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Abstract

Let F be a probability distribution with support on the nonnegative integers. We describe
two algorithms for generating a stationary random graph, with vertex set Z, in which
the degrees of the vertices are independent, identically distributed random variables with
distribution F . Focus is on an algorithm generating a graph in which, initially, a random
number of ‘stubs’ with distribution F is attached to each vertex. Each stub is then
randomly assigned a direction (left or right) and the edge configuration obtained by pairing
stubs pointing to each other, first exhausting all possible connections between nearest
neighbors, then linking second-nearest neighbors, and so on. Under the assumption that
F has finite mean, it is shown that this algorithm leads to a well-defined configuration, but
that the expected length of the shortest edge attached to a given vertex is infinite. It is also
shown that any stationary algorithm for pairing stubs with random, independent directions
causes the total length of the edges attached to a given vertex to have infinite mean.
Connections to the problem of constructing finitary isomorphisms between Bernoulli
shifts are discussed.
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1. Introduction

Recently there has been a lot of interest in the use of random graphs as models of various
types of complex network. Several models have been formulated, aiming to capture essential
features of the networks in question, such as degree distribution, diameter, and clustering; see,
for instance, Dorogovtsev and Mendes (2003) and Bollobás and Riordan (2002) for surveys.
Regarding the vertex degree, power-law distributions have been identified in many of the real-
world applications, implying that the ordinary Erdős–Rényi graph, introduced in Erdős and
Rényi (1959) and giving Poisson-distributed degrees in the limit of large graph size, is not
suitable as a model. This has given rise to a number of algorithms for generating graphs with
an arbitrary prescribed degree distribution. The most studied one is the so-called configuration
model, in which each vertex is assigned a random number of stubs which are then joined
pairwise, completely randomly, to form edges. The asymptotic behavior of this model has been
studied by Molloy and Reed (1995), (1998), Newman et al. (2001), and van der Hofstad et al.
(2005), among others. Also, Britton et al. (2005) considered a modification of the model in
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which multiple edges and self-loops (that is, edges beginning and ending at the same vertex)
are forbidden, giving simple graphs as a final result. A different model for generating random
graphs with prescribed degrees was studied by Chung and Lu (2002a), (2002b).

A natural generalization of the problem of generating random graphs with prescribed degree
distributions is to consider spatial versions of the same problem, where geometric aspects play a
role. More precisely, given a probability distributionF with support on the nonnegative integers
and a set of vertices with some kind of spatial structure, how should an edge configuration on
this vertex set with degree distribution F be generated? The answer to this question clearly
depends on the nature of the spatial structure and also on the desired properties of the resulting
configuration.

Here we consider the problem of generating a stationary random graph with vertex set Z and
with vertex degrees that are independent and identically distributed (i.i.d.) with distribution F .
We recall that a graph on Z is said to be stationary if the distribution of the edge configuration
restricted to any finite subset of Z is translation invariant. Hence, we seek a stationary algorithm
producing edges among the vertices of Z in such a way that the vertex degrees become
i.i.d. random variables with distribution F . We have two suggestions for how to do this.

1.1. Stepwise pairing with random directions

Our first suggestion is the one we will spend most of the paper on. The algorithm runs as
follows.

1. Independently attach a random number of stubs to each vertex according to the distribution
F .

2. Randomly assign a direction (left or right) to each stub, turning it into an arrow.

3. Join stepwise the arrows pointing to each other, first exhausting all possible connections
between nearest-neighbor vertices, then looking at second-nearest neighbors, and so on,
until all arrows are connected.

This model will be referred to as the stepwise pairing algorithm with random directions
(or the SPRD algorithm). In Section 2 we show that, with probability 1, the SPRD algorithm
leads to a well-defined configuration, that is, one in which the number of steps required for
a right-arrow or a left-arrow to respectively find a left-arrow or a right-arrow to connect to is
almost surely finite. However, the shortest edge of a vertex already turns out to have infinite
mean; see Section 4. Basically this follows from properties of a random walk structure that
arises in the analysis of the model. This analysis is complicated by the fact that the increments
of the random walk are not independent, making standard results inapplicable. In Section 5
we prove that if we insist on the directions of the edges of a given vertex being completely
random, and also independent of the configuration at all other vertices, then we cannot achieve
finite mean for the total edge length per vertex in a stationary way. Note, however, that by
dropping the requirement that the directions of the edges should be assigned randomly and
independently, it is in some cases possible to design algorithms that give finite mean for the
edges; see Examples 5.1 and 5.2.

