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HAUSDORFF DIMENSION OF THE LIMIT SET ON A
VISIBILITY MANIFOLD

HYUN JUNG KIM

In this paper, for a given Puchsian group F, we prove an upper estimate for the
Hausdorff dimension of the radial limit set in the visibility manifold. Further, if F
is a convex cocompact group, we find the exact Hausdorff dimension of the limit
set.

1. INTRODUCTION

Imagine an infinite array of points in hyperbolic space. We consider the distribution
of these points at large distances from an observation point x. We define the density at
the ideal boundary for the array of points viewed from x. That is a class of measures
on the ideal boundary, which is called the conformal density or Patterson-Sullivan mea-
sure. Suppose if is a n-dimensional complete simply connected Riemannian manifold
without conjugate points and F is a discrete group of isometries on H, which acts on
H freely and properly discontinuously. As an infinite array of points, we consider the
orbit Tx of F for a point x 6 H. The conformal density for Tx was constructed by
Patterson in the case where dimH — 2 and the sectional curvature of H is constant
- 1 ([7]). His construction was generalised by Sullivan to the case where the sectional
curvature of H is constant —1 in all dimensions ([8]). In [9], Yue performed the same
construction when H has a variable negative curvature, and the author proved the ex-
istence and some properties of the Patterson-Sullivan measure on a visibility manifold
([6])-

We define the visibility manifold, following the notations in [2] and [3].

DEFINITION 1.1: H satisfies the visibility axiom if for every point p G H and

every number e > 0, there is R = R(p, e) > 0 such that for any geodesic 7 : R -* H

with d(p,j)>R, Zp(7) = sup{zp(7(*),7(s)) | M € R } O .

In particular, when we can get the constant R independently of the choice of p,
we say that H satisfies the uniform visibility axiom.
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200 H.J. Kim [2]

In Definition 1.1 the notation /.p{q\q2j for giand 92 in H which means the canon-

ical measurement for the angle consisting of two geodesic rays from p to qt and q2.

In [1] there are many properties that are equivalent to the visibility axiom in

Definition 1.1, and in this paper we use the property below frequently.

For any distinct two points 77 and £ in dH, there exists a geodesic line between 77

and £.

We note that there may be more than one geodesies between 77 and £. If we have

two geodesic between 77 and £, then the two geodesies bound a flat strip, and in the

flat strip, the sectional curvature is 0. In this paper, we assume the uniform visibility

axiom on H.

DEFINITION 1.2: Suppose M is a manifold without any conjugate points. If the
universal cover H of M satisfies the uniform visibility axiom, we call M a visibility

manifold.

Suppose H satisfies the uniform visibility axiom. Let dH be the ideal boundary,
which is the set of points at infinity for H with the cone topology. Then H is diffeomor-
phic to an open disc Dn and the ideal boundary dH of H at infinity is homeomorphic
to a sphere 5 " . Let F be a subgroup of isometries of H, that is torsion free, discrete
acting on H freely and properly discontinuously in H. For any point x in H, consider
the orbit Tx and its closure Tx. The limit set of F is defined by L(T) = TxC\dH.

According to Eberlein [2], L(T) has one point, two points or infinitely many points.
From now on, we deal with the case that I (F) consists of infinitely many points, and
call F the Fuchsian group. Generally, in a 2-dimensional manifold, F has been called
a Fuchsian group, and in higher dimensional manifolds, F has been called a Kleinian
group. Here we call F Fuchsian group in any dimensional manifold.

We introduce the construction and some properties of the Patterson-Sullivan mea-
sure, which were proved in [6] for the visibility manifold.

For positive real number s and two fixed points x, y in H, we consider the following

Poincare series

where d(x,^y) is the hyperbolic distance in H. Then there is a positive number S(T)

such that gs(x, y) diverges for s < S(T) and gs(x,y) converges for s > S(T), that is
independent of points x, y E H.
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Define a family of measures

= lim - ^ r e - * ' 1 s » ( S i y , s><5(F),

where S^y is the Dirac mass at jy. When at s = S(T) fix diverges, F is of divergence
type. Otherwise, F is of convergence type. When F is of divergence type, \ix is
concentrated on L(T). In [6], we proved that for any other point x,x' G H, /zx/
and (ix were absolutely continuous and moreover, the Radon-Nikodym derivative at
£ G L(r) was

(1.1) pL{t) = e-'(r)P*A*'),

where pz^(x') is a Busemann function.

