EXTENSIONS OF ORDERABLE GROUPS

BY

R. BOTTO MURA AND A. H. RHEMTULLA

Introduction. The purpose of this note is to unify Theorem 4 of G. Baumslag [2] and a result of D. M. Smirnov in [6] in a more general setting. We prove the following result.

THEOREM. Let A be a normal subgroup of a non-abelian free group F, V a proper fully invariant subgroup of A and \underline{V} the variety generated by A/V. If A/V is orderable and F/A has an infrainvariant system with factors in \underline{V} and right-orderable then F/V is orderable.

Let G = F/V, X = A/V and Y = F/A. Also let RO denote the class of right-orderable groups. We fix this notation throughout the paper. Observe that if X is a non-trivial orderable group, then $V \le A'$ and \underline{Y} contains all abelian groups. Thus torsion-free abelian groups are in $RO \cap \underline{Y}$ and the hypothesis of the theorem holds if Y has an infrainvariant system with torsion-free abelian factors and V = A'. This is Smirnov's result in [6]. If Y is an ordered group, the convex subgroups of Y form an infrainvariant system with torsion-free abelian factors. Thus the hypothesis of the theorem holds when X and Y are orderable. This is Theorem 4 in [2].

DEFINITIONS. We say that a group H has an infrainvariant system with factors in a class \underline{X} if H has a set of subgroups $S = \{H_{\lambda}; \lambda \in \Lambda\}$ such that (i) Λ is a complete totally ordered set, (ii) $\langle e \rangle$, $G \in S$, (iii) if $\lambda < \mu$ then $H_{\lambda} \leq H_{\mu}$ and if μ is an immediate successor of λ in the ordering of Λ then $H_{\lambda} = H_{\mu}$, $H_{\mu}/H_{\lambda} \in X$, and (iv) for any $\lambda \in \Lambda$ and any $h \in H$, $H_{\lambda}^{h} \in S$. A group $H \in RO$ is the set H can be ordered in such a way that for all g, h, x in H, g < h implies gx < hx. This is equivalent to saying that H is isomorphic to a subgroup of the group of order preserving permutations of an ordered set (see [3]). If H is a group and Z a subset of H then $S_{H}(Z)$ denotes the semigroup generated by $\{z^{h}; z \in Z, h \in H\}$. If K is a normal subgroup of a group H then we say that K is H-orderable if the set K can be ordered in such a way that for all x, y, z in K, h in H, x < yimplies xz < yz and $x^{h} < y^{h}$. This is equivalent to saying that given any finite set x_{1}, \ldots, x_{n} in $K \setminus \{e\}, e \notin S_{H}(x_{1}^{e_{1}}, \ldots, x_{n}^{e_{n}})$ for a suitable choice of signs $\varepsilon_{i} = \pm 1$. If H is H-orderable then we simply say H is orderable and denote the class of such groups by O.

Received by the editors January 24, 1977.

Research partially supported by the National Research Council of Canada.

Proofs. We will use the following result which is a consequence of Theorem 1 in [2].

PROPOSITION 1. (G. Baumslag). If W = X wr Y, the standard restricted wreath product of X and Y, and B the base group of W then given any finite set of elements $x_1, \ldots, x_n \in X \setminus \langle e \rangle$, there exists a homomorphism ϕ of G into W such that $\phi x_1, \ldots, \phi x_n \in B \setminus \langle e \rangle$.

LEMMA 1. If $Y = F/A \in RO$ and $X = A/V \in O$ then A/V is G orderable. If V = A' then the converse is also true, that is if A/V is F/V-orderable then $F/A \in RO$.

Proof. Let W = X wr Y and B the base group of W. Under the given hypothesis, B is W-orderable, since given any order on X and right-order on Y the corresponding lexicographic order of B is a W-order. Suppose that X is not G-orderable. Then there exist elements $x_1, \ldots, x_n \in X \setminus \langle e \rangle$ such that $e \in$ $S_G(x_1^{e_1}, \ldots, x_n^{e_n})$ for all choices of signs $\varepsilon_i = \pm 1$. By Proposition 1 there is a homomorphism ψ of G into W such that $\psi x_1, \ldots, \psi x_n \in B \setminus \langle e \rangle$. But then $S_W((\psi x_1)^{e_1}, \ldots, (\psi x_n)^{e_n})$ contains e for all choices of signs $\varepsilon_1 = \pm 1$, contradicting the fact that B is W-orderable.