Readers familiar with Bernoulli isomorphisms might have observed that our pairing rule is
similar to the pairing rule used by Meshalkin (1959) to construct an isomorphism between two
specific Bernoulli shifts with equal entropy. In fact there are connections, which we will briefly
explore in Section 3. We also mention the paper by Holroyd and Peres (2005), who dealt with
stationary matching in a slightly different setup.
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1.2. Annihilating random walk

There is a completely different way of generating a stationary graph with the required
properties, by making use of random walks, which we mention for completeness. It can be
described in three steps, as follows.

1. Independently attach a random number of stubs to each vertex according to the distribution
F .

2. To each stub associate a particle at the same position in Z and let each particle start a
continuous-time random walk on Z, independent of all the others.

3. Whenever two particles – which start at different locations – meet, draw an edge between
the corresponding stubs and remove the particles from the system.

It is not hard to see, and is well known (see, for instance, Arratia (1981)), that this leads to a
limiting configuration in which all stubs are connected. However, we will not be concerned with
this type of pairing in this paper. See Mattera (2003) for other connections between annihilating
random walks and graphs.

2. Definition of the SPRD algorithm

Let us now describe the SPRD algorithm in more detail. First, independently associate to
each vertex i ∈ Z a random degree,Di , with distribution F . Think of this as vertex i havingDi
‘stubs’attached to it. Now turn the stubs into arrows by randomly associating a direction to each
of them. More precisely, with probability p a stub is pointed to the right and with probability
1−p it is pointed to the left. WriteRi andLi for the numbers of right-arrows and left-arrows of
vertex i and label the arrows {ri,j }Rij=1 and {li,j }Lij=1, respectively. This gives a configuration in
which each vertex i has two ordered sets of arrows, {ri,j }j and {li,j }j , associated with it. These
arrows will now be matched pairwise – a pair always consisting of one right-arrow and one
left-arrow – to create edges between the vertices. The matching is done stepwise, as follows.

1. First consider all pairs of nearest-neighbor vertices, i and i+1, and create min{Ri, Li+1}
edges between vertex i and vertex i + 1 by joining the arrows ri,j and li+1,j , j =
1, . . . ,min{Ri, Li+1}.

2. Next consider all pairs of second-nearest-neighbor vertices, i and i + 2. If, after step
1, there is at least one unconnected right-arrow at vertex i and at least one unconnected
left-arrow at vertex i + 2, then we create edge(s) between the vertices i and i + 2 by
performing all possible connections, always connecting an arrow ri,j or li+2,j before an
arrow ri,j+1 or, respectively, li+2,j+1.

...

n. In step n, we consider all pairs of vertices, i and i+n, at distance n from each other, and
connect arrows that remain after the previous steps, never using an arrow ri,j or li+n,j
before an arrow ri,j−1 or, respectively, li+n,j−1.

...

The above procedure is clearly stationary, but we have yet to show that it leads to a well-
defined graph. To this end, define the length of an edge in the resulting configuration to be the
distance between its endpoints. In what follows, we will consider only the vertex at the origin.
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Write N(r)
j for the length of the edge created by right-arrow number j at the origin, i.e. r0,j ,

and set N(r)
j = ∞ if r0,j is never connected. Also, define N(l)

j , j ≥ 1, analogously for the
left-arrows. Write

N(r) = max
1≤j≤R0

{N(r)
j } and N(l) = max

1≤j≤L0
{N(l)

j },

and define N = max{N(r), N(l)}.
We first show that the algorithm does not work for p �= 1

2 . Below, Pp denotes the probability
measure associated with the SPRD algorithm when a stub is pointed to the right with probability
p.

Proposition 2.1. If p �= 1
2 then Pp(N = ∞) > 0.

Proof. To see that Pp(N
(r)
1 = ∞) > 0 for p > 1

2 , fix p > 1
2 , let �i = Li − Ri , and define

S′
1 = L1, S′

n =
n−1∑
i=1

�i + Ln, n ≥ 2.

Clearly the first right-arrow at the origin is connected as soon as S′
n takes a positive value; hence,

it suffices to show that Pp(S′
n ≤ 0 for all n) > 0. This, however, follows easily by noting that

the law of large numbers implies that S′
n → ∞ almost surely.

Having discarded asymmetric versions of the algorithm, let us move on to the symmetric case,
in which the prospects of success should be better. Indeed, the following proposition guarantees
that for p = 1

2 no arrow has to wait infinitely long before it finds another to connect to.

