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LEFT IDEALS IN THE NEAR-RING OP AFFINE
TRANSFORMATIONS

WOLFGANG MUTTER

In this paper we determine the left ideals in the near-ring Aff(V) of all affine
transformations of a vector space V. It is shown that there is a Galois correspon-
dence between the filters of affine subspaces of V and those left ideals of Aff(V)
which are not left invariant. In particular, the not left invariant finitely generated
left ideals of Aff(Vr) are precisely the annihilators of the affine subspaces of V. A
similar correspondence exists between the filters of linear subspaces of V and the
left invariant left ideals of Aff(V). If V is finite-dimensional, then all left ideals
of Aff(V )̂ are finitely generated.

1. I N TR O D U CTION

Let V be a vector space and let Aff(F) denote the collection of all affine transfor-
mations of V. Under pointwise addition and under composition of mappings Aff(V) is
a near-ring. In [2] Blackett showed that the set C of all constant transformations forms
an ideal of Aff(V). If V is finite dimensional, then C is the only non-trivial ideal of
Aff(V). Wolfson [5] determined all ideals of Aff(V) for an arbitrary vector space V.
He observed that C is contained in all non-trivial ideals of Aff(V) and that Aff( V)/C
is isomorphic to the ring Hom( V, V) of all linear transformations of V. Thus the ideals
of Aff(V) are the sets Tv + C with Tv = {/ £ Hom(F, V) | Range/ < Kv}, where Nv

is a cardinal number.

In this paper we investigate the structure of the left ideals of Aff(V). We use
the results of Baer on the left ideals of the ring Hom(V, V) in [1, p.172 following],
where he showed that the finitely generated left ideals of Hom(V, V) are precisely
the annihilators of the linear subspaces of the vector space V. In particular, Baer
established a Galois correspondence between the left ideals of Hom(V, V) and the filters
of linear subspaces of V. Thus, by the second isomorphism theorem for near-rings (see
for example Theorem 1.31 in [3]), the left invariant left ideals of Aff(V) are completely
determined, since a left ideal of Aff(V) is left invariant if and only if it contains the
ideal C of all constant transformations of V.

The purpose of this paper is to show that there is a similar correspondence between
the left ideals of Aff(V) which are not left invariant and the affine subspaces of V, as
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116 W. Mutter [2]

in the case of Hom(V, V). If V is finite dimensional, then all left ideals of Aff(V) are
finitely generated. In this case the left ideals of Aff(V) which are not left invariant are
precisely the annihilators of the affine subspaces of V. The left invariant left ideals of
Aff(V) are the sets L + C, where L is the annihilator of a linear subspace of V.

2. BASIC DEFINITIONS AND RESULTS

For details on near-rings and iV-groups we refer the reader to [4]. According to [4]
we consider right near-rings.

DEFINITION 2.1: Let (N, + , •) be a near-ring. A subset L of N is called a left
ideal of N provided that

1. (X, + ) is a normal subgroup of (N, + ) , and
2. m(n + i) — mn £ L for all i £ L and m,n £ N.

If S is a subset of a near-ring N, let {S)t denote the left ideal generated by S.
In particular, (ni, . . . , nj,)i denotes the left ideal generated by n\, . . . , n* 6 N. If a
near-ring N is regarded as a TV-group in the usual way, the left ideals of N are precisely
the kernels of iV-homomorphisms with domain N.

In general, a left ideal of a near-ring is not invariant under multiplication from the
left. Therefore, we call a left ideal L of a near-ring N left invariant, if for all n G N
and i € L the element n -i is in L. The left invariant left ideals of a near-ring can be
characterised as follows:

LEMMA 2 . 2 . Let N be a near-riiig with constant part Ne and let L be a left
ideal of N. Then L is left invariant if and only if Nc C L.

PROOF: If L is left invariant and nc is in Nc, then nc — ne • i 6 L for all i 6 L.
Conversely, if Nc C L, then for all n G N and i €. L the element n-i = n-i — n-O + n-0
is in L, since n • 0 is in JVC. U

If V is a vector space and 5 is a subset of V, then Ann (5) denotes the annihilator
{ / G Aff(V) | f(S) = 0} . If p is an element of V, let (p) denote the constant
transformation of V which carries all of V onto p. Any affine transformation / £
AS(V) can be decomposed as / = / - (/(0)> + (/(0)> with / - (/(0)) 6 Hom(Vr, V)
and (/(0)) G C. Hom(V, V) is a subnear-ring of Aff(V) and

p : Aff(V) - Hom(7, V): f -» / - </(0)>

is a surjective near-ring homomorphism with ker <p = C. By Lemma 2.2 and by the
second isomorphism theorem for near-rings ([3, Theorem 1-31]) <p induces a bijective
correspondence between the left invariant left ideals of Aff(V) and the left ideals of
Hom(V, V) by L->tp{L).
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[3] Left ideals 117

A left ideal L of Aff(V) which is not left invariant does not contain many constant

transformations, for we have

LEMMA 2 . 3 . If L is a not left invariant left ideal of Aff(V), then LnC = {0}.

