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ABSTRACT. A perturbation method is used to a na lyse the stability of a thin till layer 
overlain by a deep ice layer. Ice is m odelled as a linea rly viscous fluid , while the t ill v isc
os ity has power-l aw dependence on stress and effec tive press ure. A linearized set o f equa
tions yields descriptions of the co upling of the ice fl ow with the sediment fl ow and reveals 
p a rameter ra nges where th e till-perturba ti on a mplitude can g row. Thi s shee t-fl ow 
instability is an essential part of any theory of drumlin formation a nd shows that vi scous 
models of till have the ability to explain typica l deforming-bed features. This is of g reat 
sig nificance for la rge-scale ice-sheet modelling. 

M eaning 

Till-flow model indices 
\Vave number 
Ice pressure 
Effec ti\ 'e pressure 

P"o - a Do 
Till flu x 
Time 
Veloc it y 
U l (X, z) - Dt ooU 
Position 
R a tc factor fo r till 
Fourier coeffi cicl1ls 
Till thickness 
Fouri er coe fficienLs for D 

1 

((DO)2 + (DJ)2)' 
Velocity function for till deform a ti on 
Flu x function (o r till deform ation 
Migrati on velocity 
Fouri er cocffi cients for P 
D eri\'atiyes of Fq 
D erivatives of Fu 
Ta ngenti al, norma l trac ti on at sedimenL 

surface 
R eference (simple shea r) velocit y field 
Interfacia l PC' sta tic g radient 

Internal Pe sta ti c g radient 
a+{3 
E xpansion pa ra meter 
Ice viscosi ty 
Sediment porosity 
Phase 

of ice sheets and g lac iers. They range in size from a few 
me tres to tens ofm c tres high and range in length from tens 
of m etres to kilome tres. Typicall y, drumlins ha\'e blunt up
stream a nd occas iona ll y downstream faces. The problem of 
expl a ining drumlin fo rmati on, which has troubl ed g lac ia l 
geolog ists for O\'e r a century, was re-im'igo rated in th e 
1980s when it was rea li zed that sediment deform ati on could 
expla in many of the structures fo und within drumlins 
(Boulton, 1987) a nd it was hypothes ized that, if subglacia l 
sediment were essenti a lly deforming as a viscous fluid, then 
drumlin formation might be a p roblem explicable using 
fluid-d ynamica l principles (Boulton and Hindmarsh, 1987). 
T his has important consequences, because the same physics 
which explain drumlin form ati on can a lso expl a in ice
stream lubricati on by deforming sediment, as obse rved 
beneath Ice Stream B (Bl ankenship a nd others, 1986). The 
a bility to expl ain drumlin formation can thus be seen as a 
key test for any theory of subglac ia l sediment tran sp ort 
a nd , if subglacia l scdiment deformation is an impor tant 
sediment transpo rt route, the stud y of drumlins provides in
fo rm a ti on about th e la rgc-sca le fl ow of sediment, informa
tion which canno t be measured in the labora to ry fo r 
prac tical reasons (Hindmarsh, 1997). 

R ecently, the blunt faces of drumlins ha\'e been ex
pla ined as shocks (Hindm arsh, 1996, in press a ) and a non
linear kinematical theory of drumlin form ation has been 
deve loped. However, while a certain proporti on of drum
lins a re obviously m o ulded from pre-ex istent reli ef, the re is 
a sufficient proporti o n of drumlins composed of the same 
m a terial as surrounding till (subglacia l sedimenr) fields to 
suggcs t that drumlin form ati on may be an instability in a 
v iscous fl ow of a till sheet. This idea has long been deba ted 
am ongst glacial geo logists. In thi s p ap er, wc examine the 
sta bility of a till sh eet a t wa\'c1eng ths longer than the d epth 
of the deforming till but shorter th an the icc-shee t thickness; 
thi s is a ty pica l drumlin wave leng th . 

1. INTRODUCTION 

T n general, the fl ow of two shea r i ng laycrs of diffe re nt 
viscos iti es but the sam e dcnsity is sta bl e. In this case, the 
viscosity of the ti ll laye rs is affected by the normal traction 
a pplied by the ice. Nlo reove r, till di scha rge does not inc rease Drumlins a re m ounds of sedimcnts produced by the action 
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monotonically with till thickncss (for a given stress ) but de
creases, owing to increased effective pressures (Hindmarsh, 
in press a ). On its own, thi s does not lead to unsta bl e thick
ening of the till layer but th e interaction of this p roper ty 
with the ice fl ow might. This is investigated in the present 
paper. It is found th at under certa in conditions, but not a ll 
conditions, th at unstable thickening does occ ur; sh eet fl ow is 
not stabl e. A feature which em erges is that, in general, till 
bed forms migra te. T his is n ot something which h as been 
extensively d iscussed in the lite rature and indeed it is hard 
to see how it might be inferred from formerly glaciated 
a reas. Rock-cored drumlins m igh t at first sight ap pear to 
mili tate against this idea but, since so many d r umli ns are 
not rock-cored , one has to regard rock-cored drumlins as 
atypical in genesis and therefore in dynamics. It is hard to 
imagine a viscous theory which does not in genera l predict 
migration. 