Theorem 2.1. We have P1/2(N < ∞) = 1.

Proof. For ease of notation, write P1/2 = P. First note that, by symmetry, it suffices to show
that P(N(r) < ∞) = 1. Also, by the definition of the algorithm, the arrows {r0,j } are used in
(stepwise) chronological order, implying that N(r)

j ≤ N
(r)
j+1. It follows that N(r) = N

(r)
R0

, and,
since R0 < ∞ almost surely, we have finished if we can show that

P(N(r)
j < ∞) = 1 for all j .

To do this, we first consider the case j = 1 and show that P(N(r)
1 < ∞) = 1, i.e. that the

length of the edge created by the first right-arrow at the origin, r0,1, is almost surely finite. This
is done by dominating the length of the edge by the time at which a recurrent random walk takes
a positive value for the first time. To be more specific, define�i = Li−Ri (as above) and write
Sn = ∑n

i=1�i . The variables {�i} are i.i.d. and symmetric, implying that η := inf{n : Sn > 0}
is finite with probability 1. Now note that as soon as Sn > 0 we know that the arrow r0,1 must
have found a left-arrow to connect to. Indeed, if Sn > 0 we also have Sn+Rn > 0, and the fact
that Sn +Rn > 0 means that the total number of left-arrows on the vertices 1, . . . , n is strictly
larger than the total number of right-arrows on the vertices 1, . . . , n− 1, implying that at some
vertex 1, . . . , n there must be a left-arrow for r0,1 to connect to. It follows that N(r)

1 ≤ η, and
we have finished.

Now assume in an inductive fashion (on j ) that P(N(r)
j < ∞) = 1, and suppose that

P(N(r)
j+1 = ∞) > 0. Write� = {�i} = {(Li, Ri)} for the random configuration of arrows at the

vertices and, for configurations with N(r)
j < ∞, introduce a coupled configuration, �̂ = {�̂i},
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that is identical to � except that the directions of the stubs at the vertex N(r)
j are generated

independently. Let N̂ (r)
j be the length of the edge formed by r0,j in �̂, and define

Aj = {N(r)
j+1 = ∞} ∩ {L̂

N
(r)
j

= 0}.

Note that on the event Aj we have N̂ (r)
j = ∞. Indeed r0,j cannot connect before vertex N(r)

j

in �̂, since left-arrows have been removed at N(r)
j without any new right-arrows being added.

Furthermore, if r0,j were connected to a left-arrow at vertex m ≥ N
(r)
j in �̂, it would imply

that r0,j+1 were connected at the latest to m in �, which contradicts the fact that N(r)
j+1 = ∞.

Hence, we have P(N̂ (r)
j = ∞) ≥ P(Aj ). It follows from the assumption that P(Aj ) > 0, so

since N(r)
j and N̂ (r)

j clearly have the same distribution, we have shown that P(N(r)
j = ∞) > 0.

However, this is a contradiction, and by induction on j we conclude that P(N(r)
j < ∞) = 1 for

all j , as desired.

3. Connections to Bernoulli isomorphisms

Consider a stochastic process, X, indexed in Z, with i.i.d. marginals taking values in
1, 2, . . . , s with respective probabilities p1, . . . , ps . The process X is often called a Bernoulli
shift, and is identified with the vector (p1, . . . , ps). Next, consider another such process,
Y , taking values in 1, 2, . . . , t with respective probabilities q1, . . . , qt . We write SX =
{1, 2, . . . , s}Z and SY = {1, 2, . . . , t}Z. Loosely speaking, X and Y are said to be isomorphic
if there exists a bijective pairing of almost all realizations of X and Y , such that the pairing
commutes with the shift operators on SX and SY .

Meshalkin (1959) was one of the first to explicitly identify such a coding between two partic-
ular Bernoulli shifts, namely between ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) and ( 1

2 ,
1
8 ,

1
8 ,

1
8 ,

1
8 ). His coding corresponds

to our algorithm in the case in which each vertex has at most one edge associated to it as follows.
Associate to each edge a random label, a or b, independently and with equal probability. This
leads to four equally likely edge labels, namely (l, a), (l, b), (r, a), and (r, b), where l and r
respectively denote an edge pointing to the left and an edge pointing to the right. The coding
is now defined so that whenever we see (r, a) or (r, b) we write an r , and whenever we see an l
we write (l, x, y), where x and y are the symbols corresponding to the edge that is formed with
the unique stub at that position. It is not hard to see that this codes the original four symbols
into five new symbols with respective probabilities 1

2 , 1
8 , 1

8 , 1
8 , and 1

8 , and that this coding is
invertible. Furthermore, the coding is finitary, that is, we have to look only a (random) finite
distance in both directions to see the symbol that should be written in the coding. Indeed, once
we have identified the stub that connects to the stub of current interest, we can write down the
correct symbol.

