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WEAKLY PURELY FINITELY ADDITIVE MEASURES 

GOTTFRIED T. RÛTTIMANN 

ABSTRACT. Let L be an orthomodular poset. A positive measure £ on L is said to 
be weakly purely finitely additive if the zero measure is the only completely additive 
measure majorized by £. It was shown in [15] that, in an arbitrary orthomodular poset 
L, every positive measures \i is the sum v + £ of a positive completely additive measure 
v and a weakly purely finitely additive measure £. We give sufficient conditions for this 
Yosida-Hewitt-type decomposition to be unique. 

A positive measure A on L is said to be filtering if every non-zero element p 
in L majorizes a non-zero element q on which A vanishes. A filtering measure is 
weakly purely finitely additive. Filtering measures play a mediator role throughout 
these investigations since some of the aforementioned conditions are given in terms of 
these. 

The results obtained here are then viewed in the context of Boolean lattices and 
applied to lattices of idempotents of non-associative JBW-algebras. 

1. Introduction. Let L be an orthomodular lattice or an orthocomplete orthomodular 
poset. Notice that a Boolean lattice together with its uniquely determined orthocomple-
mentation is an orthomodular lattice. The complete lattice of self-adjoint idempotents, 
resp. idempotents, of a W*-algebra, resp. JBW-algebra, admits a natural orthocomple-
mentation which makes it into an orthocomplete orthomodular poset. 

A positive measure £ on L is said to be weakly purely finitely additive if the zero 
measure is the only completely additive measure majorized by £. Let J+(L), J*(L) and 
/+ fa(L) be the sets of positive measures, positive completely additive measures and 
weakly purely finitely additive measures on L, respectively. Using functional analytic 
methods it was shown by the author in [15] that, for an arbitrary orthomodular poset L, 

J+{L) = rc{L) + JlvU{L) 

holds true. Techniques developed in [9] lead to examples of orthomodular lattices for 
which this Yosida-Hewitt-type decomposition lacks the uniqueness feature. It is one 
of the goals of this paper to present sufficient conditions for this decomposition to be 
unique. 

A positive measure A on L is said to be filtering if for every non-zero element p in L 
there exists a non-zero element q in L such that q < p and \{q) is equal to zero. Filtering 
measures may be viewed as anti-completely additive measures. In fact, a filtering measure 
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is weakly purely finitely additive. The collection JUL) of filtering measures on L forms 
a face of the cone J+(L). 

The orthomodular poset L is said to be c-positive if for every non-zero element p in 
L there exists a positive completely additive measure v such that v(p) > 0. We call L 
wpfâ-hereditary provided that the property of a measure to be weakly purely finitely 
additive is preserved under restriction to segments of L. Complete Boolean lattices are 
wpfa-hereditary and, as shown at the end of this paper, the complete orthomodular lattice 
of idempotents of the most interesting examples of JBW-algebras are both c-positive 
and wpfa-hereditary. 

Provided that L is a c-positive orthomodular lattice or a c-positive orthocomplete 
orthomodular poset, L is wpfa-hereditary if and only if the two sets /+ fa(L) and Jf(L) 
coincide. For an orthomodular lattice or an orthocomplete orthomodular poset the latter 
condition is equivalent to the condition that 

J+(L) = J+
C(L)®J}(L) 

from which the uniqueness of the aforementioned decomposition follows. 
These results are then applied to the orthomodular lattice of idempotents of a JBW-

algebra. As a by-product we obtain an extension to the context of JBW-algebras of 
the measure-theoretic version of a result by M. Takesaki [16], Theorem 3.8, on the 
characterization of singular states on W*-algebras. 

2. Preliminaries. Let (L, < / ) be an orthocomplemented partially ordered set with 
0 as the least and 1 as the greatest element. A pair (/?, q) of elements in L is said to be 
orthogonal, denoted by p _L q, provided that/? < q'. By an orthogonal subset M of L we 
mean a subset having the property that each pair (p, q) of elements in M with p ^ q is 
orthogonal. An element p in L is called an atom if, for non-zero elements q in L, q < p 
implies that q equals p. The orthocomplemented poset (L, < / ) is said to be atomic, if 
every non-zero element in L majorizes an atom. 

