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1. Introduction and summary. The word problem for free bands (idempotent
semigroups) was solved by Green and Rees [4] in an early paper. They also established
certain properties of the free band. This was followed by McLean [6] who provided a
general structure theory for bands with some indication as to the structure of the free
band. Since then a great many papers have appeared dealing with various aspects of the
topic of bands and their varieties. A different solution of the word problem for free bands
was recently given by Siekmann and Szab6 [9]. For a discussion of bands, see the books
[5] and [8].

A *-semigroup is a semigroup provided with a unary operation satisfying the
identities (xy)* =y*x*, x** =x, x =xx*x. The subject of *-semigroups is of much more
recent date; it was inaugurated by the paper of Nordahl and Scheiblich [7]. Varieties of
*-bands were completely determined by Adair [1], whereas finitely generated free *-bands
were studied by Yamada [10]. Free involutorial completely simple semigroups, including
free completely simple *-semigroups, were constructed by the authors in [3].

In view of the considerable existing knowledge about bands in general and free bands
in particular, it may seem surprising that something new could be said about the structure
of the latter. It should come as a lesser surprise that when the structure of a free band has
been better understood, its treatment and presentation have become more transparent
and considerably simpler. In Section 2 we introduce a new invariant, which could be
called a "band reduced" form of a word, which makes it possible to find a copy of the free
band analogous to the form that a free group is usually presented. In Section 3 we
represent the free band in terms of the structure theorem for arbitrary bands.

The treatment of the free band is also amenable to the case of free *-bands. There
are some nontrivial modifications, but the general methods are essentially the same.
Hence, in Section 4, we solve the word problem for free "-bands and construct a model
for them. We provide, in Section 5, a structure theorem for arbitrary *-bands which is
then specialized to give a representation of a free *-band.

The methods and notation we use are closely related to those we employed in the
solution of the word problem for orthogroups in [2]. In general, we follow the notation
and terminology of the books [5] and [8]. In particular \A\ is the cardinality of the set A
and A \B is the set theoretic difference of A and B. For a set X, 3~{X)[3~'{X)] is the set of
functions from X into A'written on the right [left] and composed as such.

2. The word problem and a model of a free band. We give here a new description
of the free band on a set. Our method has several advantages over the treatment which is
already in existence. It produces a canonical form for each word and makes it possible to
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represent the free band in the form of the usual structure theorem for arbitrary bands.
This construction provides a convenient frame for a discussion of the free *-band in
Section 4.

Let X be a fixed set. The word problem for the free band is based on the free
semigroup F = F(X) on X. As usual the elements of F are referred to as words and the
elements of X are called variables. A word w e F is thought of as a finite product of
variables. We sometimes use the free monoid on X obtained by adjoining the empty word
0 t o F .

NOTATION 2.1. For w e F let c(w), the content of w, be the set of variables in w.
Write w = uxp where c(w) = c(ux), c(w)^c(u) and xeX. Let s(w) = u and o(w)=x.
Note that s(w) = 0 if c(w) = {x}. Thus s(w)o(w) is the shortest left cut of w containing
all variables of w. Dually write w = qyv where c(w) = c(yv), c(w) =f c(u) and y eX. Let
e(w) = y and e(w) = v. Thus e(e)e(w) is the shortest right cut of w containing all variables
of w.

For convenience we treat c, s, a etc. as operators and omit parentheses. For example

cos(w) means c(o(s(w))). The operators s, a, e, e are combined to form b: F-* F which
is defined by

b(w) = bs(w)o(w)e(w)be(w) (=b(s(w))o(w)£(w)b(e(w))).

This is an inductive definition on \c(w)\. In particular b(x)=xx, since s(x) = e(x) = 0.
Note that cb(w) = c(w).

LEMMA 2.2. The above mappings have the following properties.
(i) bs = sb, be = eb.
(ii) ob = o, eb = e.

(Hi) b2 = b.

Proof. Let ueF.
(i) If u = xk for some k S: 1, then

If \c(u)\ > 1, then

sb(u) = s(bs(u)o(u)e(u)be(u)) = bs(u).

This proves that bs = sb; the equality be = eb follows dually,
(ii) If u = xk for some k ̂  1, then

ob(xk) = o(xx) = x = o{xk).

If \c(u)\ > 1, then

ab(u) = o(bs(u)o(u)e(u)be(u)) = o(u).

This shows that ab = a; the equality eb = e follows dually.
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(iii) The argument is by induction on |c(w)|. If u = xk for some fc>l, then

b(xk)=xx = b{xx) = bb{xk).
If \c(u)\ > 1, then

bb(u) = bsb(u)ob(u)eb(u)beb(u)

= b2s(u)o(u)e(u)b2e(u) by parts (i) and (ii)

= bs(u)o(u)e(u)be(u) by the induction hypothesis

= b(u)

Therefore b2 = b, as required.

