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E-ASSOCIATIVE RINGS

SHALOM FEIGELSTOCK

ABSTRACT. A ring R is E-associative if ¢(xy) = ¢(x)y for all endomorphisms ¢
of the additive group of R, and all x, y € R. Unital E-associative rings are E-rings. The
structure of the torsion ideal of an E-associative ring is described completely. The E-
associative rings with completely decomposable torsion free additive groups are also
classified. Conditions under which E-associative rings are E-rings, and other miscella-
neous results are obtained.

Introduction. Rings considered in this article are not necessarily associative, and
need not possess a unity. All groups (except S,) are abelian with addition the group
operation. A ring R is associative if and only if a;(xy) = a,(x)y forall a,x,y € R, where
the mapping a;, is left multiplication by a. If the ring R satisfies a condition stronger than
associativity, namely that ¢(xy) = ¢(x)y forall x,y € R, and all endomorphisms ¢ of the
additive group of G, then R will be said to be E-associative (endomorphism associative).
Unital E-associative rings are called E-rings, and have been studied fairly extensively.

The class of E-associative rings is considerably larger than the class of E-rings. The
main goal of this note is to describe E-associative rings. The torsion part of an E-
associative ring is described completely, and so a classification of torsion E-associative
rings is obtained. A description of E-associative rings with a completely decomposable
torsion free additive group is also obtained. It will be shown that a unital ring R is an
E-ring if and only if R satisfies any one of an infinite set of ring properties which will be
defined. E-associativity is one of these properties.

For R aring, and a € R, right multiplication by a will be denoted by a,, and the
pure subgroup of R* generated by a will be denoted by (a).. Let X C R. Then the right
annihilator of X is r.ann(X) = {a € R | Xa = 0}.

The reader is referred to [2] and [3] for definitions of terms and facts concerning
abelian groups.

General results.

LEMMA 1. Let R be an E-associative ring, and let A be a direct summand of R*.
Then A is a right ideal in R, and A is E-associative.

PROOFE. Let R* = A @ B, and let 7p be the natural projection of R* onto B along A.
Foralla € A, and x € R, mg(ax) = ng(a) -x = 0,and soax € A. Let a,b € A, and let
¢ € E(A). Clearly ¢ can be extended to an endomorphism of R*, and so ¢(ab) = p(a)b,
i.e., A is E-associative.
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LEMMA 2. Let R be an E-associative ring. If there exists a € R such that r.ann(a) =
0, then R is commutative.

PROOF. Letx,y € R. Then axy = y,(ax) = y,(a)x = ayx. Therefore a(xy — yx) = 0,
~and so xy = yx.
It is easy to verify the following:

LEMMA 3. Let {R; | i € I} be a collection of E-associative rings. If Hom(R{, R}) =
0 foralli # j, then R = ®;¢; R, and S = Tl;; R; are E-associative rings.

An immediate consequence of Lemma 3 is:

COROLLARY 4. Let {R, | p a prime} be E-associative p-rings. Then R— Tlpprime Ry
is E-associative.

EXAMPLE 5. Z/pZ is a field and so is E-associative for every prime p. Therefore
[Ty prime Z /PZ is E-associative, and is in fact an E-ring. The ring Dp prime Z /PZ is E-
associative, but is not an E-ring.

LEMMA 6. Let R be an E-associative ring with R* = (a) © B.

(1) Ifais torsion free, then there exists an integer m such that xa = mx for all x € R.

(2) If|a| = n then there exists an integer m, with 0 < m < n — 1, such that xa = mx
for all x € R satisifying |x| l n.

PROOF.  Since (a) is a right ideal in R by Lemma 1, there exists an integer m such
that a> = ma. If |[a] = n, then 0 < m < n — 1. Suppose that either a is torsion free
and x € R, or that |a| = n, and x € R, with || ‘ n. There exists ¢ € E(R") satisfying
p(a) = x. Therefore xa = p(a)a = (p(az) = my(a) = mx.

LEMMA 7. Let R = @i, Ai. If R, = @, A; is E-associative for every positive
integer n, then R is E-associative.

PROOF.  Suppose that R, is E-associative for every positive integer n; let ¢ € E(R*)
and let a,b € R. There exists a positive integer n such that a, b, ab, v(a), and p(ab) all
belong to R,,. Let 7 be the natural projection of R* onto R} along ;. A;. The restriction
of Y = mp to R} belongs to E(R}), and so 1(ab) = y(a)b. Since ¢(ab) and ¢(a) belong
to R, it follows that y/(ab) = ¢(ab), and ¥(a) = p(a), i.e., p(ab) = p(a)b.

LEMMA 8. Let R be an E-associative ring, D the maximal divisible subgroup of R*,
and let R* = B@ D. Then BD = RD; = 0. If B is not a torsion group then RD = 0.