Conversely, in the case V = A', let A/A' be F/A'-orderable. Since $C_F(A/A') = A$ ([1], Theorem 1), F/A is a group of order-preserving permutations of the ordered set A/A' and consequently is an RO-group.

Proof of the theorem. By hypothesis there exists an infrainvariant system $\sum = \{F_{\lambda}, \lambda \in \Lambda\}$ of subgroups connecting A to F with factors in $RO \cap \underline{V}$. Let $\sum_{1} = \{v(F_{\lambda}), \lambda \in \Lambda\}$ where $v(F_{\lambda})$ is the verbal subgroup of F_{λ} corresponding to the variety \underline{V} . Then \sum_{1} is an infrainvariant system connecting V to F. In fact

- (i) $v(F_{\lambda}^{g}) = (v(F_{\lambda}))^{g}$,
- (ii) For any $B \subseteq \Lambda$, if $\bigcup_{\lambda \in B} F_{\lambda} = F_{\gamma}$ then $\bigcup_{\lambda \in B} v(F_{\lambda}) = v(F_{\gamma})$ and
- (iii) If $\bigcap_{\lambda \in B} F_{\lambda} = F_{\gamma}$ then $\bigcap_{\lambda \in B} v(F_{\lambda}) = v(F_{\gamma})$.

(i) and (ii) are obvious and (iii) follows from a result of Dunwoody in [4]. Note that \sum_{1} does not contain repetitions for $v(F_{\lambda}) = v(F_{\mu})$ implies $F_{\lambda} = F_{\mu}$. Let $v(F_{\alpha}) \prec v(F_{\alpha+1})$ be a jump in \sum_{1} and let $N_{\alpha} = N_{F}(v(F_{\alpha})) = N_{F}(v(F_{\alpha+1}))$. Then $F_{\alpha} \prec F_{\alpha+1}$ is a jump in \sum . Since $v(F_{\alpha})$ is fully invariant in F_{α} , $N_{F}(F_{\alpha}) \le N_{\alpha}$, conversely if $g \in N_{\alpha}$ and $F_{\beta} = F_{\alpha}^{g}$ then $v(F_{\beta}) = v(F_{\alpha})$ and $\alpha = \beta$. Thus $N_{F}(F_{\alpha}) = N_{\alpha}$. Since F/A has a system with factors in RO, passing through F_{α} , N_{α}/F_{α} also has such a system and is therefore in RO. By Lemma 1, $F_{\alpha}/v(F_{\alpha})$ is $N_{\alpha}/v(F_{\alpha})$ -orderable. Since $F_{\alpha+1}/F_{\alpha} \in \underline{V}$, $F_{\alpha} \ge v(F_{\alpha+1})$ and therefore $v(F_{\alpha+1})/v(F_{\alpha})$ is also $N_{\alpha}/v(F_{\alpha})$ -orderable. By a theorem of Kokorin in [5], the system \sum_{1} assures the orderability of F/V.

In the same way Theorem 1 of Smirnov in [7] can be modified to the following.

1977]

ORDERABLE GROUPS

If Y has an infrainvariant system with factors in \underline{V} then G has an infrainvariant system whose factors are subgroups of free \underline{V} -groups.

REFERENCES

1. M. Auslander and R. C. Lyndon, Commutator subgroups of free groups. Amer. J. Math. 77, 929-931 (1955).

2. G. Baumslag, Wreath products and extensions. Math. Z. 81, 286-299 (1963).

3. P. M. Cohn, Groups of order automorphisms of ordered sets. Mathematika 4, 41-50 (1957).

4. M. J. Dunwoody, On verbal subgroups of free groups. Arch. Math. (Basel) 16, 153-157 (1965).

5. A. I. Kokorin, Γ -fully orderable and relatively convex subgroups of orderable groups. (In Russian) Sibirsk. Mat. Z. **7**, 713-717 (1966).

6. D. M. Smirnov, Right-ordered groups. Algebra i Logika 5:6, 41-59 (1966).

7. D. M. Smirnov, On generalized solvable groups and their group rings. Mat. Sb. 109 (N.S. 67), 366-383 (1965).

Dép. Didactique, F.S.E. Université Laval Québec, (Qué) G1K 7P4