An orthomodular poset [3], [6], [8] is an orthocomplemented partially ordered set 
(L, < / ) satisfying the following conditions: 

(i) if p _L q then p V q exists and 
(ii) if p < q then q-p\l (q A//). 

If an orthomodular poset is indeed a lattice, i.e. suprema and infima of finite subsets 
exist, then it is referred to as an orthomodular lattice. An orthomodular poset is said to 
be orthocomplete provided that the supremum of every orthogonal subset exists. A pair 
(/?, q) of elements in an orthomodular poset (L, < / ) is called compatible, denoted by 
pCq, if 

p = (pAq)V(pA q'). 

An orthomodular poset (L, < / ) is said to be Boolean if every pair of elements in L is 
compatible. In this case (L, <) is a Boolean lattice. Let (B, <) be a Boolean lattice and let 
'.B —^ B be its uniquely determined orthocomplementation. Then (#, < / ) is a Boolean 
orthomodular poset. 
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A non-empty subset M of a poset (L, <) with 0 and 1 is called an order filter if, for 
elements p in M and elements q in L,p < q implies that q belongs to M. An order ideal 
is defined dually. Let/? be an element in L. Then the order ideal generated by the set {/?} 
coincides with the set {q G L:q < /?}, denoted by Lp. Let (L, < / ) be an orthomodular 
poset and let/? be an element in L. Then the mapping p: Lp —> Lp defined, for elements q 
in Lp, by 

qp = q f\p 

is an orthocomplementation on the poset (Lp, < |L,) which makes it into an orthomodular 
poset. Quite frequently we write L, resp. Lp, to mean the orthomodular poset (L, < / ) , 
resp. (Lp, < \LP,P )• If the orthomodular poset L is a lattice or orthocomplete, so is Lp, for 
every element p in L. 

Let L be an orthomodular poset. An element \i in the product vector space RL is said 
to be a measure on L provided that 

li(pWq) = ii(p) + /x(<7), 

for elements /?, q in L with p ± q. The collection of measures on L is a linear subspace 
of RL. A measure \i is said to be positive if \i(p) > 0 for all elements p in L. By 
orthomodularity, a positive measure is an isotone map on the poset (L, <). Notice that 
the kernel ker^x of a positive measure \i is an order ideal in L which is closed under 
the formation of finite orthogonal suprema. A measure is said to be Jordan if it can be 
represented as a difference of two positive measures. With 7(L), resp. J+(L), we denote 
the linear subspace of Jordan measures, resp. the cone of positive measures, on L. The 
partial ordering induced in J(L) by the cone J+(L) is called the natural ordering in J(L). 
A positive measure fi such that /x(l) equals 1 is said to be a probability measure; Q(L) 
denotes the convex subset of RL of probability measures on L. The cone J+(L) is closed 
and the set £l(L) is compact in the product topology r of IRL, a locally convex Hausdorff 
topology. Moreover, Q(L) is a cone base of the cone J+(L). If Q(L) ^ 0 then the mapping 
|| • || : J(L) —-» J(L) defined, for elements /i in 7(L), by 

||/i|| = inf{s + t : p, = s7i — tK,s,t e IR+, 77, « G Q(L)} 

is a complete norm on /(L), referred to as the base norm on J(L). Notice that the base 
norm induces a topology on J(L) which is finer than the topology T\J{L) and is additive 
on the cone J+(L). Since Q(L) is convex and r-compact it follows that the unit ball of 
J(L) coincides with the convex hull of the set £l(L) U —Q(L). 

For details of these and other properties of measures on orthomodular posets the 
reader is referred to [10], [11], [12], [13], [14] and [15]. 

3. Filtering measures. Let (L, < / ) be an orthomodular poset. A positive measure 
À on L is said to be a filtering measure if, for elements p in L, 

kerAHL/7 = {0} => p = 0. 
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In the case that \L\ > 2, a positive measure À is filtering if and only if the order filter 
generated by the collection of non-zero elements in the kernel ker À of À coincides with 
the set L \ {0}. The set of filtering measures on L is denoted by JUL). Clearly, the zero 
measure is filtering. Notice that a filtering measure on L vanishes on the set A(L) of 
atoms in L. Therefore, if L contains a finite maximal chain then the zero measure is 
the only filtering measure on L. It also follows that a positive measure p on an atomic 
orthomodular poset L is filtering if and only if p vanishes on the set J%(L). 