NOTATION 2.3. We extend the definition of s, a, e, e as follows:

s°(w) = w, e°(w)= w.

= e(ek(w)) for all k >0.

() (()), \ ) (()) for all k >0.

(For large enough k, sk(w), ok(w), ek(w), ek{w) are equal to 0.)
Define sA(w) and o^(vv) so that CT^W) e X and sA{w)oA(w) is the shortest left cut of

w containing all variables of c(w)\A. Define dually eA(w) and eA(w) so that eA(w) eX
and eA(w)eA(w) is the shortest right cut of w containing all variables of c(w)\A. (Again
these may be 0.)

LEMMA 2.4. Let ueF and A be a nonempty subset of X. Then

sA(u) = sk(u), aA{u) = ak{u).

where k is the least integer such that ok(u)^A.

Proof. Note that if c(u) cA, then o^iu) = 0 and if |(c(u)\^| < 1, then sA{u) = 0.
If t = \c(u)\, then

( a ' ( « ) , . . . . a(u))

is the sequence of varibles of u in order of first occurrence. By definition of k, sk(u)ak(u)
is the shortest left cut of u containing all variables of u not in A. Therefore
sk(u)ok(u) = sA(u)oA(u) and the lemma follows.

LEMMA 2.5. For all k>l, okb = ok.

Proof. The argument is by induction on k. For k = 1, the statement is just Lemma
2.2(ii). For k > 1 and u e F,

ok+lb(u) = oskb(u)

= obsk(u) by Lemma 2.2(i)

= osk(u) by case k = 1
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COROLLARY 2.6. For any nonempty set A of X, we have

sAb = bsA, o^b = o*.

Proof. Lemmas 2.4 and 2.5 imply that sA{bu) =sk(bu) and sA(u) = sk(u) for the
same k. The first formula therefore follows from Lemma 2.2(i). A similar argument yields
the second formula using Lemma 2.2(ii).

LEMMA 2.7. Let x be any congruence on F such that Fix is a band. Then for any
ueF,

u x s(u)o(u)e(u)e(u).

Proof. We show first that

c(u) = c(v) ̂ > ux 3l vx.

Let c(u) = c(v) = {xu ..., xn). Then ux 3> (x^x). . . (xnx) 3s vx, since {Flx)l% is a
semilattice. It then follows that

c(u)c:c(v)^>DVT<DUT

since c(y) e c(v) implies c(uv) = c(v) so that Dvz < D(uv)x < DUT.
To prove the lemma note that since Fix is a band,

u x uu = s(u)o(u)we(u)e(u),

for some w e F U {0} with c(w) c. c(u) = c(s(u)o(u)) = c(e(u)e(u)).

NOTATION 2.8. Let B = b{F) with the multiplication

u . v = b(uv).

Note that in view of Lemma 2.2(iii), we have

B = {w e F | ft(vv) = w}.

We now arrive at the first representation of the free band.

THEOREM 2.9. The mapping b is a homomorphism of F onto B and B is a free band
onX.

Proof. According to the definition of multiplication in B, we must prove that for any
u,veF,

b(u).b(v)(=b(b(u)b(v))) = b(uv). (1)

Applying the definition of b, we thus have to show that

[bs(b(u)b(v))][o(b(u)b(v))][£(b(u)b(v))][be(b{u)b(v))]

= [bs(uv)][o(uv)][e(uv)][be(uv)). (2)

The argument is by induction on |c(u) U c(v)\. For the first step, we have u=xm and
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v = x" for some x eX and m, n > 1. We now compute

b(b(xm)b(xn)) = b(xxxx)=xx = b(xmx").

For the inductive step, we first prove that

bs(b(u)b(v)) = bs(uv) (3)

On the one hand, we have
if c(v)cc(u),

and on the other hand,

\bs(u) if C(U)CC(M),

lb(usc(u)(v)) otherwise.

The desired equality in the case c(u)cc(w) follows directly from Lemma 2.2(i)(iii). For
the case c(v)£c(u), scU4)b(v)±s°(b(v)) so that \c(b(u)sc(u)b(v))\ < \c(u)Uc(v)\, and
analogously |c(usc(u)u)| < |c(u) U c(v)\, and we may use the induction hypothesis. Indeed,

b(b(u)sc{u)b(v)) = b\u)bsc(u)b{v) by the induction hypothesis

= b(u)bsc(u)(v) by Lemma 2.2(iii) and Corollary 2.6

= b(usc(u)(v)) by the induction hypothesis.

