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Abstract

A gambler with an initial bankroll is faced with a finite sequence of identical and
independent bets. For each bet, he may wager up to his current bankroll, and will win
this amount with probability p or lose it with probability 1 −p. His problem is to devise
a wagering strategy that will maximize his final expected utility with the side condition
that the total amount wagered (i.e. the total ‘action’) be at least his initial bankroll. Our
main result is an expression that characterizes when the strategy of placing equal-sized
wagers on all bets is optimal. In particular, for a given bankroll B, utility function f

(concave, increasing, differentiable), and n bets, we show that it is optimal to wager b/n

on each bet if and only if the probability of winning each bet is less than or equal to some
value p∗ ∈ [ 1

2 , 1] (where p∗ is an explicit function of B, f , and n). We prove the result
by using a basic nonlinear programming technique.
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1. Introduction

Let us begin with an intuitive description of the general problem we consider. A gambler
allocates an amount of money B to a sequence of potential bets. The value B is the minimum
amount of ‘action’ or entertainment the gambler wants to purchase. That is, B is the minimum
total amount he wants to wager on these bets (as well as the maximum net amount he is willing
to lose). The gambler’s problem is to decide how much to wager on each bet.

More formally, we focus on the following model of this problem. A gambler allocates an
amount of money B (his initial bankroll) to a sequence of n identical and independent bets.
Each bet has two random outcomes: a win with probability p or a loss with probability 1 − p.
On the first bet in the sequence, the gambler can wager an amount up to B. His bankroll will
increase or decrease by the amount of his wager, depending on whether he wins or loses the
bet. On each subsequent bet, he can wager an amount up to his current bankroll. The value
B is the minimum amount of action or entertainment the gambler wants to purchase. That is,
the total amount wagered on these n bets must be at least B. We refer to this constraint as the
action constraint and we refer to such a gambler as an action gambler. (By definition, B is also
the maximum net amount the gambler is willing to lose on these bets.) The action gambler has
a concave (risk-averse), increasing, utility function for evaluating his final bankroll after the n

bets. A wagering strategy is a rule dictating how much the gambler should wager on each bet
for any possible current bankroll. Our primary interest is the action gambler’s problem, which
is to determine a wagering strategy for the action gambler that maximizes the expected utility
of the final bankroll.

Received 31 July 2008; revision received 21 January 2009.
∗ Postal address: 354 Mendoza College of Business, University of Notre Dame, Notre Dame, IN 46556-5646, USA.
Email address: dhartvig@nd.edu

35

https://doi.org/10.1239/jap/1238592115 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1238592115


36 D. HARTVIGSEN

A simple strategy for the action gambler is to wager the same amount B/n on each bet, which
is sometimes referred to as a fixed stakes betting strategy. Our main result is an expression that
characterizes when this strategy is optimal for the action gambler’s problem. This result has
the following form, for any concave, increasing, differentiable utility function f . Fixed stakes
betting is optimal if and only if the probability p of winning each bet is less than or equal to
some value p∗ ∈ [ 1

2 , 1], where p∗ is an explicit function of B, f , and n. Thus, fixed stakes
betting is always optimal for p ≤ 1

2 (i.e. for fair and subfair bets), and it typically remains
optimal for values of p strictly greater than 1

2 (i.e. for superfair bets).
We illustrate our main result by applying it to several common utility functions. For example,

we show, for the utility function f (y) = log(a + y), where a > 0, that it is optimal to always
wager B/n if and only if

p ≤ p∗ = a + 2B

2a + 4B − 2B/n
.

We see, in this and several other typical cases, that p∗ → 1
2 (from above) as n → ∞.

Another contribution of this paper is methodological. We prove the main result by for-
mulating the action gambler’s problem as a nonlinear program and then applying the well-
known Karush–Kuhn–Tucker conditions (see [14], [16] and, for example, [26, pp. 385–400]).
Related gambling problems have previously been solved using different methods: e.g. dynamic
programming or probabilistic techniques (see the discussion below). Because the formulation
grows exponentially as n grows, it quickly becomes impractical for finding optimal strategies
when p > p∗ as n grows. However, for small values of n, when p > p∗, the formulation can
be used to find optimal wagering strategies, as we illustrate in Subsection 4.2. (For example,
it could be used by an action gambler facing a small number of sports bets.) Furthermore, this
formulation can be generalized in a number of ways (see the discussion below).

Before further discussing our results, let us put our problem into some context by considering
several variations and the corresponding results from the literature.

Variation 1. This variation of the problem is the same as the action gambler’s problem except
that the n bets are simultaneous. We call this the simultaneous betting problem. This is, of
course, a variation on the (one-period) portfolio optimization problem, first studied in [19].
When the utility function is concave, increasing, and differentiable, then the expected utility is
maximized by wagering B/n on each bet for all values of p. (Intuitively, this result is what
we would expect. Since the expected value of each bet is the same, all solutions have the same
expected value. Hence, to obtain the optimal solution, we only need to minimize the risk, and
this is accomplished by diversifying the portfolio as much as possible. We provide a proof
of this result in Section 6. The proof is interesting since we apply the Karush–Kuhn–Tucker
conditions to a formulation of the simultaneous betting problem that is closely related to the
formulation we use for the action gambler’s problem. Also, this result holds for a general class
of utility functions.) Hence, our main result characterizes the case in which the optimal strategy
for n sequential bets is the same as the optimal strategy for n simultaneous bets, when at least
a total amount B must be wagered.

Variation 2. This variation of the problem is the same as the action gambler’s problem except
that n is unbounded, there is no action constraint, and the objective is to maximize the expected
growth rate of the bankroll. The well-known optimal strategy, discovered by Kelly [15], is to
always wager the fraction 2p − 1 of the current bankroll when p > 1

2 and to wager nothing
when p ≤ 1

2 . We will discuss (in Section 3) how, when p > 1
2 , the action constraint is met by
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this solution in the limit as n → ∞. An interesting feature of this strategy, when p > 1
2 , is that

it is equivalent to maximizing a log utility function for each bet.

Variation 3. This variation of the problem is the same as the action gambler’s problem except
that we remove the action constraint. In this case the problem has been solved for all values of
p in [1] for the special cases of the logarithmic (f (y) = log(y)) and power (f (y) = yα, 0 <

α < 1) utility functions, where it is optimal to wager nothing if p ≤ 1
2 and, otherwise, it

is optimal to wager a fixed fraction of the current bankroll. (Guu and Wang [12] found a
complete characterization of the utility functions for which the optimal solution is to wager
a fixed fraction.) This problem has also been solved by Cetinkaya and Parlar [3] for the
log(a + y) utility function (a > 0), where the optimal solution depends on p and, for each
bet j , the size of the current bankroll and the number j . These variations are solved using
dynamic programming techniques. Typically, optimal solutions to the unconstrained problem
are not feasible for the constrained problem (see the discussion below). However, for the utility
function f (y) = log(a + y), it is shown in [3] that, for sufficiently large p, it is optimal to
wager the entire bankroll on the first bet, in which case the action constraint is satisfied. As for
Variation 2, solutions for the unconstrained problem can approach feasibility for the constrained
problem as n grows.