PROOF: It is easy to show that L D C is isomorphic to a submodule of the simple
Hom(V, V)-module V. Hence, by Lemma 2.2, the assertion of the lemma is obvious. U

For an affine transformation / let Z(f) denote the zero-set of / , that is Z(f) —
{p € V | /(p) = 0}. If Z(f) is not empty, then it is an affine subspace of V. Conversely,
every affine subspace of a vector space is the zero-set of an affine transformation. More
precisely:

LEMMA 2 . 4 . Let A = p + U be an afiine subspace of a vector space V, where
U is a linear subspace of V and p € V. Tien there exists f G Aff(V) with Z(f) =A.
In particuiar, if W is a linear complement of U in V, there exists f G Aff(V) with
Z{f) = A and f{V) = W.

PROOF: By the Complementation Theorem in [1, p.12], there exists a linear sub-
space W of V with V — U © W. If T_J, denotes the translation by —p and pry/ is
the projection map from V onto W, then / = pr\y o T_P is an affine transformation of
V with the required properties. D

3. THE NOT LEFT INVARIANT LEFT IDEALS

In this section we determine the left ideals of Aff(V) which are not left invariant.

LEMMA 3 . 1 . Let L be a left ideal of Aff(V) and let fi, ..., / „ be in L with
Z{h) (1 -• • 0 Z(fn) ±%. If g is an affine transformation of V with Z(g) D Z{jx) D
• • •nZ( / n ) , then geL.

PROOF: Since Z(fi) (~1 • • • f~l Z(fn) is not empty, there exist an element p G V and
a linear subspace U of V with p + U = Z{f\) n • • • D Z(fn). Let TP G Aff(F) be given
by TP(X) — x+p. Then rp defines an Aff(V)-automorphism of AfF(V) by h \-» horp.
Hence

and U C Z(g o r f ) . In particular, / i OTP, ..., fn
0Tp a n d g°Tp are linear transformations

of V. Since Hom(Vr, V) is a left ideal of Afi(V), the left ideal (/i o rp, . . . , / „ o rp)t

generated by f\OTp, ..., fnorp is obviously the smallest left ideal of the ring Hom(V, V)
which contains fi orp, ..., fnorp. Hence g oTP G ( / I oTP, ..., / „ oTP)I by [1, p.173,
Theorem A, and p.177, Theorem 1]. The second isomorphism theorem 1.30 for N-
groups in [4] implies g G ( / i , . . . , /„>/ C L. D

In order to prove the next lemma, we need the following two propositions:
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PROPOSITION 3 . 2 . Let V be a vector space and let A\ and A2 be affine
subspaces of V with A\ D A2 = 0. Then there exist maximal affine subspaces Mi and
M2 of y such that At C Mx, A2 C M2 and Mx n M2 = 0.

PROOF: Let p i , p2 be in V and let C/i, U2 be linear subspaces of V with Ai =
Pi + E/i and J42 = p2 + U2. Since Ai n A2 = 0, pi — ft is not in £/i + U2. By the
Complementation Theorem in [1, p.12], there exists a linear subspace U of V such that
V can be decomposed as

V = span(pi - P2) © (Ui + U2) © U.

Then Mi = pi + (Ui + U2 + U) and M2 = ft + (tfi + U2 + t/) are maximal affine
subspaces of V with the required properties. D

PROPOSITION 3 . 3 . If L is a left ideal of Aff(y) and f G L with Z(f) = 0,
then L is left invariant.

PROOF: f(V) is an affine subspace of V. Thus by Lemma 2.4 there exists g G
Aff(F) with Z(g) = f(V). Furthermore the constant transformation

is in L. Moreover, g(0) is not zero, since 0 is not in f(V). Hence the assertion of the
lemma follows by Lemmas 2.2 and 2.3. D

LEMMA 3 . 4 . Let L be a left ideal of Aff(V) and suppose there are f,g € L
with Z(f) D Z(g) = 0. Then L is left invariant.