This idea can be extended to apply to a general degree distribution, F , with bounded support
in our pairing algorithm; that is, everyF with bounded support leads to an isomorphism between
two particular Bernoulli shifts, as the reader can easily verify. Certain results of coding between
Bernoulli shifts then have corollaries for our algorithm. We mention the well-known fact (see,
for instance, Parry (1979) or Schmidt (1984)) that in any nontrivial situation, the expected
distance that has to be explored in a finitary coding between two Bernoulli shifts with equal
entropy has infinite expectation. From this it follows that the longest edge at a given vertex in
the SPRD algorithm has infinite expected length. Below we strengthen this result to apply to
the shortest edge, which does not have an interpretation in the coding setup described here.
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4. The mean length of the shortest edge

For the remainder of the paper we consider only the symmetric SPRD algorithm, which,
by Theorem 2.1, leads to well-defined configurations. The next task is to look at the expected
length of the edges. For distributions with finite mean, we will prove the following theorem.

Theorem 4.1. If F has finite mean then both E[N(r)
1 ] and E[N(l)

1 ] are infinite.

DefineXi = Li −Ri−1, the difference between the numbers of left-arrows and right-arrows
at two neighboring vertices. Let S(m)n = ∑m+n

i=m+1Xi , and write τ (m,x)↑ to denote the first time
the process S(m)n rises above the level x:

τ
(m,x)
↑ = min{n : S(m)n ≥ x}.

Clearly, to prove Theorem 4.1 it suffices to show that E[N(r)
1 ] = ∞. To see why this should

be the case, note that if L1 = 0 (which happens with positive probability), then the first right-
arrow at the origin is connected when S(1)n takes a value larger than or equal to 0, that is, when
N
(r)
1 = τ

(1,0)
↑ + 1. Were S(1)n to have independent increments, it follows from standard random

walk theory that τ (1,0)↑ would have infinite mean. However, Xi and Xi+1 are not independent,
since information about the arrow configuration at vertex i is used for both variables.

Let µ denote the mean of F . The following lemma will play a key role in the proof of
Theorem 4.1.

Lemma 4.1. For all i ∈ Z, we have E[τ (i,2µ)↑ ] = ∞.

Proof. By stationarity, it suffices to show that E[τ (0,2µ)↑ ] = ∞. Assume, on the contrary,
that E[τ (0,2µ)↑ ] < ∞, and define τ (m,x)↓ to be the first time the process S(m)n falls below the
level x:

τ
(m,x)
↓ = min{n : S(m)n ≤ x}.

Note that, by symmetry, we have E[τ (0,−2µ)
↓ ] = E[τ (0,2µ)↑ ]. The idea of the proof is to use the

finite-mean assumption to create a linear negative drift for the process S(0)n . By symmetry, S(0)n
must then also have the same positive drift, and to maintain both these drifts it is forced to
oscillate more and more vigorously between large positive values and large negative values,
something which it will not be able to do in the long run. To turn this heuristic argument into
a proof, introduce an i.i.d. sequence, {�τj }, with mean E[τ (0,−2µ)

↓ ] + 1 by defining

�τ0 = 0, �τj = min
{
n : S(

∑j−1
i=0 �τi)

n ≤ −2µ
}

+ 1, j ≥ 1.

Here the ‘+1’ is added to ensure independence, noting that Xi and Xk are independent if
|i−k| ≥ 2. This sequence gives rise to a renewal process with time increments�τj and events
referred to as down-transitions occurring at the time points τi = ∑i

j=1�τj . Write Mn for the
number of down-transitions in the time interval [0, n] and note that, by the renewal theorem,
we have

Mn

n
→ 1

E[τ (0,−2µ)] + 1
almost surely, as n → ∞.

Hence, defining 2c = (E[τ (0,−2µ)]+ 1)−1 andEm = {Mn > nc for all n ≥ m}, it follows that

P(Em) → 1 as m → ∞. (4.1)
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At point τd of the dth down-transition we have

S(0)τd ≤ −2µd +
d∑
i=1

Xτi ,

where Xτi = Lτi − Rτi−1 ≤ Lτi . The degree of a vertex τi − 1 is atypical, since it is defined
as a first passage point for the process S(τi−1)

n . However, the vertex τi has the unconditional
degree distribution F , meaning that E[Lτi ] = µ/2. Also, since |τi − τi−1| ≥ 2, the variables
Lτi are independent. By combining these facts, we find from the strong law of large numbers
that

1

d

d∑
i=1

Xτi ≤ 1

d

n∑
i=1

Lτi → µ

2
almost surely, as n → ∞.