This proves (3).
Next we show that

o(b(u)b(v)) = o{uv). (4)
Indeed,

.ac(u)b{v) otherwise
'CT(U) if c (w)cc(«) by Lemma 2.2(ii)

,ac(u)(u) otherwise by Corollary 2.6

= o(uv)

which proves (4).
Relation (3) and (4) imply the equality of the first and second brackets on the left

and on the right in (2). The equality of the remaining two pairs of brackets follows by
duality. This proves (2) and thus also (1), as required.

To prove that B is a free band, we show that if b is the congruence induced on F by
b, then 6 c T for any congruence r on F such that Fix is a band.

Assume b(u) = b(v). By Lemma 2.2(i)(ii) we have

bs(u) = sb(u) = sb(v) = bs(v),

o(u) = ob{u) = ob{v) = o(v).
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The proof that u r v is by induction on \c(u) U c(u)\. Note that x" x xm for x eX
since Fix is a band. By induction we have s(u) x s(v) since bs(u) = bs(v) as we just
proved and c(s(u))£c(u). Using this, the fact that o(u) = o(v) (as just shown) and the
dual results gives

s(u)o(u)e(u)e(u) x s(v)o(v)e(v)e(v).
Finally, an application of Lemma 2.7 shows that u x v.

REMARK 2.10. A straightforward inductive argument can be used to show that the
congruence induced on F by b is the congruence /S defined inductively as follows:

M /S I ; O J ( « ) )8 s(v), o(u) = o(v), e(u) = e(v), e(u) /? e(v),

where we formally set 0 )3 0 .
This j3 actually coincides with /? defined in ([5], Lemma IV.4.6) where the additional

requirement that c(u) = c{v) is superfluous. This can be easily proved by induction.

We now describe an algorithm for computing b(w).

Step 1: Double the word w to ww.

Step 2: Write ww = WQXQW'X^W^ where xoeX and WOJCO is the shortest left cut of ww
(or w) which contains all variables of iv and xx e X and x^wx is the shortest right cut of ww
(or w) which contains all variables of w. This factorization is possible because of the form
of ww.

Step 3: Delete the word w' retaining the word WOXQX^. Note that this amounts to
deleting all letters in ww which occur earlier and later in the word ww.

Step 4: Apply Steps 1, 2, and 3 to w0 thereby obtaining the words woo*oo and xmwm.
Also apply the same steps to wx thereby obtaining the words WiO*io and xnwn.

Continue this procedure on WQQ, W01, W10 and wn until the end. This procedure must
finish since at each step, the content of each wh ik is one less than in the preceding step.

We thus arrive at a word of the form

*0O. . .0 • •

where the number of 0's in the first subscript equals the number of l's in the last subscript
which in its turn equals |c(w)|. This word is our b(w). The length of b(w) is 2(2|c(B')' - 1).

From the above steps one can easily devise a test for a word to have the property that
b{w) = w.

We illustrate the above procedure by the following example. Let w = (xyxy3xz)2y.
The algorithm consists, briefly, of two steps: doubling and taking certain subwords. In
each of the following steps the underlined subword is doubled in the next line.

Step 1: (xyxy3xz)2y(xyxy3xz)2y doubling w.

Step 2: xyxy3x zx zy deleting

(where s{w) = xyxy3x, a{w) = z, e(w) = x, e(w) = zy).
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Step 3: xyxy3xxyxy3xzxzyzy doubling.

Step 4: xyyxzxzyzy deleting.

Step 5: xxyyxxzxzzyzyy doubling.

b(w)=xxyyxxzxzzyzyy

A different canonical form for words in the treatment of the free band was devised by
Siekmann and Szab6 [9]. The attraction of their approach is that the canonical word is the
unique shortest word representing an element of the free band. They show that a word
can be reduced to the shortest form by replacing uu by u and pqr by pr if
c{q) c c(p) = c(r). It may be of some interest that our canonical word can be reduced to
theirs by making only the substitutions of the form uu by u.

Our expanded canonical word may be much longer than theirs, that is the word of
least length. But our canonical word reflects the intrinsic nature of the usual solution of
the word problem. The principal advantage of our treatment is that at every step the
procedure is unique and mechanical; there is no search for suitable reductions and so it is
easier to apply. In particular, the route which leads from a word to its canonical form is
unique.

We also compute the reduced form of w by the methods of [9] in two different ways.

Step 1: xyxy3xzy replace u2 by u = xyxy3xz

Step 2: xyxy2xzy replace y2 by y

Step 3: xyxyxzy replace y2 by y

Step 4: xyxzy replace (xy)2 by xy.

Step 1: xyxy3xzy replace u2 by u = xyxy3xz

Step 2: xyy3xzy replace (xy)x(y3x) by xyy3x since c(x) c c{xy) = c{y3x)

Step 3: xyyxzy replace xy(y)2yx by xyyx

Step 4: xyxzy replace yy by y.