PROOF: By Proposition 3.3 it suffices to show that there exists an affine transfor-
mation h €E L with Z(h) = 0. Therefore we may assume that Z(f) and Z(g) are not
empty. By Proposition 3.2 there exist maximal subspaces Mi and M2 of V such that
Z(f) C Mi , Z(g) C M2 and Mi flM2 = 0. By Lemma 2.4 there exist nonzero elements
pi and p2 in V and transformations / 1 , /2 G Aff(V) with Mi = Z( / i ) , M2 = Z(f2),

fi(V) — span(pi) and f2(V) = span(p2). Lemma 3.1 implies fi, f2 G L, since
Z(fi) 2 Z(f) and Z(/2) D Z(g). Now we distinguish two cases:

Suppose dim V > 1. Then there exist nonzero elements qi, q2 G V with
span(gi) D span (92) = {0}. Let hi and h2 be invertible linear transformations
of V with hi(pi) = gi and ft2(p2) = q2. Then hi o fi(V) = span(gi) and
h2 o f2(V) = span(g2). Furthermore the transformation h = hi o fi — h2 o f2 is in
L. If x G V, then

h{x) = 0<*hlO /i(x) = h2 o /2(x) o /ii 0 fi{x) = h2o f2{x) = 0 & f^x) = f2{x) = 0.

Hence Z(h) = 0, since Z(fi) D Z(f2) = 0. This proves the assertion of the lemma for

dimV > 1.
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If dim V = 1, then there exist distinct elements q\ and q2 in V with Z(f\) — {q\}
and Z(f2) = {q2}. An easy check shows that in this case f\ and f2 are injective. Hence
there exist affine transformations h\ and h2 with hi o fi — h2 o f2 — id. The constant
transformation

h = (ff2(0) - 51 (0)) = (51 o / j - 9l o (0)) - (g2 o f2 - g2 o (0))

is in L and is not zero, since /»i(0) = f»i(/i(gi)) = 91 and h2(0) = h2{f_2(q2)) = ?2-
This completes the proof of the lemma. U

Now we are in a position to establish a bijective correspondence between the left
ideals of Aff(V), which are not left invariant, and the filters of affine subspaces of V.
First we need

DEFINITION 3.5: A nonempty family T of affine subspaces of a vector space V is
called an >l-filter on V provided that

1. 0 I T,
2. if Ai, A2 £ J7, then A i R ^ e T, and
3. if A G T and A' is an affine subspace of V with A' 2 A, then A' 6 T.

For example, if A is an affine subspace of V, the family TA of all affine subspaces
of V which contain A is an ^-filter on V. Obviously TA 1S the smallest .4-filter
containing A, hence we call TA the A-filter generated by A.

THEOREM 3 . 6 . Let V be a. vector space.

1. II L is a left ideal ot Aff(V) which is not left invariant, then

Z[L] - {Z(f) I / € X}

is an A-fUter on V.

2. If T is an A-fUter on V, then

Z+-[?] = {){ Ann (A) \A(EF}

is a not left invariant left ideal of Aff (V).

Moreover, the mapping Z is one-one between the set of all not left invariant left ideals
of Aff(f) and the A-Slters on V.

PROOF: 1. Let I b e a left ideal of Aff(V) which is not left invariant. We have to
show that Z[L] satisfies the properties 1 - 3 of Definition 3.5. Proposition 3.3 implies
0 $ Z[L]. Suppose now that Au A2 G Z[L). If Ai D A2 = 0, then by Lemma 3.4 L

is left invariant, which contradicts the hypothesis. If A\ D A2 ^ 0, then according to
Lemma 2.4 there exists / G Aff(V) with Z(f) = Ax n A2. Lemma 3.1 implies / G L,
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hence Ax D A2 G Z[L]. Finally, let A G Z[L] and let A' be an affine subspace of V
with A' D A. By Lemma 2.4 there exists / ' G Aff(V) with A' = Z(f'). Since A ^ 0
by Lemma 3.4, Lemma 3.1 implies / ' G L. Therefore A' is in Z[L]. Altogether, we
have shown that Z[L] is an .A-filter on V.