Defining

Fm =
{ �nc∑
i=1

Xτi ≤ �ncµ for all n ≥ m

}
,

where �r ∈ R denotes the largest integer smaller than or equal to r , it follows that

P(Fm) → 1 as m → ∞. (4.2)

Here note that if the sequence {τi} were defined in terms of up-transitions instead of down-
transitions, then estimation of the value of the process after some large number of transitions
would require a lower bound for the sum of the auxiliary steps Xτi . This, however, would
cause a problem, since, as mentioned above, the ‘negative part’ of each variable Xτi concerns
the arrow configuration at a first passage vertex, which is presumably difficult to control. Hence,
we are in the peculiar situation of being able to prove a statement for down-transitions but not
(directly) for up-transitions, in an otherwise completely symmetrical situation.

Next, divide Z
+ into intervals, �k = {i : kl ≤ i < (k+1)l}, k ≥ 0, of length l, and writeBk

for the event that the interval �k contains a down-transition in the renewal process {τi}. Clearly,
by choosing l to be large, we can ensure that P(Bk) ≥ 0.99 for all k. Define Yk to be the sum
of the degrees of all vertices in �k , that is, Yk = ∑(k+1)l−1

i=kl Di . The distribution of Yk does not
depend on k, and Yk < ∞ almost surely, implying that

P(Yk ≥ 2µ�klc) → 0 as k → ∞. (4.3)

By (4.1), (4.2), and (4.3), if we choose k to be sufficiently large, we have

P(Ekl) ≥ 0.99, (4.4)

P(Fkl) ≥ 0.99, (4.5)

P(Yk ≥ 2µ�klc) ≤ 0.5. (4.6)

Fix such a k and define

D−
k = {there exists an n ∈ �k such that S(0)n ≤ −µ�klc},

D+
k = {there exists an n ∈ �k such that S(0)n ≥ µ�klc}.
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Now observe that Bk ∩ Ekl ∩ Fkl ⊂ D−
k ; indeed, occurrence of the event Ekl implies that

m ≥ �klc down-transitions have occurred in [0, kl], and occurrence of the event Fkl implies
that

∑m+1
i=1 Xτi ≤ µ(m+ 1). Hence, at the point τm+1 of the next down-transition, we have

S(0)τm+1
≤ −2µ(m+ 1)+

m+1∑
i=1

Xτi

≤ −2µ�klc + µ�klc
= −µ�klc.

However, this means that D−
k must occur, since, on the event Bk , at least one down-transition

takes place in �k , that is, τm+1 ∈ �k . It follows that

P(D−
k ) ≥ P(Bk ∩ Ekl ∩ Fkl)

≥ 1 − P(Bc
k)− P(Ec

kl)− P(F c
kl)

≥ 0.97.

By symmetry, we have P(D+
k ) = P(D−

k ) and, hence, P(D+
k ∩D−

k ) ≥ 0.94. Now note that,
on the eventD+

k ∩D−
k , both a state above the level µ�klc and a state below the level −µ�klc

are visited in the interval �k and, thus, Yk ≥ 2µ�klc. Therefore,

P(Yk ≥ 2µ�klc) ≥ P(D+
k ∩D−

k ) ≥ 0.94.

However, this contradicts (4.6) in the choice of k. Hence, the assumption that E[τ (0,2µ)↑ ] < ∞
must fail and the proof of the lemma is complete.

Proof of Theorem 4.1. By symmetry, it suffices to show that E[N(r)
1 ] = ∞. To do this, as

before write� = {�i} = {(Li, Ri)} for the random configuration of arrows at the vertices and
choose k to be sufficiently large that P(

∑k
i=1Di ≥ 2µ) > 0. Introduce a coupled configuration,

�̂ = {�̂i}, with the same degrees at all vertices and �̂i = �i for i �∈ {1, . . . , k + 1}, but in
which the directions of the arrows at the vertices 1, . . . , k + 1 are generated independently.
Define

A =
{ k∑
i=1

Di ≥ 2µ

}
∩ {L̂i = 0 for all i = 1, . . . , k + 1}

and let N̂ (r)
1 be the length of the edge formed by r0,1 in �̂. We then have

E[N̂ (r)
1 ] ≥ E[N̂ (r)

1 | A] P(A).