Variation 4. This variation of the problem is the same as the action gambler’s problem except
that the minimum total amount the gambler wants to wager is A, where A ≤ B. Thus, B is
still the maximum net amount the gambler is willing to lose. We call this the general action
gambler’s problem. In this paper we characterize the case in which the fixed stakes strategy of
wagering A/n on all bets is optimal for this problem. (Observe that if an action gambler wins a
bet before the final bet then he faces a general action gambler’s problem on the remaining bets
because the remaining amount that must be wagered is strictly less than the current bankroll.)

Let us briefly emphasize how our results differ from those discussed for Variation 3 above.
The results for Variation 3 are for specific utility functions, while our results hold for a large,
general class of utility functions. On the other hand, the results for Variation 3 hold for all p,
whereas our results hold for a range of values of the form p ≤ 1

2 + ε (for ε ≥ 0). (Of course,
values of p in such a range are common.)

The next difference between our results and those of Variation 3 is a main motivation for
this paper. When n is small and/or p ≤ 1

2 + ε (for small ε > 0), the optimal strategies for
the unconstrained problems considered in Variation 3 can have the gambler wagering a total
amount significantly less than B. (Observe that, for p ≤ 1

2 , a common situation, the optimal
unconstrained wager is always 0 for all n. Furthermore, a small value of n with p ≤ 1

2 + ε (for
small ε > 0) captures the common situation faced by a weekend sports gambler. We consider
examples of this type in more detail in Subsection 4.2.) Such solutions seem unrealistic for
those who view gambling as a form of entertainment of which they want to purchase a certain
amount. Furthermore, if a significant fraction (say one third) of the bankroll is never at risk
then the function of the bankroll in the model seems questionable. To elaborate, suppose a
person, using a bankroll B and an optimal unconstrained strategy, cannot lose more than, say,
two thirds of B. This person could, theoretically, allocate a larger bankroll B ′ to the sequence
of bets and still never risk losing, under optimal play for B ′, an amount equal to the original
bankroll B; but the optimal strategies calculated using B and B ′ could be different. (It is easy to
construct such examples based on the discussion in Section 3.) Observe that the same situation
can occur for the generalized action gambler’s problem when A < B and it is optimal to wager
A/n on every bet. For this reason, we present the more general characterization theorem in a
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38 D. HARTVIGSEN

separate section of the paper and its proof is given as a variation on the proof of the main result
for the action gambler’s problem.

A final difference between our results and those of Variations 2 and 3, as mentioned above,
is the methodology we use to prove our results. Probabilistic techniques are used to prove
the Variation 2 results and dynamic programming techniques are used to prove the Variation 3
results. In this paper we make use of nonlinear programming techniques.

Let us point out another feature of this paper’s nonlinear programming approach. The basic
model can easily be generalized to explore, for example, the following variations of the action
gambler’s problem (and its unconstrained variation).

• Allow bets to be both sequential and simultaneous.

• Allow bets to take multiple periods to be resolved.

• Allow bets to have general payoffs.

• Allow bets to have three or more outcomes.

• Allow bets to have minimum wager sizes.

• Do not require all bets to be identical. (Thus, we could have combinations of bets of the
types listed above.)

There is a large literature on gambling problems similar to the one considered here. A classic
work is the book by Dubins and Savage [6]. It focuses on a different objective function for
the unconstrained problem, when p ≤ 1

2 : maximizing the probability of reaching a target final
bankroll, where the number of sequential bets is unbounded. The same problem, when p > 1

2
(where the number of bets is both bounded and unbounded), was first studied by Breiman [2].
Related work (based on discrete-time models and often with side constraints added to the basic
models discussed above) includes the following: [4], [5, pp. 391–394], [7]–[11], [13], [17], [20],
[22]–[25], and [28].

This paper is organized as follows. Section 2 contains the statements of the main results and
some applications of the results using four common utility functions. In Section 3 we show how
solutions to some unconstrained problems in Variation 3 (above) can be ‘very infeasible’ for the
action gambler’s problem. This phenomenon is one of the motivations behind this paper. The
nonlinear programming formulation of the action gambler’s problem is presented in Section 4,
where it is used to directly solve some small examples. In Section 5 we present the version of
the main theorem for the generalized action gambler’s problem. Section 6 contains proofs of
the main results, and in Section 7 we suggest an open problem.

2. Main results

In this section we present our main theorem, which characterizes when it is optimal to wager
B/n on all bets for the action gambler’s problem for a large class of utility functions. We also
present a related proposition that refines the characterization for a smaller class of well-known
utility functions. We illustrate these results with four examples of commonly studied utility
functions.

As described in the introduction, we have n bets that occur in sequence. Each bet has a
probability p of being a win and a probability 1 − p of being a loss. The gambler begins with
an initial bankroll of size B > 0 and can wager any amount of his current bankroll on a bet.
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He either wins or loses the amount of his wager on a bet. The total amount wagered on the n

bets must be at least B.
Let us observe that the range of final bankrolls for our gambler is [0, M], where M ≡ B2n.

(Here M is the final bankroll corresponding to n wagers, each of the entire current bankroll,
and n wins.)

Next we state our main result, which characterizes when a B/n fixed stake strategy is optimal
for a large class of utility functions.

Theorem 1. Let f (y) be a concave, increasing, and differentiable utility function on [0, M],
and let n ≥ 2. Then, for the action gambler’s problem, wagering B/n on each bet maximizes
the expected utility of the final bankroll if and only if

p ≤ min
ω∈{2,...,n}

(
1 + d

dω
f

(
2B

n
ω

)/
d

dω
f

(
2B

n
(ω − 1)

))−1

. (1)

When n = 1, the unique feasible solution is to wager B for all values of p.

Remark 1. Because f (y) is increasing and differentiable on [0, M], the minimization is well
defined; in particular,

d

dω
f

(
2B

n
(ω − 1)

)
> 0 for ω ∈ {2, . . . , n}.

Remark 2. It is well known that if a function f is concave and differentiable on an interval,
then the derivative of f is nonincreasing on the interval (see, e.g. [21, p. 142]). Therefore, the
bound on p in (1) is in [ 1

2 , 1].
For contrast, we now state a related result for the simultaneous betting problem (Variation 1

in the introduction). A proof of this result appears in Section 2.

Theorem 2. Let f (y) be a concave and differentiable utility function on [0, 2B]. Then, for the
simultaneous betting problem, wagering B/n on each bet maximizes the expected utility of the
final bankroll (for all values of p).

Theorem 2 allows us to make the following remark.

Remark 3. Let f (y) be a concave and differentiable utility function on [0, 2B], and let m > n.
Then the expected utility of wagering B/m on m sequential bets is greater than or equal to the
expected utility of wagering B/n on n sequential bets (since wagering B/n on n of the m bets
is feasible, and by treating the bets as simultaneous and applying Theorem 2). (We assume that
the individual bets are the same in both situations.) Hence, if the action gambler is using a fixed
stakes strategy, it is preferable for him to spread his wagering over as many bets as possible.
However, if it is optimal to wager B/n on n sequential bets then it is not necessarily optimal to
wager B/m on m sequential bets (see Remark 4, below).

