ANALYTIC DISCS IN THE POLYNOMIAL HULL OF A DISC FIBRATION OVER THE SPHERE

Miran Černe

It is shown that for each point p in the interior of the polynomial hull of a disc fibration X over the unit sphere $\partial \mathbb{B}^n$ there exists an H^{∞} analytic disc with boundary in X and passing through p.

1. INTRODUCTION

Let $\mathbb{B}^n = \{z \in \mathbb{C}^n; |z| < 1\}$ be the open unit ball centred at the point 0 in the *n* dimensional complex space \mathbb{C}^n . Let φ be a continuous function on the unit sphere $\partial \mathbb{B}^n$. In this short note we investigate the presence of analytic discs in the polynomial hull of the compact set

$$X = \left\{ (z, w) \in \partial \mathbb{B}^n \times \mathbb{C} ; |w| \leqslant e^{-\varphi(z)} \right\}$$

fibred over $\partial \mathbb{B}^n$. Recall that the polynomial hull \widehat{K} of a compact set $K \subseteq \mathbb{C}^m$ is defined as

 $\widehat{K} = \left\{ z \in \mathbb{C}^m ; \left| p(z) \right| \leqslant \max_{K} \left| p \right| \text{ for every polynomial } p \text{ in } m \text{ variables}
ight\}$

and that by the maximum principle the image $F(\Delta)$ of every H^{∞} holomorphic mapping $F: \Delta \to \mathbb{C}^m$ with boundary in K, that is, $F^*(e^{i\theta}) \in K$ for almost every θ , belongs to the polynomial hull \widehat{K} of K. For a bounded holomorphic mapping F on Δ the notation F^* is used to denote its almost everywhere defined boundary values.

Let Φ be the maximal plurisubharmonic function on \mathbb{B}^n , continuous on $\overline{\mathbb{B}^n}$, such that $\Phi|_{\partial \mathbb{B}^n} = \varphi$, that is, Φ is the unique solution on \mathbb{B}^n of the Dirichlet problem for the Monge-Ampère operator [5]

(1.1)
$$\begin{cases} \Phi \in \mathrm{PSH}(\mathbb{B}^n) \cap \mathrm{L}^{\infty}_{\mathrm{loc}}(\mathbb{B}^n) \\ (d \, d^c \, \Phi)^n = 0 \text{ on } \mathbb{B}^n \\ \Phi|_{\partial \mathbb{B}^n} = \varphi \text{ on } \partial \mathbb{B}^n. \end{cases}$$

It is a classical result [4, p.99] that the polynomial hull of the set X is

$$\widehat{X} = \left\{ (z, w) \in \overline{\mathbb{B}^n} \times \mathbb{C} ; |w| \leq e^{-\Phi(z)} \right\}$$

In this note we show that the interior of the polynomial hull \widehat{X} contains a lot of analytic discs with boundaries in X. More precisely, we prove the following statement:

Received 10th February, 2000

This work was supported in part by a grant from the Ministry of Science of the Republic of Slovenia. Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

M. Černe

PROPOSITION 1.1. For each point $(z_0, w_0) \in \text{Int}(\widehat{X})$ there exists an H^{∞} analytic disc $F : \Delta \to \mathbb{C}^n \times \mathbb{C}$ with boundary in X such that $F(0) = (z_0, w_0)$.

Some remarks are in order. In the case n = 1, much more was proved in the series of papers [1, 3, 9, 10]. Using the graphs of analytic functions on $\Delta = \mathbb{B}^1$ with boundaries in X, a complete description of the polynomial hull of a fibration over the unit circle was given for geometrically much more complicated fibres, for example, in [10] it was only assumed that each fibre over the unit circle is a simply connected continuum.