Since clearly N̂ (r)
1 has the same distribution as N(r)

1 and P(A) > 0, we have finished if we can

show that E[N̂ (r)
1 | A] = ∞. To this end, let Ŝ(m)n be defined in the same way as S(m)n , but

based on the coupled configuration �̂, and write τ̂ (m,x)↑ = inf{n : Ŝ(m)n ≥ x}. On A, there are
in total at least 2µ right-arrows attached to the vertices 1, . . . , k and no left-arrows at all on the
vertices 1, . . . , k + 1. Thus, a right-arrow at the origin cannot be connected until the process
Ŝ
(k+1)
n takes a value larger than 2µ. It follows that

E[N̂ (r)
1 | A] ≥ (k + 1)+ E[τ̂ (k+1,2µ)

↑ | A].
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The effect that the conditioning on A has on τ̂ (k+1,2µ)
↑ is that the first term in the unconditional

sum Ŝ
(k+1)
n is replaced by Lk+2 − Dk+1, since on A all Dk+1 stubs at vertex k + 1 point to

the right. This means that, conditional on A, the passage time τ̂ (k+1,2µ)
↑ is stochastically larger

than in the unconditional case, implying that

E[τ̂ (k+1,2µ)
↑ | A] ≥ E[τ̂ (k+1,2µ)

↑ ].
Hence,

E[N̂ (r)
1 | A] ≥ (k + 1)+ E[τ̂ (k+1,2µ)

↑ ].
Since τ̂ (k+1,2µ)

↑ has the same distribution as τ (k+1,2µ)
↑ , it follows from Lemma 4.1 that

E[τ̂ (k+1,2µ)
↑ ] = ∞,

and the proof of the theorem is complete.

5. Finite mean is impossible

We are now at the point of having formulated a stationary algorithm that takes a discrete
distribution, F , as input and produces a stationary random edge configuration on Z with
i.i.d. vertex degrees with distribution F . Provided that F has finite mean, all connections
are almost surely finite, while the expected length of the connections is infinite. The obvious
question is: can we do better? The following simple examples show that if we no longer assign
i.i.d. directions to the stubs, then, for certain distributions F , we indeed can.

Example 5.1. Write fj for the probability that a given vertex has degree j , fix n ∈ N, and let
F be defined as follows:

fj = (n+ 1)−1, j ∈ {0, 2, 4, . . . , 2n}, fj = 0, j �∈ {0, 2, 4, . . . , 2n}.
A configuration with this degree distribution and connections with finite mean is generated by
proceeding in the same way as in the SPRD algorithm, except that the directions of the stubs are
not assigned randomly but rather according to the deterministic rule that a vertex with degree
2k is equipped with exactly k arrows pointing in each direction. To see this, note that, assuming
that the origin has degree d , all right-arrows at the origin will be connected as soon as a vertex
i ≥ 1 with degree larger than d is encountered. The expected distance to a vertex with degree
exactly d is f−1

d and, removing the conditioning on d, it follows that the expected length of the
longest connection to the right is bounded by n. By symmetry, the expected maximal length to
the left is also bounded by n.

Example 5.2. Let F = δ1, that is, every vertex is to have exactly one edge connected to it. To
generate such a configuration, attach one stub to each vertex and then imagine that a coin is
flipped. If the coin comes up heads then the stubs at the odd vertices are pointed to the right
and the stubs at the even vertices are pointed to the left, and vice versa if it comes up tails. The
arrows are then connected according to the stepwise pairing algorithm. It is easy to see that
with this procedure (which is clearly stationary), all connections will end up having length 1.

Recall that, in the SPRD algorithm, the direction of each stub is chosen randomly to obey (4.4)
and independently to obey (4.5). This gives rise to a random walk-type structure which is
recurrent but has infinite mean. In Example 5.1 the directions of the edges are not random,
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and in Example 5.2 they are not independent. This invalidates the random walk arguments and
makes it possible to obtain configurations in which the connections have finite mean. Thus, for
some distributions F it is indeed possible to outdo the SPRD algorithm by being clever when
assigning the directions of the stubs. However, we conjecture that if the direction is assigned
independently to each stub, then it is impossible to formulate a rule for connecting right-arrows
to left-arrows in such a way that the expected length of the resulting edges becomes finite. A
weaker formulation of this conjecture is proved in Theorem 5.1, below.

