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ABSOLUTE CONTINUITY OF MARKOV

PROCESSES AND GENERATORS

HIROSHI KUNITA

Introduction.

Let (XtiζfSStfPx) be a (standard) Markov process with state space 5

defined on the abstract space Ω. Here, xt is the sample path, ζ is the

terminal time and %ίt is the smallest <τ-field of Ω in which xs, s ̂ t are

measurable. Let PX9 K G S be another family of Markovian measures

defined on (»et Ω). It is a known fact that (»β[ί < ζ], Pi) is absolutely

continuous with respect to (Sc[ί < ζ], Px) for any t > 0 and x e S, if and

only if there exists a positive right continuous multiplicative functional

(MF) Mt with Px(Mt) ^ 1, x e S, ί ^ 0, such that it is the Radon-Nikodym

derivative of (»t[* < ζl Pi) with respect to (»βtf < £], P J , where »,[* < £]

is the σ-field in [t < ζ] formed by all BΠ[t<ζ]9 B e »c. Then there

arises naturally the following problem; How can we characterize the class

of all the Markov process which is absolutely continuous with respect to a

given Markov process or, equivalently, the class of all the Markov process

which is transformed through MF of a given Markov process ? In particular

can we characterize this class in terms of the generator of Markov process?

In case of Brownian motion, this problem is solved through the

works of Maruyama [6], Motoo [8], Dynkin [1] and Wentzell [15]. It is

roughly the following; the conservative Markov process which is absolutely

continuous with respect to Brownian motion has the generator expressed as

-i- Δ + Σ Λ -J— Hence the transformation by MF is so-called that of
Δ vXi

"drift". On the other hand the same problem has been solved in case of

Markov chain by Kunita-Watanabe [4]; two (minimal) Markov chains xt

and x't with the same state space S are mutually absolutely continuous if

and only if qx.y = 0 implies qί,v = 0 and vice versa, where qx,y = \ϊmP^x'y'

and Pt{x,y) is the transition function of xt {qx,y is defined similarly from x't).
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From these two special cases, it is expected that the transformation of

continuous Markov process through MF would be that by drift and that

the transformation of purely discontinuous process would be that of Levy

measure. Further the transformation would be, in general, a suitable com-

bination of the above two. To prove this conjecture, the author had to

extend the generator of the Markov process in a specific way. The relation

between the two Markov processes is then stated as that of the correspond-

ing generators in the extended sense.

§1 and §2 are rather introductory parts. We will state several results

on additive functional and stochastic integral by additive martingale. These

are the reformulation and the extension of the works by Motoo-Watanabe

[9] and Watanabe [16].

We will extends in §3 the domain of the generator in a specific way

and then express the extended generator in the form

Au = ΣaijBnBvjU + Σ»* A«κ + j [u(y) - u( ) - ΣB*«( ) ivtiv) - U )M . dy\

where {«̂ } is positive definite and symmetric, Byt is an operator of deriva-

tion and n{x9 ) is a <τ-finite measure (Theorem 3. I).1)

In §4, we shall show how the extended generator A may be changed

through the transformation by MF. Roughly, the extended generator A'

of the transformed process becomes Ar = A + B, where

Bu = Σ/'BvtM + J (u{y) - u( )) (βΛ .io - i ) w ( . , dy).

We will further obtain the conditions (stated {B) in Theorem 4. l) con-

cerning /* and /, under which A + B becomes conversely the extended

generator of the transformed process. These conditions are complicated but

it depends on the ellipticity of {αo} For instance, it turns out that if

{an) are uniformly elliptic, any bounded functions {/*} satisfy the condition

(J5). Conversely, if {a^} degenerate on a neighborhood of a point, we can

not choose {/*'} to be linearly independent on the neighborhood.