The ice-flow model is a varia nt of the perturbation 
approach developed by Nye (1969, 1970) and K a mb (1970), 
called here the N K solution, and, since the ice is in a state 
of simple shear at large di sta nces from the bed , a lso bears 
some relati on to the analysis by Morl and (1976a, b); it is 
not, however, a gravity-driven flow. R ather th a n slipping 
O\'er a perfectly smooth, fixed bed, it is fixed to a thin 
defo rming fluid , the till , whose str ess fi elds ca n b e computed 
using lubrication-theory approx imations (known in glaciol
ogy as the thin-till approxim ation (All ey, 1989)). The evolu
tion of the till profi le can then b e computed a nd it is found 
that in certa in p a rameter ranges the surface reli ef grows, 
although of course the till volume remains constant. This is 
the principa l result of the pap er; ice fl owing over a thin till 
sheet can prom ote unstable amplification of rel ief. This is a 
necessary component of a theor y of drumlinization if it is 
beli eved t ha t n ot a ll drumlins a re created by m oulding of 
pre-existcnt rel icf. 

This ana lysis is based upon the viscous fl ow laws for till 
whcre stra in rate is p roportio na l to the shear stress to some 
low power and imTrsely propor tional to the effective pres
sure to some low power (Boul ton and Hindma rsh, 1987). The 
relevant pap er was written in the context of six decades of 
mecha nical research which showed that on the sm all scale 
sediment was plastic. At Breioam erkUljokull, th e ice over
r iding deforming sediment does not build up and then slip; 
en masse, it does not behave pl as tically. A viscous law, whil e 
undoubted ly fa ili ng to represent fa ilure, represe nts the sim
plest model compatible with large-scale observations. I n the 
same way as observations of di slocati ons in ice (an event 
akin to plas tic failure) are never held to militate aga inst the 
validity of viscous descriptions of ice, there appears to me to 
be no contradiction between la boratory experiments which 
demonstrate pl ast ic behavio ur a nd the posing of a viscous 
law which a pplies on a la rger scale (Bahr and Rundle, 
1996; H indmarsh, 1997). Recent studies, for example, by 
K amb (1991) a nd Iverson and o thers (1995), which question 
the ex istence of local viscous beh aviour, do not explicitly ad
dress the question of what a n appropriate la rge-scale law 
m ight be. On the other hand, to be of any use, a large-scale 
viscous law must be shown to b e a ble to reproduce observed 
behaviour. Thi s p aper shows that the viscous fl ow of till, 
when coupled with ice fl ow, can create an insta bility which 
appears to be necessary in the formation of drumlins (Hind
marsh, in press a ). Actuall y, it a lso shows that p ower-law in
dices as high as 10 (which some m ight call plas tic behaviour) 
can create d r umlins. 
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2. STOKES EQUATIONS AND BOUNDARY 
CON DITIONS FOR SHEAR OVER A MOBILE BED 

The solution dom ain is an ice-sheet h a lf-space overlying a 
defo rmi ng till layer of fi nite thickness. T he ice and the till 
a re supposed to b e fully coupled , so that velociti es a re con
tinuous across the interface. A shear stress is appli ed to the 
ice a t a large di stance from the bed, w hich sets up a sim ple 
sh ear in the ice a nd causes the till to deform. In the base 
case, the till surface is fl a t, meaning th at a simple shear ex
ists in the ice and tha t the till deform s with uniform velocity 
at its upper surface. Small periodic variations in the till sur
face profi le are then introduced, which cause the simple 
sh ear in the ice fl ow to be modifi ed , according to a vari ant 
ofthe NK perturba tion of the Stokes equati ons. Flow in the 
till is still computed according to lubrication theory princi
ples, implying th a t the waveleng th of the di sturba nces be 
g reater than the defo rming layer thickness. The p erturba
tion to the ice flow implies perturba tions to the ta ngenti al 
a nd normal trac tion s applied to the t ill, causing th e ti 11 fl ow 
to be perturbed, a nd it is the distr ibution of these which 
de termines whether the till reli ef g rows or decays. 