PROPOSITION 3.1. Let L be an orthomodular poset. The set Jt (L) of filtering measures 
on L is a non-empty face of the cone J+(L) of positive measures on L. 

PROOF. Let «, A be elements in J}(L) and let p be a non-zero element in L. By 
hypothesis, there exists a non-zero element q in L such that q < p and n{q) is equal to 
zero. Repeating the argument, there exists a non-zero element r in L such that r < q and 
A(r) equals zero. By positivity of K and A, it follows that 

r G ker K n ker A D Lp Ç ker(« + A) n Lp. 

Therefore K + A is an element in JUL). 
Suppose now that A is an element in Jf(L) and p is an element in the cone J+(L) such 

that p < A. Then, for every non-zero element p in L, 

{0} ^ ker A n Lp Ç ker pHLp 

and therefore p is a filtering measure on L. 
We shall need the following technical lemmata. 

LEMMA 3.2. Let L be an orthocomplete orthomodular poset or an orthomodular 
lattice. Let A be a filtering measure on L and let p be an element in L. Then p is the 
supremum of every maximal orthogonal subset of the set ker A Pi Lp. 

PROOF. Let L be an orthomodular poset. Let M be a maximal orthogonal subset of 
the set ker A D Lp. Clearly, p is an upper bound of M. Suppose now that p is not a least 
upper bound of M in L. 

If L is an orthomodular lattice then there exists an element q in L such that M < q 
and p £ q. Then M < p Aq < p and it follows, by orthomodularity, that p A (p A q)1 is 
different from zero. Since A is a filtering measure there exists a non-zero element r in L 
such that 

r<pA(pAq)f and A(r) = 0. 

Then r is a non-zero element in ker XHLP which is orthogonal to M; this contradicts 
maximality of M. 

If L is orthocomplete then \l M < p and it follows, again by orthomodularity, that 
p A (V M)' is different from zero. A similar argument as before completes the proof. 

LEMMA 3.3. Let L be an orthomodular poset and let p be a positive measure on L. 
If for every element p in L there exists an orthogonal subset M of L such that p is the 
supremum of M and p vanishes on M then p is a filtering measure on L. 
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PROOF. Let p be a non-zero element in L and let M be a subset of L having the 

required properties. Then necessarily M / {0} and therefore there exists a non-zero 

element q in L such that q <p and p(q) equals zero. 

In the case of an orthocomplete orthomodular poset or an orthomodular lattice L the 

following result characterizes the filtering measures as precisely those positive measures 

the kernel of which is ortho-join dense in L. 

COROLLARY 3.4. Let L be an orthocomplete orthomodular poset or an orthomodular 

lattice. Let p be a positive measure on L. Then \i is filtering if and only if for every 

element p in L there exists an orthogonal subset M of the kernel ker [i of \i such that p is 

the supremum ofM. 

PROOF. This follows, by Zorn's Lemma, Lemma 3.2 and Lemma 3.3. 

Notice that, in an orthomodular poset L, the property of a measure À to be filtering is 

hereditary, i.e., for every element p in L, the restriction to the orthomodular poset Lp of 

the filtering measure A is a filtering measure on Lp. 

4. Weakly purely finitely additive measures. Let (L, < / ) be an orthomodular 

poset. A measure \i on L is said to be completely additive if, for every orthogonal subset 

M of L for which the supremum V M exists, the real net 

converges to /x(V M), where (M^, Ç) is the collection of finite subsets of M directed by 

set-inclusion. Let JC(L) be the vector space of completely additive Jordan measures and 

let J+ (L) be the cone of positive completely additive measures on L. By [ 11], Theorem 2.2, 

and [15], Lemma 2.4, J*(L) is a non-empty base norm semi-exposed face of the base 

norm closed cone J+(L). 

LEMMA 4.1. Let L be an orthocomplete orthomodular poset or an orthomodular 

lattice and let p be an element in L. Then the restriction to Lp of a completely additive 

measure v on L is a completely additive measure on the orthomodular poset Lp. 