In higher dimensions related results were proved by Whittlesey in [11] for disc fibrations over $\partial \mathbb{B}^2$ of the form

$$X = \left\{ (z, w) \in \partial \mathbb{B}^2 \times \mathbb{C}; |w - \alpha(z)| \leq R(z) \right\},\$$

where α is a continuous complex valued function on $\partial \mathbb{B}^2$ and $R \in C^2(\partial \mathbb{B}^2)$ a positive real function such that $|\alpha(z)| \leq R(z), z \in \partial \mathbb{B}^2$. Working with the assumption that $(\mathbb{B}^2 \times \mathbb{C}) \setminus \hat{X}$ is a pseudoconvex domain, it was proved in [11] that the polynomial hull of X can be foliated by the graphs of analytic balls. On the other hand, there are examples of maximal plurisubharmonic functions on \mathbb{B}^n for which for certain points $z \in \mathbb{B}^n$ there is no germ V of an analytic variety containing z and such that $\Phi|_V$ is harmonic, for example, Sibony's example [2, p.73]. Therefore, in view of these examples and our result, one can not, in general, expect to get a foliation of the whole \hat{X} with analytic discs. Namely, if (in the case $\alpha = 0$) there exists a nontrivial analytic disc $F = (f, g) : \Delta \to \hat{X} \subseteq \mathbb{B}^n \times \mathbb{C}$ such that its image $F(\Delta)$ touches $\partial \hat{X} \cap (\mathbb{B}^n \times \mathbb{C})$, that is, if there exists $\xi_0 \in \Delta$ such that $F(\xi_0) \in \partial \hat{X} \cap (\mathbb{B}^n \times \mathbb{C})$, then, by the maximum principle for the subharmonic function

$$\xi \longmapsto |g(\xi)| e^{\Phi(f(\xi))}$$

on Δ , we actually have $F(\Delta) \subseteq \partial \widehat{X} \cap (\mathbb{B}^n \times \mathbb{C})$. Hence $g(\xi) \neq 0$ and

$$\Phi(f(\xi)) = -\log|g(\xi)|$$

on Δ . Therefore $\Phi|_{f(\Delta)}$ is harmonic.

We also observe that in the case $\alpha = 0$ the complement $(\mathbb{B}^n \times \mathbb{C}) \setminus \widehat{X}$ is pseudoconvex if and only if the function Φ is pluriharmonic on \mathbb{B}^n . In this case a foliation of \widehat{X} by the graphs of analytic balls is obvious: since Φ is pluriharmonic on \mathbb{B}^n , there exists an analytic function $H : \mathbb{B}^n \to \mathbb{C}$ such that $\Phi = \operatorname{Re}(H)$. Then the graphs of the family of analytic functions on the ball $H_{\xi}(z) := \xi e^{H(z)}, \xi \in \overline{\Delta}$, form a foliation of \widehat{X} .

2. PROOF OF THE PROPOSITION

The proof of the proposition uses Poletsky's characterisation of the maximal plurisubharmonic function with the given continuous boundary data. It was proved in [6, 7] that for $z \in \mathbb{B}^n$ (one may replace \mathbb{B}^n by any smoothly bounded strongly pseudoconvex domain $\Omega \subseteq \mathbb{C}^n$) the value $\Phi(z)$ of the solution Φ of the problem (1.1) is given by

(2.1)
$$\Phi(z) = \inf_{f} \frac{1}{2\pi} \int_{0}^{2\pi} \varphi\left(f^{*}(e^{i\theta})\right) d\theta,$$

where the infimum is taken over all holomorphic mappings of the unit disc $f : \Delta \to \mathbb{B}^n$ with f(0) = z and whose boundary values f^* satisfy $f^*(e^{i\theta}) \in \partial \mathbb{B}^n$ for almost every θ .

Recall that

$$\widehat{X} = \left\{ (z, w) \in \overline{\mathbb{B}^n} \times \mathbb{C} \, ; \, |w| \leqslant e^{-\Phi(z)} \right\}$$

and let $(z_0, w_0) \in Int(\widehat{X})$. Because each fibre

$$\widehat{X}_{z} = \left\{ w \in \mathbb{C} ; |w| \leq e^{-\Phi(z)} \right\}$$

is a disc in the complex plane with centre at 0, we have that $w_0 = \eta e^{-\Phi(z_0)}$ for some $\eta \in \Delta$. By using a rotation in \mathbb{C} , we may assume that

$$(2.2) w_0 = t \, e^{-\Phi(z_0)} \in \mathbb{R}$$

for some $t \in [0, 1)$.