As an application of §4, we shall discuss, in §5, how the boundary

condition of diffusion process can be changed through the transformation by

MF. The possibility of changing the boundary condition depends also on the

ellipticity of the boundary operator. Suppose we are given a diffusion

Similar expression of the extended generator has been obtained by Skorohod [13].
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process on a compact C°°-manifold with the boundary condition Lu = 0,

where L is of the form

Lu = ΣVJ d*? + 20*-f^- + (Γ«(y)-«( )-Σ-^-(^(y)-^(

The possibility of changing the boundary condition depends on the ellipti-

city of {aίJ} and follows a similar rule as that of the extended generator.

§1. Stochastic integral.
Suppose we are given a standard Markov process M= (ai,S',St,PJ with

the state space S defined on the basic space Ω. Here, xt = xt{ω)9 ω e Ω

is the sample path, ζ is the terminal time, %t9 t ^ 0 is the increasing family

of <x-fields of Ω and Px9 x e S, is the family of Markovian measures on

(ftSί) starting from x. (We use the same notation as [3]). A stopping

time T is called a quasi-hitting time (QHT) if T(θt) + t = T for t < T and

lim T{flt) + t = T holds a.e. Px, v# <= 5. We assume, throughout this paper,

that the process M satisfies Meyer's Hypothesis (L) and that M is conserva-

tive, i.e., PJX = oo) = i for all a? e S or locally conservative, i.e., there exists

an increasing sequence of QHT {Tn} such that Tn < ζ and lim Tn = ζ holds

a.e. Px9 Va; e S. By the latter assumption, each stopped process J!fn =

(χ
 ΛΓ«> + °°, &ΛT«t P*) becomes a Hunt process.

A real valued stochastic process Xt = Xt{ω) is called a functional if it

is gίt-measurable for each t ^ 0 and, if there exists a set N of g = gL with

p:c(iV) = 0, v # e S (iV is called a null set) such that for ω <$ Λ7, J£t(ω) is right

continuous and has left hand limits for t <ζ and Xt[ω) = A7(<») holds. Here

X^ = limXc_e. A functional Xt is p-th integrable (integrable if p = 1) if

2?βCXV) < oo (or P^-ess sup 1^1 <oo if p = M ) for each a ε S and 0 ^ ί < ^ o .

Further, if the p-th integrable functional Xt is a martingale (Sc>PJ for all

a? e S, X« is called p-th integrable martingale. A functional Xt is called

locally p-th integrable if there exists an increasing sequence of stopping

times {Tn} with the limit ζ such that each XtΛTn9 n < 1 is p-th integrable.

Further, if each XtAτn is a martingale (&Λτft> P«) for all ί c e S , Xc is called

a locally p-th integrable martingale. In particular, if we can choose such

{Tn} as a sequence of QHT, Xt is called locally p-th integrable (martingale)

relative to QHT. Such {Tn} are called the associated stopping times (or

QHT) of Xt. It should be noted that any local martingale Xt is quasi-

https://doi.org/10.1017/S0027763000013106 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013106


HIROSHI KUNITA

left continuous, i.e., for any increasing sequence of stopping times {Tn}

with the limit T, \imXτn = Xτ holds on the set [T<~>], a.e. Px, *x e S.
n->oo

A functional Xt is called an AF (additive functional) if, except for ω

of a null set, Xt + Xs(θt) = Xt+g holds for all 0 < t, s< oo. We denote by

mp (or <mPΛoc) the set of all AF which are (locally) p-th integrable mar-

tingale. When p = 2, we write 2K2 or WΛoc as St or Wlloc respectively. We

also denote by $ϊ+ or 9l+loc the set of all integrable (or locally integrable)

increasing AF. We put « (or 2lloc) = {A = A1 - A2; A*e?l+} (or A ie^l+ l o c).

The following Tanaka's lemma plays a fundamental role in our later

discussion (private communication).

LEMMA 1. 1. Let Xt be an AF whose absolute values of jumps are dominated

by a positive constant [independent of ω), then Xt is locally p-th integrable relative

to QHT for every 1 < p < oo.

PROPOSITION 1. 1. If Xt is of 2tt M o c , Xt is a locally integrable martingale

relative to QHT.