It turns out that, for some standard classes of utility functions, we can state which value of
ω determines the bound on p in (1).

Let f (y) be a concave, increasing, twice differentiable utility function on some interval
[c, d]. Then the Arrow–Pratt absolute risk aversion coefficient is defined on [c, d] as follows:

h(y) = −f ′′(y)

f ′(y)
.

https://doi.org/10.1239/jap/1238592115 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1238592115


40 D. HARTVIGSEN

We say that a person’s utility has increasing, decreasing, or constant absolute risk aversion
over [c, d] if h(y) is increasing, decreasing, or, respectively, constant as y increases over [c, d].
(These notions of risk aversion are well known; see, e.g. [18, p. 233]). We prove the following
result in Subsection 6.3.

Proposition 1. Let f (y) be a concave, increasing, twice differentiable function on [0, M], and
let n ≥ 2. Then, for the action gambler’s problem,

• the bound on p in (1) is minimized at ω = 2 if f has increasing absolute risk aversion
over [2B/n, 2B];

• the bound on p in (1) is minimized at ω = n if f has decreasing absolute risk aversion
over [2B/n, 2B];

• the bound on p in (1) is minimized at ω = 2, . . . , n if f has constant absolute risk
aversion over [2B/n, 2B].

Next we look at four examples of commonly studied utility functions. We assume that n ≥ 2.
The assumptions of Proposition 1 apply in each case and each of the three types of risk aversion
is exhibited.

Example 1. Let f (y) = log(a + y) for a > 0. Since h(y) = 1/(a + y)2, f has decreasing
absolute risk aversion. Hence, the bound on p in (1) is minimized at ω = n, and we see that it
is optimal to wager B/n if and only if

p ≤ a + 2B

2a + 4B − 2B/n
.

For instance, if B = 1000, a = 10, and n = 3, we obtain p ≤ 0.60.

Example 2. Let f (y) = yα for 0 < α < 1. Since h(y) = (1 − α)/y, f has decreasing
absolute risk aversion. Hence, the bound on p in (1) is minimized at ω = n, and we see that
it is optimal to wager B/n if and only if

p ≤ 1

1 + ((n − 1)/n)1−α
.

For instance, if α = 0.5 and n = 3, we obtain p ≤ 0.55.

Example 3. Let f (y) = −e−by for b > 0. Since h(y) = b, f has constant absolute risk
aversion. Hence, the bound on p in (1) is the same at all ω = 2, . . . , n, and we see that it is
optimal to wager B/n if and only if

p ≤ 1

1 + e−2Bb/n
.

For instance, if B = 1000, b = 0.001, and n = 3, we obtain p ≤ 0.66.

Example 4. Let f (y) = y − cy2 for 0 < c ≤ 1/2M . (Note that f is maximized at y = 1/2c;
hence, we require that 1/2c ≥ M in order for the utility function to be increasing over [0, M].)
Since h(y) = 1/(1/2c − y), f has increasing absolute risk aversion (for c ≤ 1/2M). Hence,
the bound on p in (1) is minimized at ω = 2, and we see that it is optimal to wager B/n if and
only if

p ≤ 1 − 4Bc/n

2 − 12Bc/n
.

For instance, if B = 1000, c = 0.000 05, and n = 3, we obtain p ≤ 0.52.
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Observe that, in Examples 1–3, the assumptions on f continue to hold as n increases; hence,
the formulae demonstrate the following remark. Let p∗ denote the upper bound in (1).

Remark 4. In Examples 1–3, p∗ → 1
2 (from above) as n → ∞.

The property in Remark 4 is not implied by the formula of Example 4 (although it looks that
way), because, as n increases, so does M; hence, at some point, f will no longer be increasing
on [0, M] (i.e. the assumption on c will eventually fail as n increases). However, for all four
examples, we can make the following remark when the number of bets is smaller than n.

Remark 5. In Examples 1–4, if it is optimal to wager B/n on each of the n bets then it will be
optimal to wager B/m on each of the m bets when m < n.

3. Context

In this section we compare solutions of the constrained problem (the action gambler’s
problem) to solutions of some previously studied special cases of the unconstrained problem
(Variation 3 in the introduction). We find that in common situations, the total amount wagered
using optimal solutions for the unconstrained problem can be significantly less than B; hence,
significantly infeasible for the constrained problem. This was part of the motivation for studying
the action gambler’s problem.

Let us consider a solution strategy that would have us always wager a fixed fraction r , where
0 ≤ r ≤ 1, of the current bankroll. (We consider two such examples below.) We have the
following simple proposition.

Proposition 2. Suppose that we always wager a fraction r , where 0 ≤ r ≤ 1, of the current
bankroll. Then the minimum total amount wagered is equal to B[1 − (1 − r)n−1], which
occurs when the first n − 1 bets are lost; and the maximum total amount wagered is equal to
B[(1 + r)n−1 − 1], which occurs when the first n − 1 bets are won.

Proof. Observe that the amount wagered on bet i is r(1 + r)j (1 − r)kB, where j equals the
number of bets won before bet i, k equals the number of bets lost before bet i, and j +k = i−1.
Clearly, this is a minimum when j = 0 and a maximum when k = 0. Hence (using the formulae
for the sum of a geometric series when r > 0), the total amount wagered reaches its minimum
when the first n − 1 bets are lost and this is equal to

rB

n−2∑
i=0

(1 − r)i = rB
1 − (1 − r)n−1

1 − (1 − r)
= B[1 − (1 − r)n−1].

Similarly, the total amount wagered is a maximum when the first n − 1 bets are won and this
is equal to

rB

n−2∑
i=0

(1 + r)i = rB
1 − (1 + r)n−1

1 − (1 + r)
= B[(1 + r)n−1 − 1].

Observe that the simplified formulae are also correct when r = 0 (where the total amount
wagered is 0). This completes the proof.

Let us make some general observations based on Proposition 2. First, we see that, for all
values of r < 1 and all values of n, a fixed fraction solution is infeasible for our constrained
problem since the minimum total amount wagered is strictly less than B. In particular, when
r is ‘small’ and n is ‘not too large’, the fixed fraction solution can be ‘very infeasible’, in the
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sense that the minimum total amount wagered can be ‘significantly’ less than B and even the
maximum total amount wagered can be strictly less than B (see the examples below).

Another observation is that, for all values of r < 1, a fixed fraction solution gets arbitrarily
close to being feasible for our constrained problem, as n → ∞. However, wagers for the fixed
fraction solution can become arbitrarily small as n grows. In particular, for a fixed fraction
solution, the final wager along the all-losing path is rB(1 − r)n−1, while, for the fixed stakes
solution, the final wager is B/n. These amounts can be quite different (and the required wager
for the fixed fraction strategy is much more likely to be unplayable in a real situation).