Let� be a random configuration of arrows on Z generated in the first SPRD algorithm: first
a random number of stubs with distribution F is attached to each vertex and then each stub is
randomly assigned the direction left or right. An algorithm, A, for connecting the arrows in �
will be called a pairing rule if with probability 1 each left-arrow is connected to exactly one
right-arrow and each right-arrow is connected to exactly one left-arrow. Furthermore, A is said
to be stationary if the resulting joint edge length distributions are translation invariant. For a
given pairing rule, A, write TA and NA for the total length of all edges connected to the origin
and the length of the longest edge connected to the origin, respectively.

Theorem 5.1. IfF has finite mean, then for all stationary pairing rules A we have E[TA] = ∞.
If, in addition, F has bounded support, then E[NA] = ∞.

The proof of this theorem is based on a combinatorial lemma involving the concept of nested
graphs. To define this concept, consider a given edge configuration, {(i, j)}i,j∈Z, on Z. Two
edges (i, j) and (i′, j ′) are said to cross each other if i < i′ < j < j ′ or i′ < i < j ′ < j , and
the configuration {(i, j)}i,j∈Z is said to be nested if it does not contain any crossed edges. An
important observation is that, for a given configuration, ψ , of arrows on Z, there is a unique
nested edge configuration, to be denoted by Nψ , which is obtained by the stepwise pairing
algorithm. Indeed, to avoid crossed edges we are forced to perform all possible connections
between vertices at distances n = 1, 2, . . . , starting with n = 1; conversely, successively
performing all possible connections between vertices at distance n, with n increasing, can
never in any step create crossed edges, since this would mean that a possible connection in a
previous step was missed.

To formulate the aforementioned lemma, write � for the set of all arrow configurations ψ
on Z for which all edges in Nψ are finite. Pick ψ ∈ � and, for an edge e ∈ Nψ , let ψ(r)e
and ψ(l)e respectively be the sets of right-arrows and left-arrows in ψ that are used to form the
edge e and the edges ‘under’ e in Nψ . More precisely, if e is made up of the arrows ri,j and
li+n,j ′ , then ψ(r)e consists of the set of arrows {ri,k}jk=1 together with all right-arrows at the
vertices i + 1, . . . , i + n− 1, and ψ(l)e consists of {li+n,k}j

′
k=1 and all left-arrows at the vertices

i + 1, . . . , i + n− 1. Write te(Nψ) for the total length of all edges ‘under’ e in Nψ .
Next, let Eψ be some edge configuration based on the arrow configuration ψ . Call an edge

in Eψ a ψ(r)e -edge if it contains an arrow belonging to the set ψ(r)e and let t (r)e (Eψ) denote the
total length of allψ(r)e -edges in the configuration Eψ . Define t (l)e (Eψ) analogously. The lemma
then reads as follows.

Lemma 5.1. For all ψ ∈ �, all configurations Eψ based on ψ , and all e ∈ Nψ , we have
te(Nψ) ≤ t

(r)
e (Eψ) and te(Nψ) ≤ t

(l)
e (Eψ).

Proof. Fix an arrow configuration ψ ∈ �, an edge e ∈ Nψ , and an edge configuration, Eψ ,
based on ψ . Definew(r)k to be the number of ψ(r)e -edges in Eψ that cross the interval [k− 1, k].
More precisely,w(r)k is the number of edges in Eψ that have their left-hand endpoints at a vertex
l ≤ k − 1, their right-hand endpoints at l′ ≥ k, and are created by right-arrows that belong to
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ψ
(r)
e . Let w̃(r)k be the quantity similarly defined in the nested configuration Nψ . We will show

that
w
(r)
k ≥ w̃

(r)
k for all k. (5.1)

Since clearly

te(Nψ) =
∞∑

k=−∞
w̃
(r)
k and t (r)e (Eψ) =

∞∑
k=−∞

w
(r)
k ,

this implies that te(Nψ) ≤ t
(r)
e (Eψ). The inequality te(Nψ) ≤ t

(l)
e (Eψ) is proved similarly.