Consider the ice to be occupying a half-space peri odi c in 
the hori zontal direction in the dom ain x = [0, 27T / k] and 
Z 2: 0 , where k is a wave number . We can generate a zeroth
o rder solution by assu m ing that the b ed is fl at and tha t the 
till is thus of uniform thickness D = Do, with the top of the 
till a t z = O. Let us suppose that a t raction Tot is applied to a 
h orizontal surface o n the ice at a d ista nce very fa r from the 
bed . This se ts up a simple shear in the ice and in the till a nd 
a lso creates a horizontal velocity in the ice at the bed z = O. 
\I\Te fi nd that the zeroth-order \'elocit y is 

Uo = Ub + zozU, ozU = To
t /7] , Ub = Fu(Tot,pco, Do) 

(1) 

where Pea is the in terfacial effective press ure and Fu is a 
function to be discussed later. This sh ear impli es a fl ux of till 
g iven by 

(2) 

In thi s analysis, the effective pressure is a free pa ram eter, 
which in reali ty is d etermined by the subglacial hydra ulic 
system. In this study, hori zonta l scales arc ass umed to be 
sufficiently small that pressure g radients are hyd rostatic; 
there are no hori zonta l water-pressure gradients. The phy
sics of this has been di scussed by Hindmarsh (1996, in p ress ). 

Following Nye (1969, 1970) and K amb (1970), we p e r turb 
the zeroth-order so lu tion of ice flow by introducing some 
undulations into the bed. There is a difference here com
pa red with the N K solution, because we have a base solution 
with simple shear (a nd thus no possible problems with the 
Stokes paradox (Fowler, 1981)), the situation is in some ways 
an a logous to the g r avity-driven fl ows compu ted by Morland 
(1976a, b). Moreove r, we follow Nye (1970) by wo rking in a 
p erturbed coordinate system where z is measured from 
a bove the bed. This transform is cove red in more de ta il III 

t he Appendix. 
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The p erturbation expa n sio n of fi eld values in the ice in 

thi s tra nsfo rmed coordina te system is 

u = Ub + O:U( Z + f D ]) + WI (x. z) + 0 (f2), (3a) 

W=fWl(X . Z)+ O(f2), P=fPI(X.Z)+ 0 (f2), (3b) 

D = Do + f D J(x) + 0(E2) (3c) 

with basal bo unda ry perturba ti on express io ns 

TII = Td' + f Tt. Tt = Tot + ETIl 

and it is shown in the Appendi x that we obta in th e [ollowing 

first-o rde r fi e ld eq uati on s 

TJ\l2u] = O.rPI + o~ DJ o:U. 

r)\l2w ] = o:PJ' 

O.cUI + O:WI = o:Uo.rDt 

with bo und a ry rela ti ons 

TI _ ( OUI OWl ) 
I - TJ '" + '" . u Z uX 

where the no rm a l trac ti o n co nventi on is compressive-pos i
tive. If we d efin e a new fun c ti o n 

(5) 

\\'e ca n re tri e\'e th e m ore fa mili a r se t of ~K fi eld equati ons 

'f),\!2 U] = O.,.P1, 

'f),\!2WI = O:p]. 

o.,.il l + O:WI = 0 

bu t now with bounda ry relati ons 

T t _ ( Oil I OW l) 
I - 77 oz + Ox ' 

(6a) 

(6b) 

(6c) 

(7a) 

(7b) 

The Grst- o rder basal velocit y is computed using a linear

iza ti on o f the basa l \"C loc ity relationship (1), so wc ca n write 

UI(.T. Z = 0) = RIT1l + R.,T/' + RoDI. (8) 

Rt = OFlI / OT. Rn = oF,I / OPe. Ro = oFlI / oD (9) 

where th e d eri\'a ti vrs a re eva lua ted a round th e ze roth-o rde r 
sta te. \Ve a lso need to sati sfy th e first-order ki ne m atical con
diti on 

(10) 

where 01 D I (by co nstruc ti o n zcro in the NK fo rmul ati on) is 
g i\Tn by the li nea ri zed till-conse n 'ation equa ti on 

Ol D] = - Q,o.,.T1' - Qno./"T!' - QOor D I. (11) 

QI = 0F,1/0T , Qn = oFq/oPe , Qo = oF;JoD. (12) 