Next we expand the above discussion by considering two wagering strategies, due to Bellman
and Kabala [1], that involve fixed fraction strategies for the unconstrained problem. They
showed that fixed fraction strategies are optimal for the utility functions f (y) = log(y) and
f (y) = yα for 0 < α < 1. In particular, for f (y) = log(y), it is optimal to always wager the
fraction r = 2p − 1 when p > 1

2 and to wager 0 when p ≤ 1
2 . (Kelly [15] showed that this

strategy is also optimal for the objective of maximizing the expected growth rate of the bankroll
as n → ∞.) For f (y) = yα , it is straightforward to calculate that it is optimal to always wager
the fraction

r = (p/(1 − p))1/(1−a) − 1

(p/(1 − p))1/(1−a) + 1
when p >

1

2

and to wager 0 when p ≤ 1
2 . Finally, let us remark that the optimal solution for f (y) =

log(a + y) is not typically a fixed fraction when p > 1
2 (see [3]), although, as a → 0, the

solution approaches the solution given above for f (y) = log(y); when p ≤ 1
2 , it is again

optimal to wager 0.
Clearly, when p ≤ 1

2 , these examples result in solutions that are far from feasible for the
constrained problem. As we illustrate next, this can also be true for values of p slightly above
1
2 and for values of n that are not too large.

Let us consider two detailed examples. Let p∗ denote the appropriate upper bound in (1).
Suppose that we set p = 0.55, B = 1000, and n = 3; let a be very close to 0, and let α = 0.5.
For f (y) = log(a + y), we have r ≈ 2p − 1 = 0.1 and p∗ ≈ 0.6. Hence, in the unconstrained
case, Proposition 2 shows that our total wager is, approximately, between 190 and 210. For
f (y) = yα , we have r ≈ 0.2 and p∗ ≈ 0.55. Hence, in the unconstrained case, Proposition 2
tells us that our total wager is, approximately, between 360 and 440. In both examples, in
the constrained case, we wager 333.33 on each bet, since p ≤ p∗. (Observe that our result
for the constrained problem (Theorem 1) does not hold for f (y) = log(y) because it is not
differentiable at 0; this is why we have considered f (y) = log(a + y) for small a.)

4. The formulation and some examples

In this section we first introduce some notation and give our nonlinear programming for-
mulation for the action gambler’s problem, when n ≥ 2. Then we use the formulation to
find optimal strategies for a few small-size examples in order to examine the structure of the
solutions and to compare them with the main result in Theorem 1.

4.1. Notation and formulation

Our first step is to define a directed binary tree that describes all possible outcomes of the
n bets. (See Figure 1 for an example with n = 3.) Let T = (V , A) be a directed tree with
|V | = 2n+1 − 1. The node set V is partitioned into two sets: Leaves(T ) and NonLeaves(T ),
where |Leaves(T )| = 2n. There is one special node r ∈ NonLeaves(T ) called the root of T .
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1

2

4

5

6

7
3

Figure 1: A directed binary tree.

The tree T must satisfy the following properties.

• The outdegree of each node in NonLeaves(T ) is 2.

• The outdegree of each node in Leaves(T ) is 0.

• The indegree of each node in V \ r is 1.

• The indegree of r is 0.

• For each v ∈ Leaves(T ), the number of arcs on the directed path from r to v is n.

In Figure 1, the node labeled 1 is the root and the eight nodes on the far right are Leaves(T ).
For each pair of arcs of the form uv, uv′, one arc is labeled W (for win) and one is labeled

L (for loss). We use the following additional terminology.

• NearLeaves(T ) denotes the subset of NonLeaves(T ) that are adjacent to a node in
Leaves(T ). (In Figure 1, NearLeaves(T ) = {4, 5, 6, 7}.)

For each node v ∈ V , we introduce the following definitions.

• RootPath(v) denotes the directed path from r to v.

• Leaves(v) denotes the subset of Leaves(T ) reachable from v by a directed path. (In
Figure 1, Leaves(2) = the uppermost four leaves.)

• w(v) denotes the number of arcs labeled W on RootPath(v). (In Figure 1, w(5) = 1.)

• l(v) denotes the number of arcs labeled L on RootPath(v).

For each node v ∈ NonLeaves(T ), we define

• NearLeaves(v) to be the subset of NearLeaves(T ) reachable from v by a directed path.
(In Figure 1, NearLeaves(2) = {4, 5}.)

If uv ∈ A then Pred(v) = u, i.e. u is the predecessor of v.
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Each node v in NonLeaves(T ) represents a bet with a unique history determined by
RootPath(v). The bet is the number of arcs in RootPath(v) plus 1 and the sequence of wins and
losses on this path represents the history. For example, in Figure 1, the root node 1 represents
bet 1; nodes 2 and 3 represent bet 2 (preceded by a win and a loss on the first bet, respectively);
and nodes 4, 5, 6, and 7, represent bet 3 (preceded by (win, win), (win, loss), (loss, win), and
(loss, loss) on the first two bets, respectively). The nodes in Leaves(T ) represent the final
outcome of the betting.

We let x ∈ R
NonLeaves(T ) denote a variable vector. The values of the components of x are

the amounts we wager in each situation corresponding to a node in NonLeaves(T ). For each
v ∈ V , we let dv ∈ R

NonLeaves(T ) denote a vector defined as follows:

dv
i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+1 if node i is on RootPath(v), i 
= v, and the arc out of i

on RootPath(v) is a W;

−1 if node i is on RootPath(v), i 
= v, and the arc out of i

on RootPath(v) is an L;

0 otherwise.

Observe that dr = 0.
For each v ∈ NearLeaves(T ), we let ev ∈ R

NonLeaves(T ) denote a vector defined as follows:

ev
i =

{
+1 if node i is on RootPath(v);

0 otherwise.

We can now formulate the action gambler’s problem as a nonlinear program as follows,
where T denotes the directed binary tree corresponding to the n bets:

max
∑

v∈Leaves(T )

pw(v)(1 − p)l(v)f (B + dvx)

such that

xv ≤ B + dvx for all v ∈ NonLeaves(T ), (2)

evx ≥ B for all v ∈ NearLeaves(T ), (3)

x ≥ 0.

The objective function is simply the sum of the utilities of the possible final bankrolls,
weighted by their probabilities. The constraints in (2) say that the gambler cannot wager more
than his remaining bankroll on any bet. The constraints in (3) say that the gambler must always
wager at least B, in total.

Next we rewrite the above system, which will be useful in the proof of our main result. Let
vL denote the node in NearLeaves(T ) such that w(vL) = 0 and l(vL) = n − 1. Observe that,
for vL, the corresponding inequalities in constraints (2) and (3) are identical, except that the
inequality signs are in opposite directions. Hence, the nonlinear program can be rewritten (by
replacing constraints (2) and (3) with constraints (4), (5), and (6), below) as follows:

max
∑

v∈Leaves(T )

pw(v)(1 − p)l(v)f (B + dvx)
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such that
xv ≤ B + dvx for all v ∈ NonLeaves(T ) \ vL, (4)

evx ≥ B for all v ∈ NearLeaves(T ) \ vL, (5)

evL

x = B, (6)

x ≥ 0.