For 7 G F we find

(1-2) 7Vx=/»1(,) .

Generally, we call the family {fix} of measure on L(T) satisfying (1.1) and (1.2) a
<5(F)-conformal density or an Patterson-Sullivan measure.

In this paper, we estimate the hyperbolic dimension of the limit set of L(T). For a
hyperbolic manifold of constant curvature — 1, there is a canonical metric on the ideal
boundary in the Poincare model and the Hausdorff dimension is exactly 6(T) in the case
where F is a convex cocompact group. In a hyperbolic manifold with variable negative
curvature, there are many possible equivalent metrics on dH (see [4, 5, 9]). So the
Hausdorff dimension is well defined. Our problem is whether there is natural class of
metrics on the visibility manifold. In Section 2, we consider a metric on dH which was
introduced by Kaimanovich and Hamenstadt for strictly negatively curved manifolds.
We show that the metric on dH is still well defined on the visibility manifold and
we estimate the Hausdorff measure of the radial limit set with respect to this metric.
Finally, if F is a convex cocompact group, we find the exact Hausdorff dimension of
limit set L(S).

2. HAUSDORFF DIMENSION FOR CONVEX COCOMPACT GROUP

Let (X, d) be any metric space and D > 0 be a nonnegative constant. Let A be
a subset of X. For each e > 0, consider

(A) = in f j jS f I A C \jBXj(6j), bj < e and Xj G A \ ,
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where the infimum is taken among all coverings of A by balls of radius less than or

equal to e. The limit measure

H5(A) = Yimn?(A)

is called the D -dimensional Hausdorff measure of A. The Hausdorff dimension HD(A)
is denned to be

HD(A) = inf{D | n^(A) = 0}= sup{£> | %%(A) = oo}.

An easy consequence of this definition is that if 0 < %®{A) < oo then HD(A) — D.
Fix a point xo € H. For any x in H and d > 0, consider the shadow of the ball

B(x, d) from x0 to dH defined by Oxo{x,d) = {T? S dH \ cXQtV n B(x, d) ^ 0}, where
CX0,T) is the geodesic ray from XQ to r\.

DEFINITION 2.1: C e dif is a radiaZ limit point if for some c > 0 and x € H, £
belongs to infinitely many shadows Oxfrx,c), for 7 € F. We denote the radial limit
set by Lr(F).

In order to estimate the Hausdorff dimension of the radial limit set, first of all we
have to define a metric on dH. We define a metric on dH, which was introduced by
Kaimanovich [5] and Hamenstadt [4]. Fix a point x 6 H.

DEFINITION 2.2: For any two points 77,£ e dH let Dx{r),£) be the minimum
distance from x to a geodesic c from { to r/. The geodesic metric is defined for all
e > 0 to be

In this definition Dx(.,.) is well defined because the set of the geodesies between
two points in H, that is the flat part in H, has a finite width and the range of the
distance from x to c is compact interval. We have to show that the metric d% is well
defined.

THEOREM 2 . 3 . There exists £0 > 0 such that d% is a metric for all 0 < e < e0

and x G M.

PROOF: By the definition of d€
x, we need to prove only the triangle inequality. Let

us choose the three points £i)£2,£3 6 dH and let Ci,C2,C3 be any geodesies between

£i,£2 and £2,^3 and ^3,^1, respectively. We can get a point p e c3 so that d(x,c3) =

d(x,p) and let Ro — d(c3,x) = d(p,x), where d(.,.) is the distance induced from the

given Riemannian metric. Let 7 be the geodesic ray from x to p We prove the triangle

inequality by the two steps below.