Some read ers may feel these p erturbati ons look strange as 
th ey appea r to lack the exp ected produc ts o f ze roth- and 

first- orde r term s. In fact, a ll the zeru th-o rde r terms are in 

the coefli cie nts RI.ll.o. Q t.n.O · A quick way o f ve ri fy ing th e 
\'a li d ity o f th e meth od is to remember th a t a linea rizati on 

is simpl y a Taylor ex pansio n; th e 1aylor coef1i c ients here a rc 

simpl y R t.,l.D · Ql.n,O · 
Th e \ 'e lociti es and flu xes a rc computed fo ll owing All ey 

(1989) a nd Hindmars h (in press a ). Till flu x can arise eithe r 
from interna l deform a ti on w ithin the till o r from till sliding 

ove r th e base. When co nside rin g intern a l d e fo rm ation, the 

Hindmarsh: S[abililj' of a l'isCOUJ till sheet coupled with iceflO11' 

st rain rate in th e till is give n by a d o ubl e power-l aw rheo logy 
(Boulton a nd Hindmarsh, 1987) 

ou AdTQ 

oz Pe(Z)b (PeO + o.( D - Do) + {3( D - Do - z))b 

(13) 

where Ad is a ra te fac tor a nd a a nd b a rc pa ra me te rs. Then, 

defining 

Pc = PeO - a Do (14) 

whence a fter integrating with resp ect to z over the inten'a l 

- Do ::; z ::; D - Do we fi nd 

AdT(J ( ' J-b, I- b) 
u = FII = (3(b _ 1) (Pe + a D ) -(Pc + , D ) . (15) 

a nd th e flu x is g iven by 

Ad T " 

q= Fq = (b - l )(b -2){32 x 

((Pc + a D)2-b -(Pc + , D )I-b(pc + riD)) (16) 

",here 

rI = cv + (3( b - 1) = ,+ (3(b - 2). (17) 

J n th ese form u I ae 

a = (PII' - Pi)g. {3 = (1 -1»(p, - p".)g, ,= a + {3 

w here g is th e acceleration d ue to g r avity, P\\, o Pi a nd p, a rc 
th e densiti es of ice, water and sediment gra ins, a nd 1> is the 
po rosity o r the sediment. 'I'Ve use the \'a lues 9.81 m s 2, 

1.0 ~Ig m ~, 0.917 l\Ig m '''2.7 l\Ig m-~ and 0.2, resp ec ti\ 'ely, 

in this pa pc r. Thcse fo rmul ae a rc deri\Td in exac tl y the 

same way as th e equi\'a lent re la ti onships in A lley (1989) 
but acco unt for sta tica lly induced ve rtica l interfac ia l efl'ec

ti ve pressure g ra dients a ri sing fro m th e de nsit y difference 

betwee n wa te r a nd ice (Hind ma rsh, 1996). U nder sta tic 

ass um pti ons, a n increase in elevati o n causes a n inc rease in 
cfTecti\ 'C press u re because wa te r p ressure dec reases more 

ra pidly th an d oes ice pressure as o nc ascends. All ey's [o rmu

lac may be retri eved by se tting cv = O. 
Wc now turn ou r attenti on to till - bed sliding. If wc use 

the \' isco us-t ype si iding la,,' proposed by Hind m a rsh (1996), 
\I 'C Gndtha t 

Sliding and de form ati on do no t occ ur togeth er in this st udy. 

\ Ve note lh a t th e 111 0re complicated deri\'a ti \'Cs are g i\'en b\' 

R Oll A T" ( (' D)- V ( ' D)-b) (g) " = oPr = d 7i Pe + , - Pc + a , 1 1:1 

Ro = : ; = Ad; (,(Pc + , D )-V - a(pc + a D)-u ) ,( 19b) 

oq AdT(/ 
Q" = OPe = (32( b - 1)(b _ 2) x (1ge) 

(
(b - 1)(pc + riD) - (7](, + "(D) _ (b - 2) ) 

(Pc + ,D)" (Pr + o.D )"- 1 . 

Q = ~ = AdT" ( ape + "(0,D _ Cl' ) 

d oD (32( b - 1) (7\' + "(D )V (1)(' + a D/ - I . 

(19d) 

A significa nt p oint is th a t we haw a sum cd tha t th e 
shea r stress is co nsta nt within th e till. At waveleng ths co m
pa rable with th e deforming lill thickness, thi s a pprox ima-
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tion breaks down, and gradients in the till thickness and the 
applied normal stress cause additional now effec ts. Our 
a nalysis, therefore, is only valid for wavelengths be tween 
the thickness of the till layer and the thickness of the ice 
layer. This is the relevant leng th scale as most drumlins are 
of this size. 