4.2. Examples

Tables 1 and 2 contain optimal solutions to the action gambler’s problem using the parameters
of the four examples in Section 2 and various values of p. We consider n = 2 and n = 3, and
use the indices on x from Figure 1. The constrained nonlinear optimizer in MATHEMATICA�,
version 6 [27] was used to find these solutions using the formulation in the previous section.

Observations. (i) The wagers are equal to B/n whenever p is less than or equal to the bounds
given in the examples in Section 2.

(ii) The utility function f (y) = y − cy2 shows that it is sometimes optimal (for large p) to
always wager the entire current bankroll.

Table 1: Optimal solutions to the action gambler’s problem using the parameters of Examples 1–4.

p x1 x2 x3 Optimal utility

f (y) = log(a + x), B = 1000, a = 10, n = 2

0.5 500.0 500.0 500.0 5.4
0.6 500.0 500.0 500.0 6.1
0.7 540.0 620.0 460.0 6.6
0.8 669.2 1007.5 330.9 7.1
0.9 821.8 1465.5 178.2 7.6

f (y) = yα , B = 1000, α = 0.5, n = 2

0.5 500.0 500.0 500.0 27.0
0.6 529.4 588.2 470.6 31.3
0.7 731.3 1194.0 268.7 36.2
0.8 888.9 1666.7 111.1 42.9
0.9 975.9 1927.7 24.1 51.9

f (y) = −e−by , B = 1000, b = 0.001, n = 2

0.5 500.0 500.0 500.0 −0.22
0.6 500.0 500.0 500.0 −0.22
0.7 500.0 500.0 500.0 −0.22
0.8 564.4 693.2 435.6 −0.20
0.9 699.5 1098.6 300.5 −0.15

f (y) = y − cy2, B = 1000, c = 0.000 05, n = 2

0.5 500 500 500 925
0.6 875 1625 125 1158
0.7 1000 2000 0 1568
0.8 1000 2000 0 2048
0.9 1000 2000 0 2592
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Table 2: Optimal solutions to the action gambler’s problem using the parameters of Examples 1–4.

p x1 x2 x3 x4 x5 x6 x7 Optimal utility

f (y) = log(a + x), B = 1000, a = 10, n = 3

0.5 333.3 333.3 333.3 333.3 333.3 333.3 333.3 6.1
0.6 333.3 333.3 333.3 333.3 333.3 333.3 333.3 6.6
0.7 441.4 580.6 302.3 812.8 348.4 348.4 256.3 7.0
0.8 621.2 1015.3 253.6 1545.6 334.4 370.3 125.3 7.5
0.9 667.7 1129.3 285.7 1063.1 477.0 355.6 46.6 7.9

f (y) = yα , B = 1000, α = 0.5, n = 3

0.5 333.3 333.3 333.3 333.3 333.3 333.3 333.3 29.0
0.6 426.2 548.5 303.8 759.5 337.6 337.6 270.0 33.0
0.7 696.0 1169.7 222.3 1976.3 363.0 363.0 81.7 39.4
0.8 882.7 1661.2 104.2 3127.0 195.4 195.4 13.0 50.2
0.9 975.6 1927.4 23.8 3807.8 47.0 47.0 0.6 66.4

f (y) = −e−by , B = 1000, b = 0.001, n = 3

0.5 333.3 333.3 333.3 333.3 333.3 333.3 333.3 −0.31
0.6 333.3 333.3 333.3 333.3 333.3 333.3 333.3 −0.29
0.7 385.0 423.7 346.3 423.7 423.8 423.8 268.8 −0.26
0.8 538.9 693.2 384.7 693.2 693.1 693.1 76.4 −0.19
0.9 636.5 912.0 363.5 1096.3 724.5 727.1 0.0 −0.10

f (y) = y − cy2, B = 1000, c = 0.000 05, n = 3

0.5 333.3 333.3 333.3 333.3 333.3 333.3 333.3 933.3
0.6 681.8 1045.5 318.2 1454.6 636.4 636.4 0.0 1229.2
0.7 833.3 1500.0 166.7 2666.7 333.3 333.3 0.0 1724.8
0.8 961.5 1884.6 38.5 3692.3 76.9 76.9 0.0 2463.5
0.9 1000.0 2000.0 0.0 4000.0 0.0 0.0 0.0 3499.2

(iii) When n = 2, x1 + x3 = 1000 for all p. When n = 3, x1 + x3 + x7 = 1000 for all p.

(iv) The wagers on the first bet are nondecreasing as p increases.

5. A related result

In this brief section we state a generalization of Theorem 1 that holds for the generalized
action gambler’s problem where the gambler is required to wager, in total, an amount A ≤ B,
where B is the initial bankroll. We also make a few observations about this result. The proof
is given at the end of Subsection 6.1 as a slight variation of the proof of Theorem 1.

Theorem 3. Let f (y) be a concave, increasing, and differentiable utility function on [0, M],
let n ≥ 1, and let A < B. Then, for the generalized action gambler’s problem, wagering A/n

on each bet maximizes the expected utility of the final bankroll if and only if

p ≤ min
ω∈{1,...,n}

(
1 + d

dω
f

(
(B − A) + 2A

n
ω

)/
d

dω
f

(
(B − A) + 2A

n
(ω − 1)

))−1

.

Next we consider some implications of the theorem.
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First, observe that, when A = 0, the upper bound on p is 1
2 . This means that it is optimal to

wager nothing when the bets have nonpositive expected value.
Next, let p∗ denote the upper bound on p given in the theorem. Observe that there can be

a discontinuity in the value of p∗ as A → B. This is suggested by the range of values for ω,
which is different for the cases in which A < B and A = B when n ≥ 2. But, it can also
be seen for the following example: consider the case in which n = 1 and the utility function
f (x) = log(a + x) for a > 0. Without the action constraint, there is a value

p∗∗ = a + 2B

2a + 2B

such that, for p > p∗∗, it is optimal to wager B (see [3]). Now consider adding the action
constraint. When A = B, we have p∗ = 1 (i.e. it is always optimal to wager A/1). But, if
A < B then wagering A is not optimal for p ∈ (p∗∗, 1]. So we have p∗ ≤ p∗∗ when A < B

and p∗ = 1 when A = B.
The theorem also implies the following.

Remark 6. Suppose that B is fixed. Let p< denote the upper bound on p in Theorem 3 when
A < B, and let p= denote the upper bound on p in Theorem 1 when A = B. Then p< ≤ p=
for all 0 ≤ A ≤ B. Hence, if it is optimal to wager A/n on each bet when A < B, then it is
also optimal to wager A/n on each bet when A = B.

With this remark in mind, consider a gambler for whom A < B and p is such that it is optimal
to wager A/n on each bet. In this case, for the optimal strategy, there is zero probability of
losing the entire bankroll. For such a gambler, this may seem counter to the notion that a
bankroll is the amount he wants to risk. Hence, he may want to reset A to equal B. The remark
says that it will then be optimal to wager B/n on each bet. This is why we emphasize the case
in which A = B in this paper.