First, we consider the special case in which the geodesic ray from x to £2 goes

through p in the geodesic C3. Then 7 and C3 orthogonally meet at p, that is,
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Zp(^!,^2) = TT/2 and Zp(£2,£3) = T / 2 . Since H satisfies the uniformly visibility
axiom, we can get a constant R = R(n/2) such that d(ci,p) ^ R and d(c2,p) ^ R- So
we have d(z, ci) ^ Ro + R and d(x, c2) ^ .Ro + -R. Choose e0 = (In2)/R. Then for all
£ <e0,

exp(-ed(x,c3)) = exp(-eRo)

^2exp(-e(R0 + R))

^ exp(-ed{x,ci)) + exp(-ed(z,c2))

Next, we consider the general case. For a real number 8 g [0,7r], define f(6) as
the minimum distance d(p, c) from p to a geodesic c between £2 and any point in dH
with Zp(c) ^ 9. Then / is a decreasing function in 6 and /(TT/2) ^ R = R(TT/2). We
suppose that Zp(£i,£2) = ^o- Then Zp(£2,6) ^ TT - 60 because Zp(^i,^3) = n. Let
e0 = (In2)/R. Since / is a decreasing function in 9, it is allowed that exp(—ef(9)) +
exp(—ef(n — 9)) has the minimum value 2exp(—e/(7r/2)). Then for all e < £o, we
have

exp(-ed(z,c3)) = exp(-cR0) ^ 2exp(-e(/?0

^ 2exp(-e +

^ exp(-e(i?o

^ exp(-ed(a;,ci)) + exp(-£rd(x,c2))

,6)-

Since the above inequality is true for any geodesic between £i and £3, we have the
triangle inequality

dx(£i,&Kd»(6,6) + dx(6,6)- D

Prom now on, we suppose that if is a visibility manifold with nonpositive sectional
curvature. For convenience, we make the followings definitions.

For fixed x G H and for £,r) G dH,

lx(Z,r)) = sup{t ^ 0

This was suggested by Kaimanovich [5] and Hamenstadt [4], who showed that it
is a metric for sufficiently small e in a negatively curved cocompact manifold. The
Lemma below says that this is still a metric in dH on the visibility manifold.
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LEMMA 2 . 4 . There exists a constant C > 0 such that for £,77 € dH,

PROOF: Let q be the point on a geodesic c between £ and 77 that is nearest to
x. Let 71 and 72 be geodesic rays from x to £ and 77, respectively. Then in the
triangles (x, q, £) and (x, q, rf) the angles at the vertex q equal TT/2 , the distances from
the point q to the ray 71 and 72 is bounded by Ri > 0 that is independent of the
choice 77 and £. Let pi,P2 be the points on the geodesic rays 71,72 respectively such
that d{pi,q) — d(q,ii) for i = 1,2. Choose the points ft on ji (i = 1,2) such that
d(x,qi) = lx(£,v)> s o t n a t (̂<7i><72) = di- Let [91,92] be a geodesic segment between
<7i and 92 • Then there are the three cases:

(1) d(x,qi) = d(x,Pl),

(2) d(x,qi)<d(x,p1),
(3) d(x,qi)>d(x,Pl).

First, we consider d(x,q\) = d(x,pi) and d(x,qi) < d(x,pi). Then we can easily

see ia(£,ij) <£>,(£, 17).

Second, we consider d(x, gi) > d(a;,pi). Then we can easily check Zqi(q,£) > 7r/2,

because Z.qi(q,£) is a exterior angle of the right triangle (qi,Pi,q)- By the visibility

axiom, the distance from qx to the geodesic ray c from q to £ is bounded above by

Ri > 0. Let p be the point on c nearest to q\. Since Zp(g, gx) = Zg(p, x) = TT/2, we

can get d(q,p) ^ d i , so that d ( i , g i ) ^ d(x,g) + R2 for some positive constant R2.

Summing the above three cases, we get a constant C > 0 so that

For convenience, we use the notation 6 instead of S(T) as a critical exponent of
F. Before the estimate of the Hausdorff measure, we prove a Lemma below, called
Sullivan's Shadow Lemma in [6], which will play an important role.

LEMMA 2 . 5 . Let {HX}X^M be a 6-conformal density ofT. Suppose /J,X does not

consist of a single atom. Then there are constants C ̂  1 and 60 ^ 0 such that for all

THEOREM 2 . 6 . Let {/xx} be 8-conformal density of V. There exists a constant

C > 0 such that if A is a Borel subset of Lr(F) with fj,x(A) > 0, then nS
d

/e(A) ^

Cfix (A), where d — d%.