Let $\varepsilon > 0$ be so small that

$$t e^{-\varphi(z)} + |w_0|(1 - e^{-\varepsilon}) < e^{-\varphi(z)}$$

for every $z \in \partial \mathbb{B}^n$. By Poletsky's theorem (2.1) there exists a holomorphic mapping $f: \Delta \to \mathbb{B}^n$ such that $f(0) = z_0$, $f^*(e^{i\theta}) \in \partial \mathbb{B}^n$ for almost every θ and

(2.3)
$$\Phi(z_0) \leqslant \frac{1}{2\pi} \int_0^{2\pi} \varphi(f^*(e^{i\theta})) \, d\theta \leqslant \Phi(z_0) + \varepsilon$$

Let $u(e^{i\theta}) := \varphi(f^*(e^{i\theta}))$ and let P[u] denote its Poisson integral

$$P[u](\xi) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re}\left(\frac{e^{i\theta} + \xi}{e^{i\theta} - \xi}\right) u(e^{i\theta}) \, d\theta.$$

Since φ is a continuous function on $\partial \mathbb{B}^n$, u is a bounded measurable function on $\partial \Delta$ and hence P[u] has the nontangential limit $u(e^{i\theta})$ for almost every θ , [8]. Let H[u] be the harmonic conjugate of P[u] on Δ such that H[u](0) = 0. Although the function H[u] is not necessarily bounded on Δ , this is the case for the function

(2.4)
$$g(\xi) = t e^{-(P[u](\xi) + i H[u](\xi))},$$

which is holomorphic on Δ . For this function we have $g(0) = t e^{-P[u](0)}$ and the value P[u](0) is given as the integral average of u over $\partial \Delta$. Thus

$$P[u](0) = \frac{1}{2\pi} \int_0^{2\pi} u(e^{i\theta}) d\theta = \frac{1}{2\pi} \int_0^{2\pi} \varphi(f^*(e^{i\theta})) d\theta.$$

M. Černe

The inequalities (2.3) and assumption (2.2) imply

$$w_0 e^{-\epsilon} \leqslant g(0) \leqslant w_0$$

and so

$$|w_0 - g(0)| \leq |w_0|(1 - e^{-\varepsilon}).$$

Hence for the boundary values g^* we have

$$\left|g^{*}(e^{i\theta}) + (w_{0} - g(0))\right| \leq t e^{-u(e^{i\theta})} + |w_{0}|(1 - e^{-\varepsilon}) < e^{-\varphi(f^{*}(e^{i\theta}))}$$

for almost every θ and the holomorphic disc

$$\xi \in \Delta \longmapsto F(\xi) = \left(f(\xi), g(\xi) + (w_0 - g(0))\right)$$

is such that $F^*(e^{i\theta}) \in X$ for almost every θ and $F(0) = (z_0, w_0)$.

References

- H. Alexander and J. Wermer, 'Polynomial hulls with convex fibers', Math. Ann. 266 (1981), 243-257.
- [2] E. Bedford, 'Survey of pluri-potential theory', in Several Complex Variables: Proceedings of the Mittag-Leffler Institute, 1987-1988, Mathematical Notes 38 (Princeton University Press, Princeton, N.J., 1993), pp. 48-97.
- F. Forstnerič, 'Polynomial hulls of sets fibered over the circle', Indiana Univ. Math. J. 37 (1988), 869-889.
- [4] T.W. Gamelin, Uniform algebras and Jensen measures, London Mathematical Society, Lecture Notes Series 32 (Cambridge University Press, Cambridge, 1978).
- [5] M. Klimek, *Pluripotential theory*, London Mathematical Society Monographs, New Series
 6 (Oxford University Press, 1991).
- [6] E.A. Poletsky, 'Plurisubharmonic functions as solutions of variational problems', in Several complex variables and complex geometry (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., Part 1 52 (American Mathematical Society, 1991), pp. 163-171.
- [7] E.A. Poletsky, 'Holomorphic currents', Indiana Univ. Math. J. 42 (1993), 85-144.
- [8] W. Rudin, Real and complex analysis (McGraw-Hill, New York, 1987).
- [9] Z. Slodkowski, 'Polynomial hulls with convex fibers and complex geodesics', J. Func. Anal. 94 (1990), 156-176.
- [10] Z. Slodkowski, 'Polynomial hulls in \mathbb{C}^2 and quasicircles', Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989), 367-391.
- [11] M.A. Whittlesey, 'Polynomial hulls with disk fibers over the ball in C²', Michigan Math. J. 44 (1997), 475-494.

Department of Mathematics University of Ljubljana Jadranska 19 1 111 Ljubljana Slovenia e-mail: miran.cerne@fmf.uni-lj.si