2. The proof of the second assertion of the theorem is straightforward and therefore
omitted.

3. In order to verify that the mapping Z is one-one, we prove that Z*~ is the inverse
mapping of Z. If T is an ^-filter on V then clearly Z[Z*~[T\] - T. Furthermore it
is obvious that any left ideal L of Aff(V) satisfies L C Z^[Z[L]]. If, in addition, L
is not left invariant, we have seen that Z[L] is an A-filter on V. Therefore, if / is an
affine transformation with Z(f) £ Z[L], then Z(f) ^ 0, and hence / G L by Lemma
3.1. This proves the converse inclusion Z*~[Z[L]] C I . D

As a consequence of Theorem 3.6 we note that for an affine transformation /
with nonempty zero-set Z[f) the left ideal (/)/ generated by / and the annihilator
Ann(Z(/)) of Z(f) coincide. Furthermore, we get the following

COROLLARY 3 . 7 . The not invariant left invariant ideals L of Aff(F) are pre-
cisely the sets

Z^[T\ \J{A(A)\ A G .F}

wJiere T is a filter of affine subspaces of V.

4. THE FINITELY GENERATED LEFT IDEALS

Now we are in a position to determine the finitely generated left ideals of Aff(Vr).

THEOREM 4 . 1 . Let V be a vector space.

1. The finitely generated left invariant left ideals of Aff (V) are precisely the
sets Ann (U) + C, where U is a linear subspace of V.

2. Tie finitely generated left ideals of Aff(V), which are not left invariant,
are precisely the annihilatois Ann (A), where A is an affine subspace of
V.

PROOF: The first assertion of the theorem follows by Theorem A in [1, p.173],
Theorem 1 in [1, p. 177], the second isomorphism theorem for near-rings and Lemma
2.2. To show 2, suppose first that L = (fi, ..., /„)/ is a finitely generated left ideal
of Aff(V) which is not left invariant. By Theorem 3.6 the family Z[L] is an ^-filter
on V. Hence there exists / G L with Z{f) = Z(fx) D •• • n Z(fn). Moreover, Z(f) is
not empty. By the remarks following Theorem 3.6 the left ideal (/)/ generated by /
agrees with the annihilator Ann(Z(/)). Therefore Ann(Z(/)) C L. Since Ann(Z(/))
is a left ideal of Aff(V) containing / i , . . . , / „ , it follows that Ann(Z(/)) = L.
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Conversely, if A is an affine subspace of V, by Lemma 2.4 there exists / € Aff(V)
with A — Z(f). The remarks following Theorem 3.6 imply Ann (A) = (f)i, hence
Ann(yl) is a finitely generated and obviously not left invariant left ideal of Aff(V). U

For the proof of the next theorem it will be convenient to have

LEMMA 4 . 2 . Let V be a vector space. Then the following statements are equiv-
alent:

1. dimV < oo.
2. Every A-filter on V is generated by an affine subspace of V.

PROOF: Let d i m F < oo and let T be an .A-filter on V . Let A G p such
that dimA < dimA' for all A' G T. If A' G 7, then A n A' G T and so dimjl <
dim (.A PI A'). This implies A C A'. Hence T is contained in the .A-filter TA generated
by A. Since A G F, it follows that Jr = Jr

A.

To show the converse, suppose that dimV = oo. Then the family of all finite
dimensional linear subspaces of V is an .A-filter on V which is not generated by an
affine subspace of V. U

THEOREM 4 . 3 . Let V be a vector space. Then the following statements are
equivalent:

1. dimV < oo.

2. All left ideals of Aff(V) are finitely generated.

PROOF: Let V be a finite dimensional vector space and let L be a left ideal of
Aff(V). If L is not left invariant, then according to Corollary 3.7 and Lemma 4.2
there exists an affine subspace A of V with L — [j{Ann(A') \ A' G !FA} — Ann (.A).
Therefore Theorem 4.1 implies that L is finitely generated.

If L is a left invariant left ideal of Aff(F), then L can be decomposed as L =

Lo+C, where Lo is a left ideal of Hom(F, V). In particular, Lo is a left ideal of Aff(V)

which is not left invariant. Hence LQ is finitely generated. Furthermore, Lemma 2.3
implies that C is a finitely generated left ideal of Aff(F). Therefore L is finitely
generated.

If conversely all left ideals of Aff (V) are finitely generated, then dim V < oo by
Theorem 4.1, Lemma 4.2 and Corollary 3.7. D

In particular, Theorem 4.1 and Theorem 4.3 show that for a finite dimensional
vector space V there is a Galois correspondence between the left invariant left ideals
of Aff(V) and the linear subspaces of V and a similar correspondence between the not
left invariant left ideals of Aff(V) and the affine subspaces of V.
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