for irregularly observed time

series (IAR), and show that it is weakly stationary, and under some conditions, it is
strictly stationary and ergodic. We show on simulated data, that the maximum likelihood
estimators for the parameters of the model are accurate. Also, we show on real data from
variable stars from the OGLE and Hipparcos surveys, that the IAR model can detect
when temporal dependency remains on the residuals of a model. In particular, we use the
harmonic model with wrong periods of the light-curve to show how the parameter φ̂ of
the IAR model has a distribution that takes larger values away from zero, in contrast with
the distribution of the φ̂ when the correct periods where used to estimate the harmonic
model. In the latter case, the distribution concentrates around zero with few exceptions.
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