PROOF. Let M be an orthogonal subset of Lp and suppose that q is a least upper 

bound of M in Lp. We show that q is a least upper bound in L. The assertion then follows 

immediately since an orthogonal subset of Lp is an orthogonal subset of L. 

Let r be an upper bound of M in L. If L is a lattice then q A r is an element in Lp with 

M < q A r. Then q < q A r, hence q < r. If L is an orthocomplete orthomodular poset 

then the supremum \J M of M exists in L and, clearly, \j M <p. Therefore q < \J M and 

since q is an upper bound if M it follows that q is equal to V M. 

A positive measure £ on L is said to be a weakly purely finitely additive measure if 

Let 7^ fa(L) denote the collection of weakly purely finitely additive measures on L. It 

follows, by [15], Lemma 2.1, that 7^pfa(L) coincides with the union of all faces F of the 

cone J+(L) with the property that the intersection F D 7^(L) is equal to {0}. 
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It was shown by the author in [15], Corollary 3.3, that, for every orthomodular poset 

L, the following Yosida-Hewitt-type decomposition [17] of the cone of positive measures 

holds true: 

( i) /+(L) = ^ ( D + y ; p f a ( L ) . 

Since J+ (L) is a face of the cone J+(L) we conclude, by [15], Lemma 2.3, that 

(2) J+
C(L) = {p e J\L) : £ < /x, £ e4 p f a (L) => £ = o}. 

The relationship between filtering measures and weakly purely finitely additive mea

sures is given in the following lemma. 

LEMMA 4.2. Let L be an orthocomplete orthomodular poset or an orthomodular 

lattice. Then every filtering measure on L is a weakly purely finitely additive measure 

on L. 

PROOF. Let A be an element in JUL) and suppose that v is an element in J+ (L) such 

that v < A. By Corollary 3.4, there exists an orthogonal subset M of ker À such that 1 is 

the supremum of M. Then v vanishes on M and therefore, by complete additivity of z/, 

i/(l) is equal to zero. Since v is positive it follows that v is the zero measure. 

5. Wpfa-Heredity. An orthomodular poset (L, < / ) is said to be wpfa-hereditary if, 

for every element/? in L and every element £ in 7^pfa(L), the restriction to Lp of £, denoted 

by £\LP, is an element in J+fâ(Lp). The orthomodular poset L is said to be c-positive if 

for every non-zero element p in L there exists an element v in J+ (L) such that v(p) is 

different from zero. 

PROPOSITION 5.1. A complete Boolean orthomodular lattice B is wpfa-hereditary. 

PROOF. Let £ be an element in J^pfâ(B) and let p be an element in B. Let v be an 

element in J*(BP) and suppose that, for all elements r in Bp, v(r) < £(r). 

Define an element v in RB, for elements q in B, as follows 

v(q) = i/(qAp). 

Using full compatibility in B we conclude, by standard arguments, that v belongs to 

Jç(B). Then, for all elements q in B, 

v(q) = v(q Ap)< &qAp) < &q A/?) + KqAp') = t((q Ap) V (q A / / ) ) < £(4). 

Therefore v is the zero measure on B and, hence, v is the zero measure on Bp. 

PROPOSITION 5.2. Let L be an orthocomplete orthomodular poset or an orthomodular 

lattice. If the sets 7+ fa(L) and JUL) coincide then L is wpfa-hereditary. 
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PROOF. Let £ be an element in /+ fa(L). Then £\Lp belongs to Jj(Lp). Since 

(LPi < \LP*P ) is an orthocomplete orthomodular poset or an orthomodular lattice it fol

lows, by Lemma 4.2, that Ç\ip belongs to J+f,d(Lp). 

The following result is crucial. 

LEMMA 5.3. Let L be an orthocomplete orthomodular poset or an orthomodular 

lattice. Let p be an element in J+(L) and let p be an element in L. 

Then for every element v in J*(L) with v{p) > 0 there exists a non-zero element q in 

Lp and a real number t > 0 such that 

p(r) < ft/(r), 

for all non-zero elements r in Lq. 

PROOF. Let L be an orthomodular poset. Let p be an element in J+(L) and let p be an 

element in L. Let v be an element in J*(L) and suppose that i/(p) > 0. Then there exists 

a real number t > 0 such that p(p) < ti/(p). Let P be the subset of Lp defined by 

P = {u £ Lp : tv(u) < p(u)}. 