3. SOLUTION 

Let us suppose that the bed profile is given by 

DJ (t) = DJO(t) sin kx + Dt(t) eos kx (20) 

where Df(t) . D{\ t ) are scalar functions ort. The solution 
to the fi eld Equations (6) is 

Wj = exp(-kz) ( {Co + ~~ G + z) } coskx. (2 1a) 

+ { C ~ + ~: G + z) } sin kx ). 

ih = exp( -kz) ( {cn + ~~ z }sin kx 

{ C J + ~; z} cos kx ), (21b) 

Pl = exp( -kz)(P O cos kx + p ,3 sin b ::) (2 1c) 

where the coefficients co , p o,CP, p J a re determined by 
the basal boundary conditions. At the base, z = 0, we com
putc the tangential tract ion and its gradient as follows 

Tt = rJ(oJlj + O.,.Wl) = 2rJk( C,3 cos kx - Co sin kX), 

(22a) 

oxTi = -2rJk2(C !3 sinkx+Cocoskx) (22b) 

a nd the normal traction and its grad ient as 

T{' = Pl + 2rJ0IUl (23a) 

= (2rJkC o + P O) cos kx + (2rJkC J + p J) sin kx, 

o"T{, = -k((2rJkCo + P O) sin kx - (2rJkC ~ + p (3 )cos kx) 

(23b) 

whi le the interfacial velociti es a re given by 

Wl = (Co + P O) coskx+ (C !3 + PkP) sinkx, 
2krJ 2 "rJ 

Ul = Co sin kx - C !3 cos kx . 

(24a) 

(24b) 

Substitution of Equations (20), (22a), (22 b), (23a ), 23b), 
(24a) and (24b) into Equation (8) a nd also into Equa tion 
(10), where we have eliminated otD] by using Equation (11) 
a nd subseq uent multiplication of each of these equations by 
sin kx and separa tely by cos kx fo llowed by integration over 
the hori zontal domain yields the following system of four 
equations for Ca, C J. p o, p J: 

-2krJRn 
1 + 2krJRt 

2k2rJQn 
1 - 2k2rJQt 

Solutions are discussed below. 

o 
R n 

1/ 2krJ 
-kQn 

(25) 

Superposabi li ty is easy to demonstrate by expandi ng a r-
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bitrary (difTerenti able) bed shapes in a Fouri er seri es. The 
above equation holds fo r each bed frequency, and solutions 
for the stress and veloc ity fi elds may be obtained for each 
wave number which dep end on ly on the bed geometry at 
that wave number. This a lso applies to the linea ri zed till 
thickness evolution equa tion discussed below, meaning tha t 
evo lutio n equations may be obtained sepa rately for each 
mode. 

The linearized ti ll conservation equation is 

O(Dl = -QtoJ.T{ - QnorT!l - QdoI·Dl . 

Using rela tions (22 b) a nd (23 b), we can show that the phase 
and anti-phase mode-evolution equations are 

iJ~ = 2k2rJQtC J + kQn(2TJkC o + P O) + QdkD( 

iJ~ = 2k217QtCO - kQn (2TJkC J + P " ) - QdkD f. 

(26a) 

(26b) 

This solution represents a sine wave growing or shrinking in 
amplitude and transla ting. The rate of growth of the bed 
perturbation I D~ I is 

I D~II D71 = (2krJQ/C o + k(2krJC J + P O) Qn) Df, (27) 

and we can use the idea of the growth-rate constant 

(2kT]QtCO + k(2krJC l3 + p (3 )Qn)Df 

I D~I 
(28) 

This a na lysis shows tha t an incipient drumlin wil l move. 
The ph ase w is given by 

(a
J

) w = arctan D? 

and the migration ve loc ity AI ofa sine wave with wave num
ber k is g iven by -0.1/ k. I t can readil y be shown that 

1 ( . J !3 ' ) 0.1=--? D~Dl - D1 D~ 
(D~t 

and in thi s case the yelocity M ofa sinusoidal till wave with 
wave number k is given by 

Qd - 2kQtrJ( CODI' - CliDf) 
M = (29) 

(Dy)2 

((2rJkC J + p J) Df + (2kTJc a + P O) D/) 

+ Qn (Dn 2 . 