PROOF. BD C B by Lemma 1, but (bD)* is divisible for all » € B, and so BD C
BN D = 0. Since BD; C BD = 0, and DD, = 0 by [1, 1.4.7], it follows that RD, = 0.
Suppose there exists b € B, b # 0, and b is torsion free. Let d,d’ € D. There exists a
homomorphism ¢: (b) — D satisfying ¢(b) = d. Since D is injective in the category
of abelian groups, ( can be extended to a homomorphism p: Rt — D. Hence dd’ =
@(b)d' = p(bd’). However bd’ € BD = 0, and so D*> = 0.
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LEMMA 9. Let R be an E-associative ring, and let a € R such that aR = Ra = R.
Then R is an E-ring.

PROOF. There exists e € R such thatae = a. Clearly e is aright unity for R. Similarly
there exists f € R such that fa = g, and f is a left unity for R. Therefore f = fe = eisa
unity for R, and R is an E-ring.

Lemma 2 and Lemma 9 yield:

COROLLARY 10. Let R be an E-associative ring. If there exist a,b € R such that
aR =R, and r.ann(b) = 0, then R is an E-ring.

By employing Lemma 1, and the argument used to prove Lemma 7, one can easily
prove the following two results:

LEMMA 11. Let R = Ilies R; be an E-associative ring. Then T = @ R; is E-
associative.

The torsion case.

COROLLARY 12. A torsion ring R is E-associative if and only if R, is E-associative
for every prime p.

PROOF. A simple consequence of Lemmas 1 and 3.

Clearly, every zero-ring is E-associative, so the E-associative rings R of interest are
those satisfying R? # 0. By Corollary 4, the problem of classifying E-associative torsion
rings reduces to the case of E-associative p-rings, p a prime.

LEMMA 13. Let R be an E-associative p-ring, p a prime, such that R*> # 0. Then R*
is reduced.

PROOF.  Suppose that R* = A @ D with D divisible. It is well known that DR =
RD = 0, [1, 1.4.7], [3, Theorem 120.5]. It therefore suffices to show that if D # 0, then
A? = 0. Suppose there exist a,b € A such that ab # 0. There exists a homomorphism
¢: (ab) — D, with ¢(ab) # 0. Since D is injective in the category of abelian groups, ¢
can be extended to a homomorphism ¢: R* — D. Hence ¢(ab) = p(a)b € DR = 0, a
contradiction.

THEOREM 14. Let G be a p-group, p a prime. G is the additive of an E-associative
ring R satisfying R® # 0 if and only if G is bounded.

PROOF. Let R be an E-associative ring with R* = G, and suppose that G is not
bounded. Let B be a basic subgroup of G. Lemma 13 implies that B is not bounded. Every
p-ring R with B a basic subgroup of R* satisfies R = B?, [1, 1.4.6], [3, Theorem 120.1].
It therefore suffices to show that B2 = 0. Let B = @Dici(b;), and let i € I. Since (b;) is a
direct summand of R*, Lemma 6 yields that there exists an integer m;, with0 < m; < |b;|
such that xb; = m;x for all x € R with |x| < |b;|. Let |b;| = p", and let j € I such that
|bjl = p™ withm > 2n. Since |p™ "bj| = |by|, it follows that p™ "b; - b; = m;p™ "b;.
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However m — n > n, and so p™~"b; - b; = bj(p™ "b;) = b; - 0 = 0. Therefore m; = 0,

ie.,
(%) xb; = 0 for all x € R with |x|] < |b;|, and for all i € I.
Let k € I such that |by| > |b;|. For every j € I put

I forj # k
J b; + by fOI'j:k

Then B = @cs(c;). By the above argument ¢ = 0, and so0 b? + b + b;by + byb; = 0. The
first 3 summands in the left hand side of the last inequality are zero by equality (*), and
50 bgb; = 0. Therefore b;jb; = 0 for all i,j € I, and so B2 =0.

Conversely, let G be a bounded p-group. Then G = @;¢/(a;). Choose k € [ such
that |a,| is maximal. Let R be the ring with R* = G, and multiplication induced by the
following products:
ai;, j =k
0, j#k.

aiaj =

It is readily seen that R is E-associative.

Observe that the E-associative ring just constructed in the proof of Theorem 14 is
not commutative as opposed to E-rings, which are all commutative, [6, Lemma 6]. The
element ay is a right unity in R, so an E-associative ring with right unity need not be an
E-ring.

COROLLARY 15. Let R be an E-associative ring. Then R, is E-associative for every
prime p. If Rf, # 0, then R, is a direct summand of R*.