PROOF: Suppose A C Lr(T) is a Borel subset. Let x 6 H. Since u-x(A) > 0,

almost every point of A is a density point of the measure in the sense that for almost
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every a € A
Vx[B(a,t)nA\

m —^-f—-—-5-^- = 1,
>o [B(at)]

hm
t->o

where B(a,t) = {i] € dH \ dx(a,ri) ^ t} for sufficiently small e > 0. Let T = { l i } ^ .
Let a > 0 be any constant. We can take a set A' C A and to > 0, such that
^X(A - A') < a and

(2.1)

for all 0 < £ < to and all a £ A'.
Let 0 < 6 < bo, where bo is the constant in Lemma 2.5. Since every point in

A' C Lr(T) lies in infinitely many balls Ox(
/y~1x,b), we can construct a covering

<Ox(
ry~£x,b) \ of A' such that Ox('y~*x,b) is a ball whose d%-radius r* satisfies

fe-i
rk < t < to /2, whose centre is outside the union (J Ox (l^a;, 6), and so that rfe ^ r^+i

i=i *

for all k. Then the ball with the radii r^/2 and the same centre are disjoint. Denote
the union of these disjoint balls by fi. By Lemma 2.5, there exists C\ > 0 such that

fc>l

By the definition of lx and Lemma 2.4, there exists a constant C2 > 0 such that for all

fc> rk/2 ^ C2e~£ VXl7r»fcx/. Consequently, we have

S/e

for some constants C3 > 0, and by (2.1)

1 — a

Summarising these results, we have Ht (A') ^ Cfxx{A). Letting t —> 0, a goes to 0.
So we obtain

H5/e(A) ^ CtJLx{A). Q
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THEOREM 2 . 7 . If there exists a S-conformal density fj,x ofT, then the Hausdorff

dimension of the radial limit set with respect to dx satisfies

HD(Lr(T)) ^ 6-

for sufficiently small e and for all x € H.

PROOF: If ^x(-Lr(r)) > 0, then Theorem 2.6 implies this result. Assume

Hx(Lr(T)) = 0. We can get a cover of Lr(T) as in the proof of Theorem 2.6. Then we

have nS
t
/E(Lr(T)) ^ CfJ.x(fl) ^ Cfxx(dH) < oo for some constant C > 0. D

We have an upper estimate of the Hausdorff dimension when F is a just Fuchsian
group. Now we prove that if a Fuchsian group F is convex cocompact, HD(Lr(T)) is
exactly 6/e with respect to the metric dx = d on OH.

DEFINITION 2.8: Let F be a Fuchsian group of a simply connected visibility man-

ifold.

(i) The geodesic hull of F is defined to be G(F) = (L(T) x L{Y) - diag) xR,
that is, the union of all geodesies 7 in if with j(—00), 7(00) € L(F). F
is said to be geodesic cocompact if G(F)/F is compact.

(ii) The convex hull of F is denned to be H(T), that is, the smallest convex
set in H containing L(T). F is said to be convex cocompact if H(T)/T

is compact.

In general G(F) is not a convex set, but G(T) is a subset of H(T).

THEOREM 2 . 9 . The followings are equivalent.

(1) F is convex cocompact.

(2) F is geodesic cocompact.

(3) For any point £ € dH, there is a constant C > 0 such that the geodesic

ray 7 from x to £ is in the C -neighbourhood of a orbit ofT.

PROOF: TO show (1) implies (2), we first suppose that ^(F)/F is compact. Since
G(F) is a subset of H(r), #(F) /T is compact.

To show (2) implies (1), we first have by the visibility axiom, that for any
Ci!^2i?3 S H, every point of the interior part of a triangle (^1,^2^3) 1S m the R(n/2)-

neighbourhood of the triangle, where R(n/2) is a constant corresponding tO7r/2 in the
uniform visibility axiom. Further, we get that H(T) is in the R(TT/2) -neighbourhood
of the G(T). So we get that the geodesic cocompactness of F implies the convex
cocompact of F.

To show (3) implies (2), we first choose any two distinct points £ and 77 in L(T).