6. Proofs

In this section we prove Theorems 1 and 3, and Proposition 1. The main technique used in
our proofs is an application of the well-known Karush–Kuhn–Tucker conditions to the nonlinear
programming formulation given in Subsection 4.1.

6.1. Proof of Theorems 1 and 3

We first prove Theorem 1. We then discuss the slight modifications necessary for proving
Theorem 3.

Let us begin by rewriting the nonlinear program in Subsection 4.1 as follows:

max
∑

v∈Leaves(T )

pw(v)(1 − p)l(v)f (B + dvx)

such that

−B − dvx + xv ≤ 0 for all v ∈ NonLeaves(T ) \ vL,

B − evx ≤ 0 for all v ∈ NearLeaves(T ) \ vL,

B − evL

x = 0,

−x ≤ 0.
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Let us rewrite this nonlinear program again as follows, where the new functions are defined
with the obvious correspondences to the above system. Call the following program S′:

max F(x)

such that
Gv(x) ≤ 0 for all v ∈ NonLeaves(T ) \ vL, (7)

G
v
(x) ≤ 0 for all v ∈ NearLeaves(T ) \ vL, (8)

H(x) = 0, (9)

G̃v(x) ≤ 0 for all v ∈ NonLeaves(T ). (10)

Let us consider, for S′, the feasible vector x∗ defined by x∗
i = B/n for all i ∈ NonLeaves(T ).

Associate the following variables with each constraint in S′: µv with each constraint in (7);
µv with each constraint in (8); µH with the constraint (9); and µ̃v with each constraint in
(10). Because the objective function is concave and the constraint functions are convex for
S′, the theory of constrained nonlinear programming (see, e.g. [26, pp. 385–400]) tells us the
following. The vector x∗ is a global maximum for S′ if and only if the following system S

(determined by the Karush–Kuhn–Tucker conditions) evaluated at x = x∗ has a solution:

∂

∂xi

F (x) +
∑

v∈NonLeaves(T )\vL

µv

∂

∂xi

Gv(x) +
∑

v∈NearLeaves(T )\vL

µv

∂

∂xi

G
v
(x)

+ µH

∂

∂xi

H(x) +
∑

v∈NonLeaves(T )

µ̃v

∂

∂xi

G̃v(x)

= 0 for all i ∈ NonLeaves(T ),

µvG
v(x) = 0 for all v ∈ NonLeaves(T ) \ vL,

µvG
v
(x) = 0 for all v ∈ NearLeaves(T ) \ vL, (11)

µ̃vG̃
v(x) = 0 for all v ∈ NonLeaves(T ),

µv ≤ 0 for all v ∈ NonLeaves(T ) \ vL,

µv ≤ 0 for all v ∈ NearLeaves(T ) \ vL,

µ̃v ≤ 0 for all v ∈ NonLeaves(T ).

Observe that

• Gv(x∗) < 0, which implies that µv = 0 for all v ∈ NonLeaves(T ) \ vL; and

• G̃v(x∗) < 0, which implies that µ̃v = 0 for all v ∈ NonLeaves(T ).

Also, G
v
(x∗) = 0 for all v ∈ NearLeaves(T ) \ vL; hence, we can ignore the constraints

in (11).
Finally, if we let µv and G

v
(x) be defined at v = vL, in the obvious way, then we have

H(x) = G
vL

(x). So, we can simplify the system as follows:

∂

∂xi

F (x) +
∑

v∈NearLeaves(T )

µv

∂

∂xi

G
v
(x) = 0 for all i ∈ NonLeaves(T ),

µv ≤ 0 for all v ∈ NearLeaves(T ) \ vL.
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Let us perform a convenient change of variables, and let yv = B + dvx. Then, substituting
for F(x) and yv , and evaluating ∂G

v
(x)/∂xi , we can rewrite the system as follows:∑

s∈Leaves(i)

pw(s)(1 − p)l(s)
d

dys

f (ys)
∂

∂xi

ys

=
∑

v∈NearLeaves(i)

µv for all i ∈ NonLeaves(T ), (12)

µv ≤ 0 for all v ∈ NearLeaves(T ) \ vL.

Consider equality (12) for the special case in which i ∈ NearLeaves(T ). In this case the
equality has only one variable µv and |Leaves(i)| = 2. We define

µ∗
i =

∑
s∈Leaves(i)

pw(s)(1 − p)l(s)
d

dys

f (ys)
∂

∂xPred(s)

ys for all i ∈ NearLeaves(T ). (13)

(Note the use of the Pred(·) function.) We now substitute the values for µ∗
i when i ∈

NearLeaves(T ) into (12) to obtain∑
s∈Leaves(i)

pw(s)(1 − p)l(s)
d

dys

f (ys)
∂

∂xi

ys

=
∑

s∈Leaves(i)

pw(s)(1 − p)l(s)
d

dys

f (ys)
∂

∂xPred(s)

ys for all i ∈ NonLeaves(T ). (14)

Claim 1. Equality (14) holds.

Proof. Pick any i ∈ NonLeaves(T ) and consider the corresponding equality. Observe that
both sides of the equality are identical, except for the partial derivatives. Note that w(s) ∈
{0, 1, . . . .n}. We show that, for any value j ∈ {0, 1, . . . , n}, the sum of the terms on the left-
hand side with w(s) = j equals the sum of the terms on the right-hand side with w(s) = j .
Observe that the partial derivatives are all equal to +1 or −1. Hence, if we can show, for fixed j ,
that the number of partial derivatives on the left-hand side that equal +1 is equal to the number
of partial derivatives on the right-hand side that equal +1, we are done.

Consider the set of directed paths, call it P , in T from i to a node in Leaves(i) such that
the (unique) extension of this path to r contains exactly j wins. The endnodes of these paths
are precisely the nodes in Leaves(i) such that w(s) = j . If node i corresponds to bet k then
the paths in P correspond to all the permutations of n − k + 1 wins and losses. Hence, the
total number of wins in any position of these permutations is the same. Finally, observe that
the number of partial derivatives on the left-hand side with value +1 is equal to the number of
wins in the first position of these permutations, and that the number of partial derivatives on
the right-hand side with value +1 is equal to the number of wins in the last position of these
permutations. The result follows.