The word b(w) is transformed into its reduced form by several replacements of u2 by
u as follows.

(xx)(yy)(xx)zx(zz)yz(yy)
xy(xzxz)yzy
xyx{zyzy)
xyxzy.

3. The structure of a free band. Our aim here is to express the free band on a set in
terms of the usual structure theorem for arbitrary bands. To this end, we start with some
statements concerning words, then state the structure theorem for bands, and finally
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construct the desired representation of the free band. The final result shows transparently
how the representation was put together in terms of words.

NOTATION 3.1. In what follows we need some combinations of the invariants
introduced in Notation 2.1. For w eF, let

A(w) = bs(w)o(w),

p(w) = e(w)be(w).
In particular X(x) = x = p(x).

LEMMA 3.2. Let A be a nonempty subset of X.

(i) kb = A = A2, pb = p = p2.
(ii) bsA=sAk, beA = eAp.
(iii) a" = c/A, eA = eAp.

Proof. These statements are refinements of Lemma 2.2 and Corollary 2.6. Their
proofs can be obtained with minor modifications from those already given. For example
to prove part of (ii) compare with Corollary 2.6 and compute

bsA(u) = sAb(u) = skb(u) = sk(k(u)p(u))

LEMMA 3.3. Let u,veF.
(i) A(ttt/) = A(uA(u)) = k{ub{v)) = X{b{u)v).
(ii) p(uv) = p{p{u)v) = p(b(u)v) = p(ub(v)).

Proof. We only prove part (i). Statement (ii) is the dual. There are two cases to
consider.

Case 1: c(u)cc(u). In this case v does not influence k(uv) since s(uv) = s(u) and
o(uv) = o(u). Therefore

k(uv) = A(M) = A(KA(U)) = k(ub(v)).

Similarly k(b(u)v) = k(b(u)) and thus the result follows by Lemma 3.2(i).

Case 2: c(v) ^ c(u). In this case

s(uv) = usc(u\v), o(uv) = (f(u\v).

Therefore

X{uv) = b(usc(u)(v))oc(u\v)

= b(b(u)bsc(u)(v))oc(u){v)

= b(b(u)bsc(u)k(v))ac{u)k(v) by Lemmas 2.2(iii) and 3.2(ii).

= b(usc{u)k(v))oc(u)k(v)

= X(uX(v)).

The proof that X(uv) = X(ub(v)) is similar.

https://doi.org/10.1017/S0017089500006480 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006480


FREE BANDS AND FREE *-BANDS 169

To prove that k(uv) = k(b(u)v) we proceed by induction on |c(u)|. If v=xr, then
x & c(u) and

k(uxr) = b(u)x = k(b(u)xr).

If \c(v)\ > 1, then as in the earlier parts of this proof,

k(uv) = b(usc{u)(v))oc{u\v)
= k(usc(u\v))p(usc(u)(v))oc(u\v), by definition of b,
= k(b(u)sc(u\v))p(b(u)sciu\v))(f(u)(v)

(the first substitution u-*b(u) is by induction and the second follows from the formula
p(uv) = p(b(u)v) which is dual to the formula k(uv) = k(ub(v)) proved above)

= b(b(u)sc(u\v))ociu\v)

= k(b(u)v).

We will now represent the free band on X in terms of the usual structure theorem for
bands, which we quote below.

For any set X and F e ST'(X), the notation (F) means that F is a constant, and
Fx = (F)eX for all xeX. Similarly for O e 3~(X), <<&) means x® = (<&) for all xeX.

THEOREM 3.4 ([8], Theorem II.1.6). Let Ybe a semilattice; for every a eY let La and
Ra be nonempty sets such that LaC\ Lp= RanRp = 0 if a± /J and let Sa = LaxRa. For
a^P let the following functions be given

with Fp,a:(i,n)^>F%&,

with <&„,„:(!•, p ) - > * 2 # .

Assume that for any a, /? e Y and (i, n) e Sa, (j, v) e 5^, the following conditions are
satisfied.

(0 (FW)=i, (*%:£>) = ii,

(ii) (F<i£lF%v},) = k, m^M,^) = I for some (k, | ) 6 Saf}.
(iii) in the notation of (ii), for any y<afi

Let S = U Sa> and with the same notation, define ° on S by
aeY

Then S is a band, and conversely, every band can be so constructed. As notation let

We are now in a position to construct a band 5, using the structure theorem for
bands, which will then be shown to be the free band on X.

Let 7 be the free semilattice on X thought of as the set of all finite non-empty subsets
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of X under union. For A e Y let

LA = {weF\ A(w) = w, c(w) =A),
RA = {w e F | p(w) = w, c(w) = A}.

