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Abstract . In 1970 the IAU defined any object's north pole to be that axis of rotation which lies 
north of the solar system's invariable plane. A competing definition in widespread use at some 
institutions followed the "right hand rule" whereby the "north" axis of rotation was generally 
said to be that that of the rotational angular momentum 

A Working Group has periodically updated the recommended values of planet and satellite 
poles and rotation rates in accordance with the IAU definition of north and the IAU definition of 
prime meridian. 

In this paper we review the IAU definitions of north and of the location of prime meridian 
and we present the algorithm which has been employed in determining the rotational parameters 
of the natural satellites. 

1. Introduction 

For newly discovered objects, the IAU in 1970 recommended that the north pole on 
a planet or satellite be defined as that rotation axis which is above the invariable 
plane of the solar system (de Jager and Jappel 1971). For objects on which a body-
fixed coordinate system has not yet been established, the IAU further defined 
the location of the prime meridian . . by the sub-planetary intersection of the 
satellite's equator and the plane containing the center of the satellite, the planet 
and the Sun at the first superior heliocentric conjunction of the satellite after 
1950.0" (Contopoulos and Jappel 1974) . 

A Working Group sponsored by the IAU, COSPAR and IUGG has periodically 
updated the recommended values of planet and satellite poles and rotation rates 
(Davies et ai 1980, 1983, 1986, 1989, 1992). The IAU guidelines have been some-
what controversial ever since their adoption. The various trade-offs are discussed 
in Davies et al. (1980) as well as in Kerr (1989). 

Lieske (1993) outlines the IAU algorithm which is employed for defining north 
poles and prime meridians on natural satellites and other bodies on which physical 
features have not been observed heretofore. This paper presents a summary of the 
algorithm. 

2. IAU and Angular Momentum Poles 

In this paper we will mean planetocentric longitudes when we refer to longitude 
without qualification. The poles and rotation rates which follow the IAU guidelines 
are designated by ao, <$o f ° r the right ascension and declination of the pole and by 
W for the prime meridian measured along the satellite's equator from the point Q, 
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Fig. 1. Geometry relating IAU and angular momentum poles when ρ l · k j <0 . The IAU param-
eters are denoted by οό,^ο, and W while the right-hand-rule parameters are denoted by 
and WL. In cases where p l · k j > 0, the IAU parameters are the same as those of the L-pole. 

as depicted in Fig. 1 . The satellite pole has coordinates PIAU = where 
the direction cosines are given by 

We will denote the pole and prime meridian which follow the right-hand-rule 
(when the z-axis points along the rotational angular momentum L) by the symbols 
otLi^L and WL. In systems which follow the right-hand-rule, the value of W l always 
increases with time since the z-axis points along the rotational angular momentum 
vector. The IAU pole PIAU a n d the angular momentum pole PL parameters are 
identical if PL · k j > 0 : 

In the case where the IAU pole and the rotational angular momentum pole are 
in opposite hemispheres, ρι, - k j < 0, then the IAU and right-hand-rule parameters 
are related in the following manner as depicted in Fig. 1: 

"cos a cos δ 
p(a , t f ) = sin a cos δ 

sin δ 
(1) 

ao = aL 
So - Si 
W = WL, 

(2) 
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αο = 180 a L 
So = SL (3) 
W = 180 - WL. 

3. Location of the Prime Meridian 

The prime meridian for new objects is related to the sub-planetary point at what 
might be called "the first full moon after 1950." There are several ambiguities in the 
IAU guideline: (1) what plane is referenced in in the phrase "superior heliocentric 
conjunction" and (2) what is meant by "1950.0" as an epoch in the phrase " . . . at 
the first superior heliocentric conjunction of the satellite after 1950.0." 

In actual practice, the "conjunction" referred to is interpreted to be heliocentric 
conjunction in ecliptic orbital longitude between the host planet and the satellite. 
And the basic epoch after which the first superior conjunction defines the location 
of the prime meridian is actually taken to be J1950 rather than Besselian epoch 
1950 which might be inferred from the resolution. 

We assume that the satellite rotation axis is normal to the mean orbit plane 
and that the satellite is in synchronous rotation. In order to obtain an approximate 
value for the first time t\ after J1950 at which the satellite is in heliocentric superior 
conjunction, it is convenient to compute the configuration in a coordinate frame 
in which the true anomaly of the satellite increases with time, viz. the L-system 
in which the z-axis points along the satellite's orbital momentum vector. 

If to = t ji95o is the initial estimate for the time of superior heliocentric conjunc-
tion, then the next approximation is obtained from Αφ = φρ(ίο) — ips(to) where 
φ is the orbital longitude in the Z-system and where the subscripts ρ and θ repre-
sent the planet and satellite, respectively. If one can ignore the eccentricity of the 
satellite and if one ignores the motion of the planet in the interval t\ — to, then 
the approximate date of first superior heliocentric conjunction is given by 

< i t o i o + M o M M M ( 4 ) 
η 

where η is the satellite mean motion. A more general approach is to regard Αφ as 
the true anomaly of the satellite at t\ minus the true anomaly of the satellite at 
to and to solve the Lambert problem for the difference t\ — to (Lieske 1993). 