PROOF. Let B be a basic subgroup of R,. Then B = @;<, A;, withA; = & Z(p'). For
every positive integer n, let B, = @}, A;. Since B, is a direct summand of R*, Lemma 1
yields that B, is an E-associative ring for every positive integer n, so B is E-associative
by Lemma 7. If B> = 0, then Rf, =0, [1, 1.4.6], and so R, is E-associative. If B> # 0,
then B is bounded by Theorem 14, and R, = B® D with D a divisible group. Since B is a
pure bounded subgroup of R*, and D is divisible, it follows that R), is a direct summand
of R*, [3, Theorem 27.5 and Theorem 21.2]. Therefore R, is E-associative by Lemma 1.
Actually, D = 0, by Lemma 13.

Corollary 12 and Theorem 14 yield a complete description of the additive groups of
torsion E-associative rings, which by Corollary 15 is a description of the torsion part of
an arbitrary E-associative ring. To determine the multiplicative structure of the torsion
part of an E-associative ring R, it suffices to consider R a bounded p-ring. The bounded
p-case is settled as follows:

THEOREM 16. Let G = @®;c/(a;) be a bounded p-group, with |a;| = p* for each
i € I, and let n be the greatest positive integer such that there exists i € I with k; = n.
For each i € I let m; be an arbitrary integer satisfying 0 < m; < p* if k; > 5, and let
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m; = 0 ifk; < 5. A ring R with R* = G is E-associative if and only if multiplication in
R is determined by the following products:

mia;  ifk; < k;
aia; = { nia;  ifk; > kj, with n; any integer satisfying n; = m; (mod pY) and
n; = ny (mod p":)for all i’ € I satisfying ki > ky > k;

foralli,jel

PROOF. Let R be an E-associative ring with R* = G, and let i,j € I. There exists an
integer m; satisfying 0 < m; < Pl such that a;a; = mja; if k; < k; by Lemma 6. Suppose
that k; > k;; Lemma 1 yields that a;a; = n;a; for some integer n;. Since |pk"_"fa,-| = |ajl,
it follows from Lemma 6 that p“~%a; - a; = m;p*~*a;. However p*"*ia;a; = np~a;,
and so (n; — m;)p*~*a; = 0, which implies that n; = m; (mod p*). Let i’ € I such that
ki > ky > kj. As above aya; = nyay. There exists ¢ € E(G) such that p(a;) = ay.
Therefore hpay = apa; = <p(ai)aj = <p(aiaj) = <p(n,-a,~) = n,-ap(a,-) = n,-a{. Hence
(n; — ny)ay = 0, and so n; = ny (mod pko).

Conversely, let R be a ring with R* = G, and multiplication induced by the above
products. Let ¢ € E(G), and let i,j € I. If k; < k; then p(aia;)) = p(mja;)) = mjp(a;).
Since |p(a;)| < |a;| < pb, it follows from Lemma 7 that p(a;)a; = mj¢(a;), and so
olaia;) = p(aa;. If ki > ki then p(a;a;) = nip(a). If [p(a)| < |aj|, then p(a))a; =
mjp(a;) by Lemma 7. Since n; = m; (mod pk), it follows that (a)a; = nyp(a;) =
¢(a;a;). It remains to consider pk > |p(a)| > pY. In this case p(a;) = S Sy,
with |a,| < p%, and s, an integer for all 1 < ¢t < m. Since ¢(a;)a; = X", s(aq;) =
S sian, and @(aia;) = ni(CL, sia,), it suffices to show that mia; = na, for all
1 <t < m. This follows from the fact that n; = n, (mod p*).

The torsion free case. The E-associative rings with completely decomposable tor-
sion free additive groups will now be determined. First some notation will be introduced.
Let G = @;c;(e;)« be a completely decomposable torsion free group. The elements ¢; will
be chosen so that h(e;) = t(e;) forall i € I. Let

J= {j € I'| t(ej) is minimal in the type-set of G, #(¢;) is idempotent,
and for i € I such that #(e;) is incomparable with t(e;),
there does not exist k € I such that t(e;) > t(e;), and

Her) > 1e))}.

LEMMA 17. Let G be as above, let R be an E-associative ring with R* = G, and let
J € I. There exists a rational number rj such that rje; € (e;)s, and e;e; = rje; foralli € 1
for which t(e;) > t(e;). If t(e;) is not idempotent, then r; = 0.