Proof We assume first that Xt has bounded jumps. Then Xt is locally

square integrable relative to QHT by Lemma 1. 1. Let {Qn} be the as-

sociated QHT of Xf> and {Tn} be the associated stopping times of the local

martingale Xt. Then XtAQnAsp is a martingale by optional sampling theo-

rem. Since

{X-tAQnAτp p = 1,2, } is PΛ-uniformly integrable for each x and n. Then

XtAQn = \im XfAQnAτp is a square integrable martingale.

We shall next consider the general case. Let {Tn} be the associated

stopping times of the local martingale Xt. For a fixed o 0, we define

Rn by induction as follows To = 0,

Rn = TnAm£[t>Rn-1; \Xt-XRnJ>c}

Then, clearly XtARn is integrable and \XΐARn — XtARn\ <c holds a.e. for each
oo

fixed t. Hence ΔXtARn = XtARn — XtARn is integrable. Put At = Σ ΔXR
n=l

2) In case of locally conservative process, we may and do assume, through the later discus-
sions, that each associated QHT Tn of a local martingale is strictly less than ζ, a.e. P ^
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/(ΔXRn > 0 and Rn < t) and A~t = Σ ΛXβ I[ΔXRn < 0 and j?n ^ *)3 ). Then,

clearly A\ and A7 are locally integrable and the absolute values of jumps

of Xt — (A+

t + A~) are dominated by 2c. This fact shows that

are locally integrable, purely discontinuous increasing AF. Then, Lemma

1. 2 described below concludes that there exists a continuous and increasing

AF ΫΊ and Ϋ~t such that Y\ — Ϋ\ and Y~t — Ϋ~t are locally integrable martin-

gale relative to QHT. Put Zt = Xt- (Y+

t - Ϋ\) + {Y't - f 7). Then Zt has

bounded jumps and hence it is a local martingale relative to QHT. It is

now clear that Xt is a local martingale relative to QHT.

LEMMA 1. 2. Let Xt be a purely discontinuous and increasing quasi-left con-

tinuous AF. If Xt is locally integrable, there exists a unique continuous increasing

AF Xt such that Xt — Xt is a local martingale relative to QHT.

Proof By the Meyer decomposition, there exists a unique and con-

tinuous increasing process Xt such that Xt — Xt is a local martingale. We

will show that Xt is an AF. It is known that there exists an integrable

sequence of AF Xn

t which is purely discontinuous, quasi-left continuous and

increases to Xt. For each Xn

t, there exists a continuous and increasing

AF Xn

t such that Xn

t — Xn

t is a martingale (See [16]). It is now easy to see

that Xn

t increases to Xt and hence Xt is an AF.

It remains to prove that Xt — Xt is a local martingale relative to QHT.

By Lemma 1. 1 due to Tanaka, Xt is locally integrable relative to QHT.

Let {Tn} be the associated QHT. Then Xtj\τn — Xtj\τn is a martingale as

is easily seen.

Two local martingales Xt and Yt are called orthogonal if XtYt is a

local martingale. We denote by WJ l o c the set of all Xt e TtlΛoc which is

continuous in t. Then clearly 9ftJ l o c c 2tt°°>loc c 3K2 l o c. We denote by

sjfti.ioc the set of all Xt e WV->loc which is orthogonal to every elements of

3jji,ioc# \v e h a v e

PROPOSITION 1. 2. Every Xt^JR1'100 has a unique decomposition Xt=Xc

t-\-Xd

t,

where X\ e ΈίYOQ- and Xd

t e Tiy°c.

3) I(Γ) is the indicator function of the set Γ.
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Proof. By the proof of Proposition 1. 1, Xt has a decomposition Xt =

Yt + Zt% where Yt has bounded jumps, Zt is of finite variation, and Yt and

Zt have no common jumps. Then Yt and Zt are orthogonal (See [7]).

Therefore, it suffices to prove the proposition in case Xt has bounded jumps.