If t2 represents the converged final value for the first superior conjunction after 
J1950, there is a simple geometric interpretation to the value W z f a ) and the true 
orbital longitude tysfa) measured relative to Q : 

Wl(*2) = ^ ( * 2 ) + 180°. (5) 

They are related to the satellite mean longitude Λ at to = J1950 by 

WL(t0) = X(to) + 180° + [fs(t2) - M(t2)] 
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Fig. 2. Geometry in the Earth equatorial J2000 system relating the satellite parameters 05, Ss, 
and Ws to the reference parameters <XR, 6R, and WR The distance Ws — φ measured along the 
satellite equator is equal to the distance WR — Ω measured along the reference plane from the 
point N. The pole of the Earth equator is Ε, the pole of the reference equator is R, and the pole 
of the satellite equator is S. 

where Λ is the mean longitude measured from Q and where / and M are the true 
and mean anomalies, respectively, at t<i. 

4. A General Formulation for the Pole Parameters 

We will assume that the reference pole is in the same hemisphere as the satellite 
orbital angular momentum vector so that PR - PL > 0. Lieske (1993) provides 
formulae also for the case when PR · PL < 0 . Let the satellite pole be represented 
by right ascension 0:5 and by declination i s , so that p s = p ( a s , £ s ) . We use 
the generally adopted body-fixed reference frame as opposed to instantaneous axis 
of angular momentum, which can lead to ambiguities of the sort described by 
Standish (1981) in the definition of the dynamical equinox. 

Then from the spherical triangles depicted in Fig. 2, we have the following 
relations: 

cos 6S cos ( A S — CXR) = cos I cos ÖR + sin I sin 6R COS Ω 

cos 6s s i n ( a s — a ^ ) = sin i sin Ω (6) 

sin δ s = sin 6r cos i — cos δR sin i cos Ω. 
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The preceding equations enable one to relate the satellite values of a s and Ss to 
the reference values AR and SR and to the orbital parameters. 

In order to calculate the location of the prime meridian Ws, it is convenient to 
draw a small circle of radius R = WS — Φ, which is the distance of the satellite prime 
meridian W s from the point N . The pole of the small circle is at the intersection 
Ν of the satellite equator and the reference equator. We then define the auxiliary 
quantity WR measured along the reference equator in relation to the quantity WS 
measured along the satellite equator so that 

W S - Φ — W R - Ω = (7) 

as indicated in Fig. 2. Hence, in order to relate WS to WR we need to derive the 
angles φ and Ω depicted in the figure from the relationships given in the spherical 
triangle Q R Q S N using the auxiliary quantity ζ where 

ζ = φ - Q = W S - W R 

and 
8ΐη(Ω + ζ ) = sin Ω cos SR/ COS S S 

cos (Ω + C) = c o s Ω cos(a5 — AR) + sin Ω s i n ( a s — sin SR. 

We then obtain 

c o s Ss cos(WS — WR) = c o s SR 1 - 2 sin2 - cos2 Ω 
2 

-f sin I cos Ω sin SR 

(8) 

(9) 

cos SS s in(Ws — WR) — 2 sin - sin Ω cos Ω cos SR — sin I sin Ω sin SR, 

which allows us to compute the location of the prime meridian Ws-

5. Series Expansions for the Pole Parameters 

From Eq. (6) one can derive a two-term Fourier expansion for a s — aR in the form 

as — OÎR = Αι sin Ω + Α<ι sin 2Ω -f · · · 
tan i 

Αχ = 

Ä2 = 

c o s S R ( 1 0 ) 

— tan2 i tan SR 
2 cos SR 

One can obtain SS — SR by expanding the expression for tan(<$s — SR) of Eq. (6) 
in the form 

Δ S - SR = B 0 + B I cos Ω + B 2 cos 2Ω + · · · 

Bo = — - tan2 i tan SR 
. (11) 

B \ — — tan Ι
 v y 

f?2 = tan2 I tan SR. 
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Finally, from Eq. (9) one can derive the expansion 

W S — W R = Cl sin Ω + C 2 sin 2Ω + · · · 
C\ = — sin i tan 6R (12) 

C2 = sin2 ^ + ^ sin2 I tan2 SR. 

The short Fourier expansions given in Equations (10)-(12) are adequate for most 
satellites. In exceptional cases (e.g. Triton, Nereid) where the short series expan-
sions are inadequate one can directly expand Equations (6) and (9) using Fast 
Fourier Transform (FFT) techniques to numerically obtain the expansions as a 
function of Ω. 
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