It now follows that, for x∗, the vector µ∗ is the unique solution to the equalities in our system.
It remains to determine conditions under which µ∗

v ≤ 0 for all v ∈ NearLeaves(T ) \ vL.
Let v ∈ NearLeaves(T )\vL, and let v′ and v′′ be the two nodes in Leaves(v) corresponding

to a win and a loss, respectively. It is easy to check that, in (13),

∂

∂xPred(v′)
yv′ = +1 and

∂

∂xPred(v′′)
yv′′ = −1.
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In addition, we have w(v′) = w(v′′) + 1 and l(v′) = l(v′′) − 1. Thus, (13) becomes

µ∗
v = pw(v′)(1 − p)l(v

′) d

dyv′
f (yv′) − pw(v′)−1(1 − p)l(v

′)+1 d

dyv′′
f (yv′′)

for all v ∈ NearLeaves(T ) \ vL. It follows that conditions for which µ∗
v ≤ 0 are determined

by conditions for which

p
d

dyv′
f (yv′) − (1 − p)

d

dyv′′
f (yv′′) ≤ 0 for all v ∈ NearLeaves(T ) \ vL

or

p ≤
(

1 + d

dyv′
f (yv′)

/
d

dyv′′
f (yv′′)

)−1

for all v ∈ NearLeaves(T ) \ vL. (15)

Observe that, because f is concave, increasing, and differentiable, we are not dividing by 0 in
this expression. Because this expression is being evaluated at x∗, we know that

yv′ = B + B

n
w(v′) − B

n
(n − w(v′)) for all v ∈ NearLeaves(T ) \ vL (16)

or

yv′ = 2B

n
w(v′) for all v ∈ NearLeaves(T ) \ vL; (17)

and

yv′′ = B + B

n
(w(v′) − 1) − B

n
(n − w(v′) + 1) for all v ∈ NearLeaves(T ) \ vL (18)

or

yv′′ = 2B

n
(w(v′) − 1) for all v ∈ NearLeaves(T ) \ vL. (19)

Because v ∈ NearLeaves(T ) \ vL, we have w(v′) ∈ {2, . . . , n}. So, using these expressions
for yv′ and yv′′ , and setting ω = w(v′), (15) can be rewritten as

p ≤
(

1 + d

dy
f (y)

∣∣∣∣
2Bω/n

/
d

dy
f (y)

∣∣∣∣
2B(ω−1)/n

)−1

for ω ∈ {2, . . . , n}.

Finally, applying the chain rule, this can be rewritten as

p ≤
(

1 + d

dω
f

(
2B

n
ω

)/
d

dω
f

(
2B

n
(ω − 1)

))−1

for ω ∈ {2, . . . , n}.

The result now follows.
Let us finally consider the proof of Theorem 3. We begin with the system

max
∑

v∈Leaves(T )

pw(v)(1 − p)l(v)f (B + dvx)

such that
−B − dvx + xv ≤ 0 for all v ∈ NonLeaves(T ),

A − evx ≤ 0 for all v ∈ NearLeaves(T ),

−x ≤ 0,
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and rewrite it as
max F(x)

such that
Gv(x) ≤ 0 for all v ∈ NonLeaves(T ),

G
v
(x) ≤ 0 for all v ∈ NearLeaves(T ),

G̃v(x) ≤ 0 for all v ∈ NonLeaves(T ).

The proof now is essentially identical to the proof of Theorem 1 with the following excep-
tions.

• Let x∗ be defined by x∗
i = A/n for all i ∈ NonLeaves(T ).

• The term involving H(x) in system S is removed.

• The sentence after the statement of S beginning with ‘Finally, if we let µv . . .’ is removed.

• All occurrences of ‘\vL’ are removed.

• Equations (16)–(19) become

yv′ = B + A

n
w(v′) − A

n
(n − w(v′)) for all v ∈ NearLeaves(T )

or

yv′ = (B − A) + 2A

n
w(v′) for all v ∈ NearLeaves(T );

and

yv′′ = B + A

n
(w(v′) − 1) − A

n
(n − w(v′) + 1) for all v ∈ NearLeaves(T )

or

yv′′ = (B − A) + 2A

n
(w(v′) − 1) for all v ∈ NearLeaves(T ).

• Occurrences of ω ∈ {2, . . . , n} in the bounds must be changed to ω ∈ {1, . . . , n}.
6.2. Proof of Theorem 2

The proof we present is a modified and simpler version of the proof of Theorem 1.
Consider the following version of the nonlinear program from the previous section:

max
∑

v∈Leaves(T )

pw(v)(1 − p)l(v)f (B + dvx)

such that
B − evx = 0 for all v ∈ NearLeaves(T ),

−x ≤ 0.

The objective function is the same. However, the nontrivial constraints say that the gambler
must always wager a total amount of exactly B. The problem described by this formulation is
a relaxation of the simultaneous gambling problem. In particular, we have imposed an order
on the bets and each bet, after the first, has more than one variable associated with it. So, to
capture the simultaneous gambling problem, we need to add a constraint for each bet requiring
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that the associated variables are all equal. However, if we can prove that setting each variable to
B/n is optimal for the above problem, then, since that solution is feasible for the simultaneous
gambling problem, it must also be optimal for that problem.

Let us rewrite this system as follows, where the new functions are defined with the obvious
correspondence to the above system:

max F(x)

such that

G
v
(x) = 0 for all v ∈ NearLeaves(T ), (20)

G̃v(x) ≤ 0 for all v ∈ NonLeaves(T ). (21)

As before, let x∗ denote the feasible vector defined by x∗
i = B/n for all i ∈ NonLeaves(T ).

Let us associate the following variables with each constraint in the above system: µv with
each constraint in (20) and µ̃v with each constraint in (21). As before, the theory of nonlinear
programming tells us that x∗ is the global maximum for the above nonlinear program if and
only if the following system, evaluated at x = x∗, has a solution:

∂

∂xi

F (x) +
∑

v∈NearLeaves(T )

µv

∂

∂xi

G
v
(x) +

∑
v∈NonLeaves(T )

µ̃v

∂

∂xi

G̃v(x) = 0

for all i ∈ NonLeaves(T ),

µ̃vG̃
v(x) = 0 for all v ∈ NonLeaves(T ),

µ̃v ≤ 0 for all v ∈ NonLeaves(T ).

Observe that G̃v(x∗) < 0, which implies that µ̃v = 0 for all v ∈ NonLeaves(T ). So, we
can simplify the system as follows:

∂

∂xi

F (x) +
∑

v∈NearLeaves(T )

µv

∂

∂xi

G
v
(x) = 0 for all i ∈ NonLeaves(T ).

Let us perform a convenient change of variables, and let yv = B + dvx. Then, substituting
for F(x) and yv , and evaluating ∂G

v
(x)/∂xi , we can rewrite the system as follows:

∑
s∈Leaves(i)

pw(s)(1 − p)l(s)
d

dys

f (ys)
∂

∂xi

ys =
∑

v∈NearLeaves(i)

µv for all i ∈ NonLeaves(T ).

(22)
We now proceed exactly as in the proof of Theorem 1 and show that µ∗

v (as defined above)
is the unique solution to (22). Because µ∗

v is unrestricted in this model, the result follows for
all values of p.