For C,DeY, CcD, let FDX :Sc = LcxRc-> T(LD) be defined by

F^,vc\w) = k{uvw) (w e LD, (u, v) e Sc),

and let O c D :SC—> 3~(RD) be defined by

LEMMA 3.5. The maps FDC and QC,D defined above satisfy the conditions of Theorem
3.4 and therefore can be used to define a band S = B(Y; LA, RA, FD c, <£>c D).

Proof. Assume C, D €Y and (u, v) € Sc, (p, q) e SD.

(i) F^\w) = k{uvw) = k(u) = u

since c(u) = c(u) = c(w) = C. Therefore (Fg;£>) = u. Dually {^c.'c') = v.

(ii) F&%cF%&,D(w) = F&XUA(p?wO)

= A(uvA(p^w)) = X(uvpqw) by Lemma 3.3(i)

= k{uvp) since c(»v) = c(uv) U c(/j^) = c(w) U c(p).

Therefore

and dually
(*%CLD*(S:&D) = P(vpq).

(iii) For ^ D C U D , we obtain
p^.p(vPq)){w) = X(X(uvp)p(vpq)w)

= X{b{uvpq)w) = X(uvpqw) by Lemma 3.3(i).

= X{uvpqw) by Lemma 3.3(i).
The other condition is the dual.

We are now ready for the second representation of the free band.

THEOREM 3.6. The mapping % defined by

X:w^(X(w), p(w)) (weF)

is a homomorphism of F onto S, as given in Lemma 3.5, which induces the same
congruence as b. Thus S is a free band on X.

Proof. Let u, v e F and denote C = c(u), D = c(v). Then
())m$v))) = A(A(M)P(M)A(U)), (1)

W&tiv))) = p(p(u)Kv)p(v)). (2)
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In addition, by Lemma 3.3(i),

A(A(u)p(u)A(u)) = A(6(u)A(v)) = A(«u) (3)

and analogously

p(p(H)A(t;)p(u)) = p(Mu). (4)

We compute

X(")x(v) = (A(u), P(M))(A(V), p(u))

= (A(A(M)P(M)A(U)), p(p(«)A(t/)p(t/))) by (1), (2)

= (A(Mt/), p(uv)) by (3), (4)

and x is indeed a homomorphism.
Next let (u, u) e 5. Then c(u) = c(v) which implies that A(wu) = A(w) = u and

p(uv) = p(u) = u. It follows that x(uv) = (M> u) a nd X maps F onto 5.

That / and b induce the same congruence on F means

x(u) = x(v)€>b(u) = b{v) (u, v e F). (5)

In view of (5) and the fact that b{w) = X(w)p(w), it remains to prove that

A(u) = A(u), p(w) = p(v)oA(«)p(«) = A(u)p(u) (u,veF). (6)
The direct implication is trivial. It was established in the proof of Theorem 2.9 that
b(u) = b(v) implies bs(u) = bs(v) and a{u) = o(v). This together with the duals of these
statements proves the converse implication in relation (6).

The final assertion of the theorem now follows from Theorem 2.9.

4. A construction of a free *-band. An involutorial semigroup is a pair (5, *) where
5 is a semigroup and * is an involution on 5, that is S satisfies the identities
(xy)* = y*x* and x** = x. If, in addition, S satifises the identities x = x2 and x =xx*x,
then (5, *), or simply 5, is a *-band.

Our discussion of the word problem for the free *-band on a fixed set X is based on
the free involutorial semigroup F* = F*{X). Let I = XL1X* where X* is a set in
one-to-one correspondence with X via x-*x*. The free involutorial semigroup F* is
defined as (F(/), *) where * is given on F(7), the free semigroup on /, as follows. For
16/,

.^ (x* if i-xeX,
\x if / =JC* e AT*.

If w = j , . . . in e F(I), then

The methods we use in the present section to solve the word problem for the free
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*-band follow closely those for bands we developed in Section 3. In particular, we
introduce a mapping b*:F*—>F* which plays the role of b in Section 3 and allows us to
describe the free *-band as b*(F*).

The invariants s and a given in Section 2 have here their analogues sx and ox,
respectively. We will not need the analogues of e and e (which could be defined similarly)
because of the operation *.

NOTATION 4.1. For w e F*, let

cx{w) = {x e X | x or x* occurs in w}.

Write w = uip for i e I with cx{w) = cx(ui) and cx(w) f cx(u). Let

sx(w) = u, ox(w) = i.

As usual, sx(w) = 0 if |c^(w)| = 1. Therefore sx(w)ox(w) is the shortest left cut of w
such that cx(sx(w)ox(w)) = cx(w).