, ,ye ca ll this the mig ration velocity. , ,yhere there is no 
ice- till coupling, the migration velocity is equal to the kine
matic wave velocity Qd. It can be shown that ]0.1 = 
Qd + (dq/ dj ) (a; f! a; D) , where j is a fi eld variable other 
than D , such as Tt. This result generalizes to an arbitrary 
number of fi eld variables. Thus, we do not expect the m igra
tion velocity to be equ al to the kinematic wa\"e velocity 
when Qt or Qn are non-ze ro - where there are gradients 
in the field variables, the elevation of a kinematic wave is 
not consta nt. Owing to the relationship between the migra
tion velocity and the kinematic wave velocity, it is ha rd to 
conceive a viscous theo ry which does not have migrating 
drumlins. 

4. EXAMPLES AND APPLICATIONS 

Witho ut loss of genera lit y, since we are considering ca es of 
individual Fouri er modes, we set DP = 0 , which consider
ably simplifies the solutions given below. I t is straightfor-
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ward to show that the force exerted by tangenti a l traction 
must sum to zero at this o rder, and the additional drag, which 
is a second-order quantity (Fowler, 1981), is obta ined from 
the norm a l traction 

Tb = ~ ( 2ryk ( Co Df - C J Dn + p o D f - pJDn. 
(30) 

\ Vc find tha t the solutions to the matrix Eq uation (25) for all 
the Q zero, implying a bed of fixed geometry, a re 

If all the R a rc zero (no slip) th en ca. Cd a re zero and wc 
find tha t P Q, p p = 0 since Ub is zero for a fixed bed. Noth
ing happens a t this order of the approximation. Uthe basa l 
conditions a re very lipper y (Rt very la rge) but the other R 
remain zero then wc retri eve the N K solution en = 0, 
p o = 2ryk2 Uh D f. It is no t obvious that wc should get this 
but none theless wc do. 

Note tha t non-zero anti-phase components CP, p J only 
occur when there i a dependence of the basal velocity on 
the effective pressure. Moreover, when the bed is not mobil e, 
the basic Equation set (25) a nd expressions (24a) and (24b) 
ensure tha t there is no anti-phase structure in the normal 
velocity a t the interface nor in the norma l trac tion. 

The full se t of equations, with non-ze ro Q t. Qn. QD do 
possess so lutions in rationa ls of polynomia ls involving no 
radica ls, which a re nonetheless too complicated to peruse. 
Numerica l solutions involving direct inve rsio n of Equation 
(25) a re readily obtainable. Our main question concerns the 
poss ible existence of unstable Fourier modes which cause 
bed reli ef to g row. Wc now show that they must be associated 
with the existence of anti-phase structure. In consequence, 
since a nti-phase structure is excited by the dep endence of 
the deforming-bed viscosity on the effee ti\ 'e pressure and 
through thi , on the applied normal traction, we sce that it 
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is the dependence of deforming sediment rheology on effec
tive pressure which cause. unstable g rowth of relief. 

First, we note th at the rate of change following the wave 
is give n by dD/ dt lw= at D + MO.c D. Since, at the m axi
mum, ax D = 0 , the rate of change of the maximum point 
foll owing the m ax imum is simply ot D. Consider now the 
bed-evolution eq uation 

The elevation m aximum occurs a t x = 7r/2k. At this point, 
relationship (22 b) shows that (in the absence of a nti-phase 
structure) tha t the first term on the righthand size is zero, 
as is the third term. In genera l, a ze ro Rn implies a zero 
Qn , but even if that were not the case, a more detail ed ex
amination shows that for Qn < 0 , the usual case, the sedi
ment reli ef will decline. The feature which causes the 
sediment reli ef to evolve is a non-zero Rn . 

There are a la rge number of factors which inl1uence the 
e\'olution of the bed profile; the ze roth-order stresses TO and 
Pea, the sediment deform ation a nd sliding rate factors, and 
the various indices. Since it is evident that there is a direct 
dependence of the perturbation on the basal velocity Ub, 
instead of va r ying the rate factors as a parameter, we vary 
the velocity Ub as a pa rameter and choose the ra te facto r to 
give the required veloc ity. 

Approxima tely 240000 ca lcul a tions considering internal 
deformati on have been carried out, compri sing the di rect 
product of the following seven-dimensiona l para meter 
space: Do E [0 .1, 100] m, Ub E [1, 1000] m a I the wave
length 27r/k E [10, 1000], Pea E [2 X 103 , 10;;] Pa, TO E [2 x 
103 , 105] Pa, (a, c) E [1, 10] and (b, d) E [l.02 , 10]. Such a 
la rge ex plora ti on of pa rameter space would not have been 
poss ible using numerica l solutions of the full equa tions. 
The main a im has been to identify the regions of para meter 
space which enco urage amplification of relief. Figure I 
shows the proporti on of positive g rowth rates fo r each pa ra
meter value. All cases for a pa rticul a r parameter value a re 
considered; fo r example, if the effec tive pressure is 0.002, 
into thi s bin goes every case where thi s is true. 