Let {Tn} be the associated QHT of Xt e 3K2 l o c. Then XtATn is a square

integrable martingale and is an AF of the stopped process Mn={xtAτn9 °°>

ι5tΛTn>Pχ) Hence there exists a continuous AF X^c and discontinuous

(orthogonal to Xn

t'
c) X?" d, both of which are square integrable martingales.

Uniqueness of such decomposition implies XfAτn = XT d and XT/fr, = XT d f ° r

each m > n . Hence there exists XJ e 3RJ l o c and Xf e 3Jφ l o c such that

χ$ATn — χn

t'
c and Xd

ATn — Xn

t'
d. Uniqueness of the decomposition is clear.

PROPOSITION 1. 3. For each Xt e ϋKloc, ίfer^ Λ β unique continuous

increasing AF <X>t such that X\ — (Xyt is a local martingale.

Proof. If Xt is square integrable, the proposition is known [9]. The

reduction of the general case to this is made similarly as the preceding

proposition.

Now, let Xt be an element of W'loc and Xt = X\ + Xd

t be the decom-

position of Proposition 1. 2. We define an increasing AF [X]t by

[XI = Σ [ΔXsγ + <xc\.

Then X\ -\X\ is a local martingale ([7]). We define [X,Y] for X,Y(ΞW>1OC

by -ί- {[X + Y] — [X—Y]}. The following form of stochastic integral is due

to Meyer [7].

THEOREM 1. 1. Let X e Tt1'loc and Φ be a very well measurable function

such that [tφ2

sd[X]s<^ fir each K c o and Tis&ΦJXJ {ΦSΔXS, ΔXS^1) is
Jo

locally integrable. Then there exists a unique local martingale Yt satisfying

(1. 1) [ W , Z]8 = [F, Z]t vz e SK1-loc,
Jo

In particular, if Φ is of the form Φt(ω) = f{xt~), where f is a Borel function, then

the above Y is an AF.

DEFINITION. Y of the above theorem is written as \ΦdX and is called

the stochastic integral of Φ by X.
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Remark. Let 3Γee2Kp l o c and YtG$Jl*'loc

9 where q is the conjugate of

p. Then [X, Y]t is locally integrable and there exists a unique continuous

AF (X, 7>ί which is the difference of two increasing AF, such that [X, Y]t

—(X, Y>t is a local martingale. In particular if φ = q = 2, the relation

(1. 1) is equivalent to

(1. 2) \φd(X, Z> = <r, Z> vz e SRloc

and the stochastic integral \ΦdX is the same one defined in [4]. We omit

the details. (See [7]).

§2. Radon-Nikodym derivative of continuous and increasing
AF.

Let ψ be of Ĉ+ l o c. A universal measurable function / on S is called

locally p-th p-integrable (locally ^-integrable if p = 1), if I \f(xs)\pdφs is
Jo

S f

f(xs)dφs is of <2ί1

c

oc if / is locally p-integ-
0

rable. For pe$C+ l o c, there exists a σ -finite measure μ on S such that
= 0 a.e. Px, Vic e S if and only if / = 0 a.e. μ. Furthermore, if μ

and μr have the above property, μ and μr are mutually absolutely con-

tinuous, (See [9]). Such μ is called a canonical measure of φ.

Let φ be of ft1™ and 0 e 2ϊ+' loc. φ is called aboslutely continuous with

respect to ψ (denoted by φ -ζψ) if any universal measurable set E of S with

the property I IEdψ = 0, satisfies \lEdφ = 0, where IE is the indicator func-

tion of the set E. Similarly, φ is singular to ψ if there exists a universal

measurable set E such that \lEdφ = φ and \IEdψ = 0 holds.

PROPOSITION 2. 1. Let φ be of Ψc

oc and ψ be of ^ί+ l o c . Then, φ is

uniquely decomposed into the sum of two continuous and increasing AF φ1 and φ2,

where φι •< ψ and φ2 is singular to ψ. Furthermore, there is a universal measurable

function f on S such that φ1 = 1 fdψ. f is unique up to measure 0 relative to a

canonical measure of ψ.