The zero element of L is contained in P and p is an upper bound of the set P. 

Let M be a maximal orthogonal subset of P. Then p cannot be a least upper bound of 

M in L. Suppose, to the contrary, that the supremum of M exists in L and is equal to p. 

Now, for all elements u in M, 

ti/(u) < p{u) < p(p). 

It follows that, for all elements TV in Mf, 

tis(\/N)<ti(\jN) </i(/?) 

and therefore 

ti/(p) = lim w(\l N) < u(p) 
NEMf V 7 

which is a contradiction. 

If L is an orthomodular lattice or an orthocomplete orthomodular poset then, by 

orthomodularity, there exists a non-zero element q in Lp such that q 1 M . Consequently, 

by maximality of M, 

PHLq = {0} 

and therefore p(r) < ti/(r), for all non-zero elements r in Lq. 

THEOREM 5.4. Let Lbea c-positive orthocomplete orthomodular poset or a c-positive 

orthomodular lattice. Let / ^ fa(L) be the collection of weakly purely finitely additive 

measures on L and let JUL) be the collection of filtering measures on L. 

Then L is wpfa-hereditary if and only if the sets 7^ fa(L) and JUL) coincide. 

https://doi.org/10.4153/CJM-1994-049-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-049-1


FINITELY ADDITIVE MEASURES 879 

PROOF. Suppose that L is wpfa-hereditary and let £ be an element in 7+ pfa(L). Let p 
be a non-zero element in L. By c-positivity of L, there exists an element v in J*{L) with 
i/(p) ^ 0. It follows, by Lemma 5.3, that there exists a non-zero element q with q < p 
and a real number t > 0 such that £ < W on Lq. By hypothesis, £|L is an element in 
^wpfa(^) and' by Lemma 4.1, w\Lq belongs to J*(Lq). By (2), we conclude that £|^ is 
the zero measure on Lq. Therefore £ is an element in Jf(L). 

It follows that 7+ fa(L) is a subset of 7^(L). Lemma 4.2 completes the proof in one 
direction. The converse is a consequence of Lemma 5.2. 

6. Decomposition theorems. 

THEOREM 6.1. Let L be an orthocomplete orthomodular poset or an orthomodular 
lattice and let J+(L) be the cone of positive measures on L. Furthermore, let 7*(L), 7^ fa(L) 
and JUL) be the collection of positive completely additive measures, the collection of 
weakly purely finitely additive measures and the collection of filtering measures on Ly 

respectively. 
Then TFAE: 
(i) Jtpfd{L) = J}(L); 

(ii) J+(L) = J+
C(L) + J}(L); 

(Hi) r(L) = JÏ(L)(BJ}(L). 

PROOF, (i) ^ (ii): This follows from (1). 
(ii) => (iii): Let /i be an element in J+(L) and suppose that, for elements i/\,i/2 in J*{L) 

and elements Aj, À2 in Jf(L), 

fjL = l/\ + X\ = V2 + A2 

holds true. Let p be an element in L and let M be a maximal orthogonal subset of the set 
ker(Aj + A2) H Lp. By Proposition 3.1, \\ + A2 is a filtering measure on L and therefore, 
by Lemma 3.2, p is a supremum of M. 

Since v\ and 1/2 agree on ker(Ai + A2) it follows, by complete additivity of v\ and z/2, 
that v\(p) equals v-iip). Therefore 

v\-V2 and Ai = A2. 

(iii) ^> (i): By Lemma 4.2, Jf(L) is a subset of 7+pfa(L). Let £ be an element in 7+pfa(L). 
Then there exists an element 1/ in J*(L) and an element A in Jj(L) such that 

£ = i/ + A. 

Then 1/ < £ and therefore z/ is the zero measure which shows that £ belongs to JUL). 
Combining this result with Theorem 5.4 we obtain the following corollary. 