Thus, the proportion of positive g rowth rates increases 

Urn 

O.IL----------L--________ L-________ -L __________ L-________ ~ 

0.01 0.1 10 100 1000 
Parameter value 

Fig. 1. Proportion qf cases where the growth rate is positive, plaited Zlsing each parameter as the independent variable. Note that a 
startsjust where pcfinishes. Parameter units are indicated 011 the main plot. 
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with basal velocit y, declines with p erturbati on wavelength, 
a nd shows a non-monotone rela tio nship with till thickness, 
reaching a max imum at till thicknesses around 50 m. This 
need not be true for any pa rticul a r parameter va lue. The 
proportion decreases with efTective pressure and shear 
stress, increases with shear-stress index and ha a non
m onotone rela tionship on the efTecti ve pressure index. 

Individua l cases a re not so clear cut. Figure 2a shows 
how growth rate depends on the till thickness a nd the basal 
vcloc ity for the indieated values. For low values o[ till thick
ness and basa l velocity, growth rates are negative, a nd there 
is a monotone increas ing dependence on basal veloc ity but a 
non-monotone dependence on till thickness, but with 
growth rates rem aining positi\·e. For a rather more non-lin
ea r fl ow law, Figure 2b shows a simpler dependence on till 
thickness and a different pattern o[ negative growth rates. 
Figure 2c has basa l velocity and wavelength as independent 
vari ables. High wavelength means nega tive growth ra tes [or 
low velocities. Figure 2d shows th a t high effective pressures 
can suppress drumlin formation [o r small till thicknesses 
and that there is a non-monotone dependence of growth rate 
upon efTecti ve pressure. 

In genera l, these cases suggest that high veloci ty and 
greater till thickness encourage drumlin formation. The 
result that is encouraged at small wavelengths is dependent 
on the ass umption that the thin till approximati on holds 
good. Drumlins presently fo und in very thin till sequences 
may therefore be erosional remna nts, if cases exist where 
longitudinal stress g radients within the till suppress drum
lin formation. One curious feature is that pos itive growth
rate constants a re very much large r in magnitude tha n are 
negative ones a nd a re high enough to suggest tha t drumlins 
can form very fas t indeed. Ca lcula tions involving till sliding 
onl y and covering the same pa ram eter range found no cases 
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where the growth rate was posltl\·e. This suggests tha t 
drumlins which have formed from till slipping over its bed 
may a lso be erosional remnants or may arise from moulding 
of ex istent relief. 

A fund amenta l constra i nt on any I i neari zation tech ni
que is th at it makes no p rediction of what happens when 
the perturbation becomes large. The sm a ll parameter in 
the N K perturbati on is the bed slope a nd the perturbation 
becomes invalid when the slope reaches uni ty. HO\ve\'er, 
when the wavelength is 100 m and the perturbati on ampli
tude 10 m , the error in th e Stokes equations is still only 10%, 
meaning that qualita ti ve predicti ons m ay remain correct 
provided that the origina l till thickness was suffi ciently la rge 
tha t a 10 m amplitude wave remains sm a ll. 

By the time slopes reach order unity, we anticipate shoek 
formation to have occ urred , which is no t a process that can 
occur in the present linearized theor y. A further fac to r 
likely to be of significance is the appeara ncf' of higher ha l-
monies when the perturbation of a linea r fluid is considered 
to higher order (Gudmundsson, 1997a) a nd (perhaps sepa
rately) when a fluid with a Glen rheology is considered 
(G udmundsson, 1997 b ). These analyses show that higher
order a nd non-linea r e ffe cts sta rt to play a significant role 
well before the aspect I-ati o reaches order unit y. These fac
tors could cause relief to be amplified a t different wave
leng ths from that of the p erturbation. 

5. CONCLUSIONS 

This paper has been concerned with establishing a fund a
menta I property of ice shearing over sedi ments deformi ng 
according to a double power-l aw rheology; does it act so as 
to a mplify relief? The a nswer is that, under certain condi-
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Fig. 2. Plots rifgrowth -rate constant iJ~ / D ~ as ajunction qfindicated independent variables, andJor various cases qf the indices 
a and b. In cases where they are not, the independent variables, Do = 1011l, Ub = 100 In a - 1, L = 10011l, Pe = 10' Pa, and 
T = 10' Pa. Growth rates are shaded where positive and white where negative. 
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ti ons, infinites im a l perturbati o ns g row. H ow la rge they 
grow and, whe ther they will continue to grow o nce shocks 
sta rt to form, is not a nswered by thi s a nalysis. This a nalysis 
is ta ken as indicating that drumlins co uld br fo rmed from a 
till-sheet llow insta bility, a nd is consiste11l with a body of 
evidence (Bo ulto n, 1987; H a rt , 1997) that drumlins arc some
times composed o f deformation till and a re not necessarily 
formed by the m o ulding of pre-exi stent reli ef. 