The maps 5A- and ax are combined to form b* :F*—>F* defined by

b*(w) = b*sx(w)ox(w)[b*sx(w*)ox(W*)]*.

In particular b*(i) = ii for all i e I.
We also require the usual extension of sx. Thus

so
x(w) = w,

Sx+>)=sx(Sx(w)) for all A:>0.

For 0^Ac.X define sx{w)crx(w) to be the shortest left cut of w such that (^(w) e I and
cx(sx(w)ax(w)) = cx(w)\A.

LEMMA 4.2. Let utveF*and0±A^X.
(i) sx{w) = sx(w), ox(w) = ox(w)

where k is the least integer such that cx(sx(w)ox(w)) = cx(w)\A.

(") -*v~-/ i- f.^cAu),.^ o t h e r w i s e .

Proof. See the proofs of the corresponding results in Section 2.

LEMMA 4.3. Let u e F* and let u be obtained from u by replacing every occurrence of j
by jj*j for all j e /. Denote o{u) = i*, i e /. Then ox(u) = i. Moreover, sx{u)i is obtained
from s{u) by replacing jj*j by j whenever jj*j was introduced in the transition from u to u.

Proof. The variable i* = o{u) is the first occurrence of the last variable (element of
/) in u to occur from the left. Since i precedes i* in u and i always occurs next to /* in M, it
follows that u = vii*iw where i and i* do not occur in v, but all other variables of u do
occur in v. Also s(u) = vi. It follows that ox{u) = i, and if the occurrences of jj*j in v
which were introduced by the transition from u to u are replaced by /, the result will be
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LEMMA 4.4. Let x be any congruence on F* such that F*/x is a *-band. Then, for any
ueF*,

u x sx(u)ox(u)[sx(u*)ox(u*)]*.

Proof. Let u be as defined in Lemma 4.3. Then u x u. Also since F*lx is in
particular a band, by Lemma 2.7 we have

u x s(u)o(u)e(u)e(u).

Let o(u) = x* and e{u) =y* for some x*, y* e I. Since

x, y e c(s(u)o(u)) = c{e{u)e(u))

and F*/T is a band, we get

u x s(u)o(u)e(u)e(u) x s(u)o(u)xye(u)e(u).

Lemma 4.3 shows that

s(u)o(u)xy£(u)e(u) z sx(u)xx*xyy*y(sx(u*))*.

This last word is T related to
sx(u)ox(u)[sx(u*)ox(u*)]*,

since xx*x x x = ox(u) and yy*y x y = (ox(u*))*.

We are finally ready for a characterization of the free *-band.

THEOREM 4.5. The mapping b* is a homomorphism of F* onto B*. Moreover, B* is a
free *-band on X.

Proof. The proof that b* is a multiplicative homomorphism is similar to the proof
that ft is a homomorphism in the proof of Theorem 2.9. To check that b* preserves *

compute (b*(w))* = [b*(sx(w)ox(w)(b*sx(w*)ox(w*)y]*

= b*(w*).

Let /3* be the congruence on F* induced by b*. We next show that F*lfi* is a
"-band. It is necessary to show that for all u e F*,

u /3* uu, u P* uu*u.

Both of these are obvious since cx(u) = cx(uu) = cx(uu*) and therefore b*(u) =
b*(uu) = b*(uu*u).

To prove that B* is a free *-band we must show that /?* c x for any congruence x on
F* such that F*lx is a *-band. The proof is similar to the proof of the corresponding
result for bands. Lemma 4.4 is used.

In the next result we establish a connection between b and b*. A description of the
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free *-band on X can be given by the methods developed in ([3], Section 3). The free
involutorial semigroup on X is defined as (F(/), *). The free involutorial band on X,
F$28(X) is the quotient of F{1) by the congruence generated by (M, MM) for u e F(I). The
results of Section 3 show that F3>®{X) = (b(F(I)), *). The free *-band on A' is the
quotient of F$$&(X) (and therefore of b(F(I))) by the congruence p generated by
(u, uu*u) for ueb(F{I)).

THEOREM 4.6. The diagram

commutes, where b preserves the *-operation and fc*|fc(F(/)) is a homomorphism o
onto B*(X) which induces the congruence

p = {(u,uu*u)\ueb(F(I))}*.

Proof. We first prove that b preserves *. If JC, . . .*,, , where xt eX, is any word in
F*. then

b((Xl . . . *„)*) = b(x*n . . . xl) = b{x*n) . . . b(xt)

= XnXn . . . Xi-t] = \X\Xi • • • XnXn)

To show that the diagram commutes we establish that b*b(u) = b*{u). The proof is
by induction on |C(M)|. TO start note that b*b(x") = b*(xx) = b*(x"). For the inductive
step compute

b*b(u) = b*Sxb(u)oxb(u)[b*sx(b(u)yox(b(u))*r,
b*(u) = b*sx(u)ax(u)[b*sx(u*)ox(u*)]*.