COROLLARY 6.2. Let L be a c-positive orthocomplete orthomodular poset or a c-
positive orthomodular lattice. Let J+(L), J*(L), 7^ fa(L) and JUL) be as in Theorem 6.1. 
Then TFAE: 
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(i) L is wpfa-hereditary; 

(ii) JtvU(L)=rf{L); 

(iii) J+(L) = J+
c(L)+J+

f(L); 

(iv) y+(L) = ^ ( L ) e / / ( L ) . 

PROOF. This follows, by Theorem 6.1 and Theorem 5.4. 

LEMMA 6.3. Let L be an orthomodularposet with Q(L) ^ 0. Let (7(L), || • ||) be the 

vector space of Jordan measures on L equipped with the base norm on J(L). 

For every element ji in J(L) there exist positive measures TJ, K such that 

li - rj — K, and ||/i|| = \\r]\\ + | | / Î | | . 

PROOF. Let ji be a non-zero element in J(L). The unit ball of J(L) coincides with the 

set con(£l(L) U —Q(L)). Therefore there exist elements 77, K in Q(L) and a real number t 

in the unit interval [0,1] such that 

-f— -fq — {\ —t)K. 

It follows that 

IMIMNI + lid -ONNI = /̂x|| + ( i-oiHI = IH|. 

Moreover, t \ \ \x \ \ r\ and (1 — t) \ \ \i \ \ K are elements in J+ (L). 

THEOREM 6.4. Let L be an orthocomplete orthomodular poset or an orthomodular 

lattice. Suppose that the vector space of Jordan measures J(L) is different from {0} and 

let || • || be the base norm on J(L). Let J+(L) be the closed cone of positive measures 

on L and let J*(L) be the base norm semi-exposed face ofJ+(L) of positive completely 

additive measures on L. 

If the set /+ fa(L) of weakly purely finitely additive measures coincides with the face 

Jf(L) ofJ+(L) of filtering measures on L then there exists a unique linear projection V 

on J(L) such that 

(3) TJ+(L)=J+
C(L) and (idy(L) -<P)f(L) = / ^ f a ( L ) . 

Moreover, 

(i) IHI = \\M\ + ||(id7(L) -tf)/i||, V/x G J(L); 
(ii) im(P = J+(L)-J+(L); 

(iii) kerfP = / ; p f a ( L ) - / ; p f a ( L ) ; 

(iv) ^wpfaW is a closed face ofJ+(L); 

(v) The sets J*{L) D £l(L) and J+pfa(L) H Q(L) constitute a pair of complementary split 

faces [I] of the r-compact convex set £l(L) of probability measures on L. 
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PROOF. Let \i be an element in 7+(L). By Theorem 6.1, there exists a unique element 
Qfi in J+ (L) with the property that there is an element £ in 7*pfa(L) such that // is equal 
to Q,/i + £. Then the mappings Q; 7+(L) —> 7+(L) and (idy+(L) -Q,): 7+(L) —> 7+(L) are 
clearly idempotent and preserve positive linear combinations since J*(L) and Jt(L) are 
faces of J+(L). The base norm is additive on the cone J+(L) and therefore, for every 
element /i in7+(L), 

(4) ||/i|| = ||ClM|| + ||(idy+(L)-Q,)H|. 

Let K,\, K2, rj\ r\i be elements in J+(L) and suppose that 

Then «i + 772 equals «2 + 771 and therefore Q«i + Qjji is equal to Q/C2 + Qj)\, hence 

Q M - 0,771 = Q/%2 - Cim-

We now define a mapping Œ>: J(L) —> 7(L), for elements p, in 7(L), by 

2>/J = Qft - Qj), 

where AC, 77 are elements in 7+(L) such that 

[i - K — 77. 

It follows that fp and idy(L) — # are linear projections on J(L) extending Q, and id/+(/_) — Q,, 
respectively. Condition (3) is now easily verified. 

(i): Let p be an element in 7(L). Select elements 77 and n in 7+(L) such that the 
conditions of Lemma 6.3 are met. Then, by (4), 

H/ill = | | ^ + (idy(L)-!P)/i||<||lP/x||+||(idy(L)-fP)/iy 

= ||lP(77-A€)|| + | | ( i d 7 ( L ) - l P ) ( 7 7 - ^ ) | | 

< ||Q,r7|| + | | ( i dy + ( L ) - a )77 | | + | |Q/c| | + | | ( i d y + ( L ) - Q > | | 

= NI + W = IHI-
(ii) and (iii): These follow immediately from (3). 