PROOF. ¢ € (¢)), by Lemma 1, s0 ¢/ = rje;, with r; a rational number satisfying
riej € (ej)«. Leti € I such that t(e;) > t(e;). There exists ¢ € E(G) such that o(¢;) = e;.
Therefore eie; = p(ej)ej = <p(ej2) = p(rje;) = rjp(ej) = rje;. If t(e;) is not idempotent,
then (rje;) = t(e}) > t(e;) which implies that r; = 0.
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THEOREM 18. Let G and J be as above, and let R be a ring with R* = G. For every
J € J let rj be a rational number such that rie; € (ej)«. Then R is E-associative if and
only if multiplication in R is determined by the following products:

riei ifj € J, t(e;) > t(e))
0 otherwise

eiej = {

PROOF. Let R be an E-associative ring with R* = G, and let i,j € I. By Lemma 17,
there exists a rational number r; such that rje; € (¢j)« and e;e; = rje; if 1(e;) > t(e)).
Since e;e; € (e;), by Lemma 1, and 1(e;ej) > 1(e;), it follows that e;e; = 0if 1(e;) Z# t(e;).
It remains to show that r; = 0 forj ¢ J. If #(e;) is not minimal in the type-set of G,
then there exists i € I such that t(e;) < f(e;j), and so e;e; = 0. There exists ¢ € E(G)
such that ¢(e;) = e;. Therefore rje; = ej? = (e))ej = p(eiej) = 0,and sor; = 0. If
t(e;) is not idempotent, then r; = 0 by Lemma 17. Suppose there exist i, k € I such that
t(e;) and t(e;) are incomparable, but r(e;) > t(e;), and f(ex) > t(e;). Then exe; = rjex.
Since #(e;) Z# t(e)) it follows that e;e; = 0. There exists ¢ € E(G) such that p(e;) = ¢.
Therefore rie, = exe; = p(ei)ej = p(eie;)) =0,and sor; = 0.

Conversely, suppose that R is a ring with R* = G, and multiplication in R is deter-
mined by the above products. Let ¢ € E(G), and leti,j € 1. If j € J, and t(e;) > t(e)),
then ¢(eie;) = rjp(e;). Since t{p(e;)] = t(e;), it follows that p(e;) = Xj- | spex with s a
rational number, and #(e;) > t(e;) for all 1 < k < m. Hence p(e;)e; = 2, si(exej) =
ri(ChL sker) = ripler) = pleiej). If j € J, and t(e;) Z t(e;) then p(eie;) = p(0) = 0.
Since 1(e;) £ t(e;) by the minimality of #(e;) it follows that #(e;) and #(e;) are incom-
parable. Since t[¢(e;)] > t(e;), either ¢(e;) = 0, or t[¢(e;)] # t(e;). In either case,
p(ee; = 0 = p(eie)).

Ifj ¢ J, then ¢(eie;) = p(e)e; = 0.

An argument similar to that used in the proof of Lemma 7 yields:

LEMMA 19. Let R be a ring with R* a separable torsion free group. Then R is E-

associative if and only if every (finite rank) completely decomposable direct summand of
R* is E-associative.

A generalization. E-associativity is just one of a set of ring properties which will
now be defined.

DEFINITION. Let n > 2 be a positive integer, let i be a fixed integer, 1 < i < n, and
leto € S,. AringRisa (0,i,n)-ringif p(x1 - - - X,) = X5(1) " * * Xo(i= 1) P Xo(i) MXo(i+1) * * * Xo(n)
forall ¢ € E(R*),and all xi,...,x, € R.

The E-associative rings are precisely the (1, 1, 2)-rings, where 1 is the identity in S,.

THEOREM 20. Let R be a ring with unity. The following are equivalent:

(1) Risa (o,i,n)-ringforalln >2,all1 <i<n,andall g € S,.

(2) There exists a positive integer n > 2, an integer 1 <i < n, and o € S, such that
Risa (o,i,n)-ring.
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(3) Risan E-ring.

PROOF. Clearly 1) = 2).

2) = 3): Let R be a (0,i,n)-ring, and let o € E(R"). It suffices to show that either
p(x) = ¢(1)x for all x € R, or that p(x) = x- ¢(1) for all x € R, [6, p. 65, Lemma 6 and
Definition]. If i = n, then choose x,(1) = x, and x; = 1 forall 1 <j < n withj # o(1).
Then p(x) = o(x1---x,) = Xo(1) " * 'xa(n—l)‘P(xa(n)) = X(W(l)) If i # n, then choose
Xomy = X, andx; = 1 forall 1 < j < nwithj # o(n). Then p(x) = o(x;---x,) =
Xo(1) " PXa(m) = p(Dx.

3) = 1): Let R be an E-ring. Then R is commutative, and ¢(x) = ¢(1)x for all
¢ € E(R"), and all x € R, [6, Lemma 6]. This clearly implies that p(x; - - - x,) =
Xo(ly* ** PXo@i)) -+ Xomy = @(1)x1 - - - x,, for every positive integern > 2, all 1 <i <n,
alloc € S,,and all x;,...,x, €R.
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