By duality and the fact that b preserves *, it is enough to show that

°x = oxb, (1)

b*sx = b*sxb. (2)

The proof of (1) is also by induction on |C(M)|. TO start note that for n > 1,

ox(x") =x = ox(xx) = axb{xn).
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For the inductive step compute

\o(u) if o(u) $ cxs(u),

-c
.ox(su) otherwise,

axb(u) = ox(sb(u)o(u)) = ox(bs(u)o(u)) by Lemma 2.2(i)

[ o(u) if o(u) $ cxbs{u) = cxs(u),

I oxbs (u) otherwise.

Therefore ox(u) = oxb(u) if o(u)£cxbs(u). Otherwise equality follows by induction
since \cs(u)\ < \c(u)\.

To prove (2) we again proceed by induction on |C(M)|. At one point we use the
original inductive hypothesis and at another the inductive hypothesis on (2) itself. The
induction is started by noting that for n ^ 1,

sx(x
n) = 0 = sx(xx) = sxb(x").

For the inductive step compute

b*sx(u) = (b*S^ 'f a ( " ) ^c**(")'x \b*sxs(u) otherwise,

b*sxb(u) = b*sx(sb(u)ob(u)) = b*sx(bs(u)o(u)) by Lemma 2.2(i)(ii)

_(b*bs(u) if o(u)£cxbs(u) = cxs(u),

\b*sxbs(u) otherwise.

If o(u) £ cx(s(u)), then b*s(u) = b*bs(u) by the original inductive hypothesis. Otherwise
equality follows by induction since |CS(M)| < |C(M)|.

The final statement to prove is that b*\b(FW) induces p. Let b*\b(FW) induce 6 on
b(F(I)). It was shown in the proof of Theorem 4.5 that b*(u) = b*(uu*u). Consequently
p cd. It follows that the map b(F(I))/p^>b(F(I)) defined by wp-»u0 is an epimorph-
ism. By ([3], Theorem 3.1), b{F{I))lp is a free *-band and therefore this map is the
unique homomorphism which extends (ii)p—>(ii)d (all i e /) . On the other hand
b{F{I))ld = B* is a free *-band, and therefore this map is the unique isomorphism
extending (ii)p^(ii)d. The map is in particular one-to-one and therefore flcp.

5. The structure of "-bands and free "-bands. The purpose of this section is
establishing a structure theorem for "-bands of the general form of Theorem 3.4 for
bands. We can say intuitively that for *-bands we need a half of the ingredients for a
band, namely only the functions Fp>a; the other half is determined by the symmetry
caused by the *-operation. In the proof of the structure theorem we do not specialize
Theorem 3.4 to this case but prove it directly using the set of projections. This gives
additional insight into the structure of "-bands. We conclude with a presentation of the
free *-band on a set in terms of the structure theorem for general *-bands.

CONSTRUCTION 5.1. Let Y be a semilattice. For each a e Y, let La be a non-empty set
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such that La D Lp = 0 if a j= j3 and let Ba = Lax La. For any a, fieY such that a > /3,
let Fpa:Ba—*ST'(Lp) be a function, in notation (i, y)-»Fj££, satisfying the following
conditions: for (j, /) e Ba and (&, l)eBp,

(i) <F^2) = i,

(ii) {F%]aF%%)=p, {F%%F%\) = q,

(iii) for y < ar/3 and the notation as in (ii),

Let B = [J Ba and with the above notation, define the operations

(v) (i,j)*(j,i).
Denote the algebraic system so constructed by B*(Y; La, Fp>a).

Note that condition (ii) is needed in order to state condition (iii) including the
needed notation. It actually requires that the products of the form Fty}aF%% be constant
functions.

We prove next that the above construction gives a *-band.

LEMMA 5.2. B = B*(Y; La, FPiCt) is a *-band.

Proof. In view of conditions (i) and (ii), it follows that (iii) is also valid for the case
when y ~ aP- Using this general version of condition (iii), the associative law requires
only a routine argument. Condition (i) implies that all elements are idempotents.
Therefore B is a band.

With the notation as in the above construction, we obtain

where
\ra-/3,/3r a/3,a-/ u> \ r a$,ar <r/3,/3/ ~ v-

Comparing this with part (ii) in the construction, we get that u = q and v =p, as required.
It follows at once that for any xeB, x**=x and xx*x=x. Therefore B is a *-band.

Conversely, to each *-band B we will now construct an isomorphic copy of B of the
above form. For any *-band 5, let P(S) be the set of projections of 5. (Recall w e P(S) if
and only if w = w*.)