(iv): By (i), the projection (P is continuous. The assertion now follows from Proposi

tion 3.1 and since the set 7+ fa(L) coincides with ker 9 D J+(L). 

(v): This is now immediate since Q(L) is a cone base of the cone J+(L). 

THEOREM 6.5. Let L be an orthocomplete orthomodular poset or an orthomodular 

lattice. Let 7C(L) be the vector space of completely additive Jordan measures on L and 

let Jç(L) be the cone of positive completely additive measures on L. 

If the set 7*pfa(L) of purely finitely additive measures coincides with the set JUL) of 

filtering measures on L then 

jc(D = rc{L)-rc{L). 
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PROOF. Let p be an element in the vector subspace JC(L). By Theorem 6.4 (ii), the 
element ji — ^t1 belongs to JC(L). Then there exist, by Theorem 6.4 (iii), elements £i and 
£2 in JUL) such that 

(idy(L) -!P)/i = 6 - 6 -

Let p be an element in L. Let A and 5 be maximal orthogonal subsets in ker £1 n Lp and 
ker £2 H L,,, respectively. Then, by Lemma 3.2, 

(idy(L)-!P)^(p) = HmU^y M) - &{y M 
MeAf 

- lim bNM) < 0 
A/G4/ V 7 

and, similarly, 

(idJ{L)-V)Li(p) = \imU{(\jN)-t2NN 

= l i m e i ( V ^ ) > 0 -

Therefore (idy(D —&)p(p) is equal to zero, for all elements p in L, and it follows that 
p coincides with (Pp. The assertion is now a consequence of Theorem 6.4 (ii). 

COROLLARY 6.6. Let L be an orthocomplete orthomodularposet or an orthomodular 
lattice. Let J+(L), JC(L), J*(L) and 7+fa(L) be the cone of positive measures, the sub-
space of completely additive Jordan measures, the cone of positive completely additive 
measures and the set of weakly purely additive measures on L, respectively. 

IfL is c-positive and wpfa-hereditary then 

y+(L)=y;(L)0/;p f a(L) and 7 , (LW+(L)- / (
+ (L) . 

PROOF. This follows, by Corollary 6.2 and Theorem 6.5. 

7. Applications to JB W-algebras. A real algebra A, not necessarily associative, for 
which 

a o b = b o a, a o (b o a2) = (a o b) o a2, 

holds true and which is also a Banach space with respect to a norm a —> \\a\\ satisfying 

\\aob\\ < \\a\\ • ||£||,||fl2|| = \\a\\2 and \\a2\\ < \\a2+b2\\ 

is said to be a iB-algebra. 
An element a in A is called central if, for all elements b, c in A, 

a o (b o c) = (a o b) o c. 

An element a in A is called positive if there exists an element b such that 
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The set A+ consisting of positive elements in A forms a generating cone in A. An 

idempotent is an element p in A satisfying 

pop=p; 

U(A) denotes the collection of idempotents in A. Trivially, the zero-element 0 and the 

unit 1 of the algebra A are idempotents. 

A JB-algebra A which possesses a, necessarily unique, Banach space pre-dual A* is 

called a JBW-algebra. A JBW-algebra has a unit. 

Let A be a JBW-algebra with Banach space pre-dual A*. For each element a in A, the 

positive weak* continuous linear mapping Ua:A —> A is defined, for elements b in A, by 

Uab = {a b a), 

where for elements a, b and c in A, the Jordan triple product is given by 

{a b c} - a o (b o c) — b o (c o a) + c o (« o /?). 

Let < denote the linear order relation on A induced by the cone A+. The zero, resp. the 

unit, in the algebra A is the least, resp. the greatest, element in the poset (£/(A), < ) . Denote 

with a' the element 1 —a. Then the mapping ': U(A) —> U(A) is an orthocomplementation 

which makes (£/(A), < / ) into a complete orthomodular lattice. Notice that 

p<q& UpUq = UP, p ±q & UpUq = 0, pCq & UpUq = UqUp. 

Moreover, if pCq then 

pAq=Upq=poq 

and if p _L q then 

pV q=p + q. 