The drumlin instability therefo re represents a no ther as
pec t of la rger- sca le beha\'iour which can be mod e ll ed using 
viscous la\\·s. Fra m ed as they a re a t the larger sca le, there is 
no reason why they should represe nL sma ll e r-sca le beha
viour a nd it is a misconceptio n to suppose th a t th ey must. 
Furthermore, the vi scous-type law must, on the present 
sta te of kn owled ge, be more appropriate [or la rge-scale ice
sheet modelling tha n the plas tic la \\ ·. 
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APPENDIX 

NYE TRANSFORMATION UNDER UNIFORM 
SHEAR 

Consider a regio n p eriodic in the horizonta l direction in the 
domain x = [0, 2n / k] and z ;:::: O. D efin e hori zollla l a nd \ 'e r
tica l \"clocities ii . wand press ure jj . The Sto kes equati o ns 

op 

(
02W a2,w) 

'11 ;:,_? + C "'_? 
u x- u Z-

aii aw 
",_+~= O 
u J: u Z 

where 7) is the viscos it y of ice approximated as a linear lluicl . 
On the base z = is (x). wc have bo unda r y conditi ons 

FOI- com"C ni ence, we ha \ '(' adopted the eomprcssi\'e-pos iti\ "C 
convellli on for th e no rm a l I rac ti on T n . 

' .•.. , can ge nera te a ze roth-orclc r solution by ass uming 
tha t the bed is na t 

a nd tha t a trac ti o n Tot is applied to a ho ri zonta l surface o n 
the ice a t a di sta nce ver y fa r [1'0 111 the bed. This se ts up a 
simple shear in th e ice a nd a lso crea tes a hori zonta l \"clac it y 
in the ice at the bed z = O. Wc find 

Follo~\ing :'\ye (1969, 1970) and Ka mb (1970), \\"(' perturb the 
ze ro th-order solutio n by introducing sO l11e undula tions into 
the bed. There is a difTerenee, because lI'e ha\'e a base 
so lution with simple shea r. The prrturba ti on ex pansio n is 

u = Uh + ozUz + El1., (1- . z) + O (e2
). 

W = eWI (i, z) + O (e2
) . p = ePl (.r· . z) + O(e2

), 

is = i D, un + 0 (e2
) . 

TIl = 1;)1l + eTt . Tt = 1;lt + eT,l . 

\ Vc noli' use the Nye tra nsform to acco unt for zeroth- o rder 
shear 

:r:=x. z=z-eD. 

'U = ii . w = UI. P = j5 

a nd writ e down a no l her se t of perturba ti o n equati ons whe re 
the ze roth-order soluti o n is 
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U = Ui> + ozU(z+cDd + EUI(X,Z) + O(E2), 

W = EWl (x, z) + O(c2
) , P = EPl (x, z) + O(E2), 

D = ED l(X) + O (c2
) , 

TIl = 7(;' + ETt , T t = Tot + ETlt. 

It is straightforvvarclto show that 

ii,(i-, z = C) - u(x, z = () = 

EozUD 1 + EUl(X, z = C) - EUI(X, z = () + O(E2) 

which implies that one can write with error O(E) that 

Ul(X, z = C) = UI(X, z = C) - azUD I 

a nd one may also write to the sam e accuracy 

WI (x, z = C) = Wl (x, z = (), PI (x. Z = C) = PI (x, z = C)· 

(This is what Nye (1970) did but wc need to be m ore careful 
with our notation owing to the presence of shea r in the zeroth
order solution.) 

'Ye can readily obtain the differenti a l transforms 

000 
-= --EoDlox-
ox ox oz' 

02 02 (02 Dl a aDI 02
) 20Dl 0

2 

OX2 = ax2 - E 02x oz + ox OZOX + E ox [}z2 
and it is then easy to show that wc obtain the follow ing per
turba ti on equations 

TJV2'UI = al'PI + ozUo;D1, 

TJV2WI = OzPl' 

OJ,Ul + ozw[ = azUo.rD I , 
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