LEMMA 5.3. Let S = (Y;Sa) be a *-band. For each aeY, let La = SaDP(S) and
Ba = Lax La. For any a, /? e Y such that a>fi, and for any (p, q) e Ba, define a function
Ffty by

(reLp).

Then (p, q)^>Fp
p;*) is a function FPia:Ba^9~'(Lp). These parameters satisfy the

conditions of Construction 5.1, so by Lemma 5.2, B = B*(Y; Ba) Fp>a) is a *-band. The
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mapping

X.a—>(aa*,a*a) (aeS)

is an isomorphism of S onto B.

Proof. For a > /3, (p, q)e Ba and r eLa, pqrqp = (pqr)(pqr)* so that pqrqp is a
projection. In addition, a > /3 implies that pqrqp e Lp and thus F%'^ e 3"(LP). We now
verify that the functions FPa satisfy conditions (i), (ii) and (iii) of Construction 5.1.

(i) Ft'SKr) = pqrqp =p for any r e La;

(") F%?lF«p?p(t) = pqrstsrqp = pqrqp is independent of t; we thus may put
/ F(Pii)p(i-.s)i \ /F(VlF(VH = w
X1 afi.a1 aP.pl "> \ J ctp.p1 aP.al v i

(iii) for y < ar/3, with the above notation, on the one hand,

(t)= pqrstsrqp,

and on the other hand, from above, u = pqrqp and analogously, v = srqrs so that

F%$(0 = uutou = (pqr)qpsr(qrs)t(srq)rspq(rqp)

= (pqr)qrstsrq(rqp) = pqrstsrqp

which verifies condition (iii) as well. Thus we may form the *-band B = B*(Y; Ba, FPia).
It is easy to see that % is a bijection of 5 onto B. For a eSa and b eSp, we obtain

(«*)(**) = (««*, a*a)(bb*, b*b) = (p,-9)
where

P = F(Xa
a'a)F^pb'b\t) = (aa*)(a*a)(bb*)(b*b)t(b*b)(bb*)(a*a)(aa*)

= abtb*a* = (ab){ab)*

and similarly q = (ab)*(ab). It follows that (ax)(bx) = (ab)x- Also

and x is an isomorphism.

It is convenient to introduce the following concept.

DEFINITION 5.4. For a given *-band 5, we call B = B*(Y;Ba, FPi<s) constructed in
Lemma 5.3 the standard representation of 5.

Note that in the above lemma, the multiplication takes on the form

(p,q){r,s) = {pqrqp, srqrs) = {{pqr){pqr)*, (qrs)*{qrs)).

We may summarize the principal results of this section as follows.

THEOREM 5.5. The semigroup B*(Y; La, Fp a) in Construction 5.1 is a *-band.
Conversely, every *-band admits a standard representation.

We now give a model for the free *-band FS3* on X in terms of the structure
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Theorem 5.5. We first mimic the procedure in Section 3. Let

k*(w) = b*sx(w)ox(w) (weF*).

Let y be the free semilattice on X thought of as the set of all finite non-empty subsets of
X under union. For AeY, let

LA = {w e F* | k*(w) = w, cx(w) = A}.

For C, DeY, CcD, let F D C :B c = Lc x Lc-> 3"{LD) be a function defined by

Ftyc'Xw) = k*(uvw) {u, v* e Lc, w e LD).

LEMMA 5.6. The mappings FDC satisfy the conditions of Construction 5.1 and
therefore can be used to define a *-band S* = B*(Y;LA, FDC).

Proof. The argument is essentially the same as in the proof of Lemma 3.5. Note that
the latter proof required several preliminaries on A and b. Preliminaries of the same type
can be established for A* and b* in essentially the same way.

The final result gives the structure of free *-bands.

THEOREM 5.7. The mapping %* given by

X*:w^(X*(w), A*(w*)) (weF*)

is a homormorphism of F* onto S* which induces the same congruence as b*.
Consequently S* is a free *-band on X.

Proof. See the proof of Theorem 3.6.

Alternatively, we may follow the recipe devised in Lemma 5.3. Indeed, let Y be as
above and for each AeY, let

For C,DeY, C^D, let F'DC:BC-* 3"(LD) be a function defined by

F'DUCV)(W) = uvwvu (u, v eLc,w e LD).

Then Lemma 5.3 yields the isomorphism % of B* onto B' = B*(Y; L'A, F'DX).
The following diagram illustrates the homomorphisms we have discussed:

F*-^U B*

•i {-
B —£-* B'

where f is the isomorphism of B onto B* defined by

|:(u, v)-»(uu*, vv*) ((u,v*)eB).
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