An idempotent z is central if and only if zCq for all idempotents q in A. The orthomodular 

poset [/(A) is Boolean if and only if A is an associative algebra. Notice that UpA is a 

sub-JBW-algebra, for every idempotent/? in A, and that 

U(UpA) = U(A)P. 

Let the Banach space A be canonically embedded into its Banach space bi-dual A**. 

Then the product on A, a bilinear map from A into A, admits a unique extension to 

a separately weak* continuous product on A**. With respect to this product A** is a 

JBW-algebra. 

Let A* be the Banach space dual of A. Let A* be the generating cone in A* of all 

elements x such that jc(a) > 0, for all elements a in A+. Let the Banach space pre-dual A* 

of A be canonically embedded into A*. For every idempotent/? in A there exists a norm 

one element x in A* Pi A* such that JC(/?) is equal to one. 
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There exists a unique central idempotent z in the JBW-algebra A** such that the 
image of the pre-dual projection Uz%* on A* of the weak* continuous projection Uz on 
A** coincides with A*. It follows that 

(5) A*+ = Uz,*Al + U^+Al and UZ^A\ =AlHA*. 

For details and proofs of these the reader is referred to [7]; also compare [2], [5]. 
Let x be an element in A*. Then the restriction to U(A) of x, denoted by $jc, is 

a positive measure on the orthomodular lattice (7(A). If the JBW-algebra A does not 
contain a Type /2-summand then, by [4], Theorem 2.1, for every element p, in J+((7(A)) 
there exists a unique element x in A* such that \i equals %x. Using the weak* continuity 
of the linear functionals in A* HA* we conclude that 

(6) *L(A*+nA*)QJï(U(AJ). 

Therefore U{A) is a opositive complete orthomodular lattice. 

THEOREM 7.1. Let A be a JBW* -algebra not containing a Type Ii-summand. Let U(A) 
be the complete orthomodular lattice of idempotent s in A. Let J*fJU(A)) be the set of 
weakly purely finitely additive measures and let Jt(U(A)j be the set of filtering measures 
on U(A). 

Then, in the notation used above, 

y;pfa(c/(A)) = J}{u(A)) = mu^Al). 

PROOF. Let x be an element in UZ>^A*+ and let p be a non-zero idempotent in A. By 
a remark made above, Lemma 5.3 and (6), there exists an element y in A* n A* and a 
non-zero element q < p such that x(r) < y(r), for all elements r in U(A)q. It follows, by 
spectral theory, thatx(a) < y(a), for all elements a in {UqA)+. Therefore, for all elements 
a in A+, 

Upta) = x(Uqa) < y(Uqa) = Wqy(a). 

Since the positive operator Uz<^ commutes with U* we conclude that 

0 < U*qx = U*qU^x = U^Upc < U^U*qy = U*qU^y = 0, 

where < denotes the linear order relation on A* induced by the cone A*. Then, for all 
elements r in U(A)q, 

x(r) = U*qx(r) = 0. 

Therefore %x belongs to Jf(U(A)). 

Let x be an element in A* such that %x belongs to 7+pfa((7(A)). By (5), there exists 
an element y in A* DA* and an element z in UZ>^A*+ such that x is equal to y + z. Then 
%y < %x and since %y belongs to J+ ((7(A)) it follows that 9{y is the zero-measure on 
(7(A). Therefore ^ x is an element in ̂ ((7Z/.*A*). 

Lemma 4.2 completes the proof. 
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COROLLARY 7.2. Let A be a JBW*-algebra not containing a Type l^-summand. Let 
U(A) be the c-positive complete orthomodular lattice of idempotents in A. Let J+(U(A)j, 
J*(U(A)) and J*fJU(A)) be the sets of positive measures, positive completely additive 
measures and weakly purely finitely additive measures on U(A), respectively. 

Then, in the notation used above, 
(i) U(A) is wpfa-hereditary; 

(ii) J+(U(A))=J+
C(U(A)) ©;;pfa(f/(A)); 

(Hi) J+
c(L) = ^(AlnA). 

PROOF, (i) and (ii): These follow, by c-positivity of U(A), Theorem 7.1 and Corol
lary 6.2. 

(iii): This follows by (ii), (5), (6) and Theorem 7.1. 
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