6.3. Proof of Proposition 1

Let us define the function g : [2, n] → R as follows:

g(ω) = d

dω
f

(
2B

n
ω

)/
d

dω
f

(
2B

n
(ω − 1)

)
.
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Observe that the minimum in (1) is achieved at ω = n if dg(ω)/dω > 0 for ω ∈ [2, n]; it is
achieved at ω = 2 if dg(ω)/dω < 0 for ω ∈ [2, n]; and it is achieved at all points in [2, n] if
dg(ω)/dω = 0 for ω ∈ [2, n]. Let us compute dg(ω)/dω for ω ∈ [2, n]:

d

dω
g(ω) =

(
d

dω
f

(
2B

n
(ω − 1)

)
d2

dω2 f

(
2B

n
ω

)
− d

dω
f

(
2B

n
ω

)
d2

dω2 f

(
2B

n
(ω − 1)

))
×

(
d

dω
f

(
2B

n
(ω − 1)

))−2

.

Since we are only interested in the sign of this expression, we can ignore the denominator.
Furthermore, since df (2Bω/n)/dω > 0 and df (2B(ω − 1)/n)/dω > 0 on [2, n] (because f

is increasing for ω ∈ [2, n]), we can divide the above expression by

d

dω
f

(
2B

n
ω

)
d

dω
f

(
2B

n
(ω − 1)

)
without changing its sign. We can then relate the resulting expression to the Arrow–Pratt
absolute risk aversion coefficient to obtain the following:

h

(
2B

n
(ω − 1)

)
− h

(
2B

n
(ω)

)
= d2

dω2 f

(
2B

n
ω

)/
d

dω
f

(
2B

n
ω

)
− d2

dω2 f

(
2B

n
(ω − 1)

)/
d

dω
f

(
2B

n
(ω − 1)

)
.

So, if h(y) is decreasing as y increases on [2B/n, 2B] then dg(ω)/dω > 0 for ω ∈ [2, n];
if h(y) is increasing as y increases on [2B/n, 2B] then dg(ω)/dω < 0 for ω ∈ [2, n]; and if
h(y) is constant on [2B/n, 2B] then dg(ω)/dω = 0 for ω ∈ [2, n]. The result now follows.

7. An open problem

We have studied the action gambler’s problem for general utility functions and applied the
general results to some specific examples. An open problem is to find a closed-form solution
to the action gambler’s problem for a specific common utility function for all values of p.
This was done in [3] for the unconstrained version of the problem for the utility function
f (y) = log(a + y), a ≥ 0. This particular function is interesting because it is a generalization
of the f (y) = log(y) function used in [15], but is defined at 0, when a > 0, as it is necessary
for the constrained problem. Another possibly tractable candidate is f (y) = yα for 0 < α < 1.

References

[1] Bellman, R. and Kalaba, R. (1957). Dynamic programming and statistical communication theory. Proc. Nat.
Acad. Sci. USA 43, 749–751.

[2] Breiman, L. (1961). Optimal gambling systems for favorable games. In Proc. 4th Berkeley Symp. Math. Statist.
Prob., Vol. I, University of California Press, Berkeley, pp. 65–78.

[3] Cetinkaya, S. and Parlar, M. (1997). Optimal nonmyopic gambling strategy for the generalized Kelly
criterion. Naval Res. Logistics 44, 639–654.

[4] Chen, R. W., Shepp, L. A., Yao, Y.-C. and Zhang, C.-H. (2005). On optimality of bold play for primitive
casinos in the presence of inflation. J. Appl. Prob. 42, 121–137.

[5] DeGroot, M. H. (2004). Optimal Statistical Decisions. John Wiley, Hoboken, NJ.
[6] Dubins, L. E. and Savage, L. J. (1976). Inequalities for Stochastic Processes (How to Gamble If You Must).

Corrected republication of the 1965 edition. Dover, New York.

https://doi.org/10.1239/jap/1238592115 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1238592115


54 D. HARTVIGSEN

[7] Ethier, S. N. and Levin, D. A. (2005). On the fundamental theorem of card counting, with application to the
game of trente et quarante. Adv. Appl. Prob. 37, 90–107.

[8] Ethier, S. N. and Tavaré, S. (1983). The proportional bettor’s return on investment. J. Appl. Prob. 20, 563–573.
[9] Ferguson, T. S. (1965). Betting systems which minimize the probability of ruin. J. SIAM 13, 795–818.

[10] Finkelstein, M. and Whitley, R. (1981). Optimal strategies for repeated games. Adv. Appl. Prob. 13, 415–428.
[11] Freedman, D. A. (1967). Timid play is optimal. Ann. Math. Statist. 38, 1281–1283.
[12] Guu, S.-M. and Wang, S.-P. (2002). Optimal gambling strategy and relative risk aversion. J. Chinese Inst.

Indust. Eng. 19, 34–40.
[13] Heath, D. C., Pruitt, W. E. and Sudderth, W. D. (1972). Subfair red-and-black with a limit. Proc. Amer.

Math. Soc. 35, 555–560.
[14] Karush, W. (1939). Minima of functions of several variables with inequalities as side conditions. Masters

Thesis, University of Chicago.
[15] Kelly, J. L., Jr. (1956). A new interpretation of information rate. Bell. System Tech. J. 35, 917–926.
[16] Kuhn, H. W. and Tucker, A. W. (1961). Nonlinear programming. In Proc. 2nd Berkeley Symp. Math. Statist.

Prob., ed. J. Neyman, University of California Press, Berkeley, pp. 481–492.
[17] Kulldorff, M. (1993). Optimal control of favorable games with a time limit. SIAM J. Control Optimization

31, 52–69.
[18] Luenberger, D. G. (1998). Investment Science. Oxford University Press.
[19] Markowitz, H. M. (1952). Portfolio selection. J. Finance 7, 77–91.
[20] Molenaar, W. and van der Velde, E. A. (1967). How to survive a fixed number of fair bets. Ann. Math.

Statist. 38, 1278–1280.
[21] Pemberton, M. and Rau, N. (2001). Mathematics for Economists: An Introductory Textbook. Manchester

University Press.
[22] Ross, S. M. (1974). Dynamic programming and gambling models. Adv. Appl. Prob. 6, 593–606.
[23] Ruth, K. (1999). Favorable red and black on the integers with a minimum bet. J. Appl. Prob. 36, 837–851.
[24] Samuelson, P. A. (1971). The ‘fallacy’ of maximizing the geometric mean in long sequences of investing or

gambling. Proc. Nat. Acad. Sci. USA 68, 2493–2496.
[25] Schweinsberg, J. (2005). Improving on bold play when the gambler is restricted. J. Appl. Prob. 42, 321–333.
[26] Sun, W. and Yuan, Y.-X. (2006). Optimization Theory and Methods. Springer, New York.
[27] Wolfram Research. (2008). Mathematica 6. Champaign, IL.
[28] Yao, Y.-C. (2007). On optimality of bold play for discounted Dubins–Savage gambling problems with limited

playing times. J. Appl. Prob. 44, 212–225.

https://doi.org/10.1239/jap/1238592115 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1238592115

	1 Introduction
	2 Main results
	3 Context
	4 The formulation and some examples
	4.1 Notation and formulation
	4.2 Examples

	5 A related result
	6 Proofs
	6.1 Proof of Theorems 1 and 3
	6.2 Proof of Theorem 2
	6.3 Proof of Proposition 1

	7 An open problem
	References