To establish (5.1), assume that the edge e connects the vertices i and i + n and is created by
right-arrow number j at vertex i. In the nested configuration, all arrows in ψ(r)e are connected
to left-arrows at the vertices i+ 1, . . . , i+ n, meaning that w̃(r)k = 0 for k �∈ {i+ 1, . . . , i+ n}
and, hence trivially, w(r)k ≥ w̃

(r)
k for such k. For k ∈ {i + 1, . . . , i + n}, note that in any edge

configuration based on ψ , at least j ψ(r)e -edges must cross the interval [i, i + 1], implying that
w
(r)
i+1 ≥ j . Furthermore, the interval [i + 1, i + 2] must be crossed by at least j + ri+1 − li+1

ψ
(r)
e -edges, where ri+1 and li+1 respectively denote the numbers of right-arrows and left-arrows

at vertex i + 1. Hence, w(r)i+2 ≥ j + ri+1 − li+1. Continuing in the same way, we obtain lower
bounds for all w(r)k , k ∈ {i + 1, . . . , i + n}. From the construction of the nested configuration
Nψ , it follows that these bounds hold with equality for the w̃(r)k , and we obtain (5.1).

Proof of Theorem 5.1. Let A be a stationary pairing rule for an arrow configuration �
generated by attaching a random number of stubs to each vertex and then randomly assigning
each stub the direction right or left. If, with positive probability, A gives rise to configurations
with infinitely long connections, then the conclusion of the theorem is immediate. Thus, assume
that all edges in a configuration obtained from A are finite almost surely, and write T (r)A and
T
(l)
A for the respective total lengths of the edges created by the right-arrows and the left-arrows

at the origin in an edge configuration generated by A. We will show that E[T (r)A ] and E[T (l)A ]
are both infinite.

To prove that E[T (r)A ] = ∞, let T (r)N be the total length of all edges created by the right-
arrows at the origin in a nested configuration obtained from the stepwise pairing algorithm,
and note that, by Theorem 4.1, we have E[T (r)N ] = ∞. If, with probability 1, A results in a
nested configuration, then T (r)A has the same distribution as T (r)N and the claim follows. Assume,
therefore, that A produces unnested configurations with positive probability, and let E be such
a configuration with underlying arrow configuration ψ . Write t (r)i and t̃ (r)i for the respective
total lengths of the edges created by the right-arrows at vertex i in the configurations E and Nψ ,
and let m̃(r)i be the length of the longest edge formed by the right-arrows at vertex i in Nψ . It
follows from Lemma 5.1 that, for all i, we have

i+m̃(r)i −1∑
j=i

t
(r)
j ≥

i+m̃(r)i −1∑
j=i

t̃
(r)
j .

By the ergodic theorem E[T (r)N ] is equal to the average of t̃ (r)j and, hence, for every realization
of A, the average number of edges pointing to the right at a given vertex is bounded from below
by E[T (r)N ], proving that E[T (r)A ] = ∞. That E[T (l)A ] = ∞ is proved analogously, and the first
claim of the theorem follows.

The second claim is established by noting that if k is an upper bound for the support of F ,
then TA ≤ kMA.
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Erdős, P. and Rényi, A. (1959). On random graphs. I. Publ. Math. Debrecen 6, 290–297.
Holroyd, A. E. and Peres, Y. (2005). Extra heads and invariant allocations. Ann. Prob. 33, 31–52.
Mattera, M. (2003). Annihilating random walks and perfect matchings of planar graphs. Discrete Math. Theoret.

Computer Sci. AC, 173–180.
Meshalkin, L. D. (1959). A case of isomorphisms of Bernoulli schemes. Dokl. Akad. Nauk. SSSR 128, 41–44.
Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures

Algorithms 6, 161–179.
Molloy, M. and Reed, B. (1998). The size of the giant component of a random graph with a given degree sequence.

Combinatorics Prob. Comput. 7, 295–305.
Newman, M. E. J., Strogatz, S. H. and Watts, D. J. (2001). Random graphs with arbitrary degree distributions and

their applications. Phys. Rev. E 64, 026118.
Parry, W. (1979). An information obstruction to finite expected coding length. In Ergodic Theory (Proc. Conf.,

Oberwolfach, 1978; Lecture Notes Math. 729), eds M. Denker and K. Jacobs, Springer, Berlin, pp. 163–168.
Schmidt, K. (1984). Invariants for finitary isomorphisms with finite expected coding lengths. Invent. Math. 76, 33–40.
Van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2005). Random graphs with arbitrary i.i.d. degrees.

Preprint. Available at http://www.win.tue.nl/∼rhofstad/research.html.

https://doi.org/10.1239/aap/1151337072 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337072

	1 Introduction
	1.1 Stepwise pairing with random directions
	1.2 Annihilating random walk

	2 Definition of the SPRD algorithm
	3 Connections to Bernoulli isomorphisms
	4 The mean length of the shortest edge
	5 Finite mean is impossible
	References