Let 7 ^ and j x v be the geodesic rays from x to £ and 77, respectively and let 7 ^ be
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the geodesic line from £ to 77. Then by the uniform visibility axiom, 7X£ and 7 ^ are

in the R(TT/2) -neighbourhood of 7 ^ . Since 7 ^ and j x v are in the C -neighbourhood

of a orbit of F , 7 ^ is in the (C + R(n/2)) -neighbourhood of a orbit of F , and F is

geodesic cocompact.

To show (2) implies (3), we suppose F is geodesic cocompact. Then there is a

constant C\ > 0 such that any point of G(F) has a distance less than C\ from an

orbit of F . Let £ £ dH be any point. Let a; £ if be a fixed point. Choose a distinct

point 77 6 dH from £. We can get a unique point p in a geodesic 7 ^ from £ to 77

such that d(x,p) = d(x,y^). Let d(x,p) = Ci- It is easy to see that 7xj is in the

R{rr/2) -neighbourhood of 7P£ and j x p . By the compactness of G(F) /F , 7P^ is in the

C\ -neighbourhood of a orbit of F . And there exists a constant C3 > 0 such that the

ball with centre x and the radius R(n/2) is in the C3 neighbourhood of a orbit of F .

Let C — min{Ci + C2, C3}. Therefore the geodesic ray jx$ is in the C-neighbourhood

of a orbit of F . D

Theorem 2.9 says that every limit point in the convex cocompact set is a radial

limit point and L(F) = L r (F ) .

LEMMA 2 . 1 0 . Suppose F is a convex cocompact group. Let iix be a 5 -conformal
density. Then there exists C > 0 and r0 > 0 such that

where B(£,r) — {77 e dH \ d*(£,r?) < r) is a ball with centre £ € L(T) and radius
r0 > r > 0.

PROOF: By Theorem 2.8, there is a C\ > 0 such that any point on a geodesic ray
from x e H has a point of the orbit of F in a distance C\ > 0. Consider £ € L(F)
and e~eR > r > 0 where R — R(ir/2) is the constant corresponding to the angle 7r/2
in the definition of the uniform visibility axiom. Choose a point u on the geodesic ray
from x to £ such that d(x,u) — —lnr/e. We can get a point a - 1 (x) of orbit F(x)
such that d(u,a~1(x)) ^ C\ for some a € T. Let 77 be a point in B(£,r). Let p£ H
be the point on the geodesic line 7 ^ between £ and 77 such that d(x,p) — d(x,ry^v).
Then we have that both of Zp(£, x) and /.p{t], x) are ?r/2, By the definition of uniform
visibility, we get points qi and q<i on the geodesic rays jx$ and 7xtJ, respectively, such
that both of d{p,q\) and d(p, q-i) are less than and equal to R(n/2). By the triangle
inequality, we have ^(^1,92) ^ 2.R, and by the angle comparison of triangle, we have
d{u,qi) ^ R. Since

d{a-l{x),lxr]) ^ d(a-\x),u) +d(u,q1) + d(q1,q2) < d + 3R,

we have 77 6 Ox(a>-l(x),Ci + 3R) . So it means that B(£,r) c Ox(a-1{x),Ci + 3R) .
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By Lemma 2.5, we have

where Ci > 0 is a constant independent of x and r. Since d(x,a~1(x)) > —Inr/e —

C\ > 0, we have a constant C > 0 such that

D
THEOREM 2 . 1 1 . Let F be a convex cocompact group with critical exponent

5 = <J(F). Then there exists a constant C > 0 such that if /I is a Borel subset of the

limit set then we have

PROOF: Let {.£?(&, r^)} be any cover of A where the balls B(£i,ri) in dH have

centres on the limit set. Let e > 0. Then by Theorem 2.10, we get for e > ri > 0,

Letting e —> 0, we have a constant C > 0 such that

THEOREM 2 . 1 2 . If T is a convex cocompact group with critical exponent S then

the Hausdorff dimension of the limit set is 8/e with respect to the metric d%.

PROOF: By Theorem 2.9, we have Lr(T) = L(T). Since fj.x(L
r(r)) = u.x(L(T))

has the positive full measure, Theorem 2.6 implies HD(L{Y)) ^ 5/e. By Theorem

2.11, we have HD(L(T)) ^ 5/e, which means that the Hausdorff dimension of the

limit set is 5/e exactly. D
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