The above proposition is a trivial modification of a result obtained by

Motoo-Watanabe [9] Actually they have proved that for A = φ + φ9 there

are nonnegative universal measurable functions g and h such that ψ = \gdA
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and ψ = \hdA hold. We define φ1 = \gh~ιIEdψ and φ2 = φ — φ1, where E=

{x: h{x)^0}. It is easy to see that these φ1 and φ2 are what we want.

DEFINITION. The above / is called the Radon-Nikodym derivative of

φ1 with respect to ψ.

Let φ be of Slΐ such that (a) <X, Y> < φ is satisfied for every X and Y

of 2Ήloc and, (b) φt has the decomposition t Λ f + Ψt> where 0C is singular

to t Λ f. The above 9 is said to be canonical AF of the given standard

process. Let μ be a canonical measure of the above p. The pair (φ,μ)

is called a canonical system of the standard process. A canonical system

exists certainly. For, Motoo-Watanabe [9] showed that there exists a count-

able family {Xn} of fΰt such that (X1} > <X2> > , each of them is ortho-

gonal and every X of Tt is expressed as Σ \fndXn. Then pj = t Λf+CX'1)*

satisfies the condition (a) and t /\ ξ -ζφ1. Let / be the Radon-Nikodym

derivative of φι with respect to t Λ ?. Then / ^ l . Define 9 = l / " 1 ^ 1 .

This φ satisfies the conditions (a) and (b).

We shall denote by (X,Y)φ the Radon-Nikodym derivative of <X,F>

with respect to a canonical AF φ. In particular (X9X)φ is denoted by (X)φ.

PROPOSITION 2. 3. Let φ be a canonical AF and μ, a canonical measure of

φ. Then for every X, Y, Z of TOloc we have

(1) (X, Y)φ = (F, X)φ9 {X)φ ^ 0 a.e. μ

(2) (X,Y + Z)φ = (X,Y)φ + {X,Z)φ a.e. μ;

(3) \(X,Y)φ\<(X)l(Y)l a.e. μ;

(4) // Z = j/rfX, ^ n (Z, Y)φ = f(X, Y)φ a.e. μ.

(1), (2) and (4) are immediate consequence of the definition, (3) follows

from Lemma 10. 1 and its proof of [9].

A sequence {Xn} of 9Jlloc is a Cauchy sequence if there exists a sequ-

ence of stopping times {Tp} with the limit ζ such that, for each p,

Ex((XtAτp — X?ΛTP)
2) -*0 as n,m->c>o. Let {Xn} be a Cauchy sequence.

There exists a unique X of 9ttloc such that for each p9 Ex{{XtAτp—XtΛTp)
2)-*0

as n -> 00 (See [4]). A subset 5ft of TtLoc is closed if any Cauchy sequence

of W has the limit in 9i. A subset 31 of 9Jlloc is called a subspace if (i)

X, Ye^yi = > X + FGE9?, (ii) X e 9ΐ = > f/Jle5R, where / is a locally square
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<X>-integrable function and (iii) 91 is closed. Let 91 be a subspace. The

set of all Y which is orthogonal to every element of 31 is denoted by 31^.

PROPOSITION 2. 4. Let 31 be a subspace of Ttloc and let F be a mapping

from 31 to the space of all locally φ-integrable function satisfying F{X + Y) = F{X)+

F{Y) and F^gdX) = gF{X). There is a unique Z of 31 satisfying F(Y) = {Z,Y)φ,

vΓe9ΐ if and only if there is a locally φ-integrable function f such that \ F{Y) | ̂  / S (Γ)*

is satisfied for each Y of 31.

The above proposition is an analogue of the Riesz theorem of Hubert

space. "Only if" part is clear from Proposition 2. 3 (3). Set 31' = [X^3l;

F{X) = 0 a.e. μ}. Then 31' is a subspace. Indeed, the linear property (i)

and (ii) is clear; we shall show 31' is closed. Let {Xn} be a Cauchy se-

quence of 31 and let X be its limit. Then

F(X - Xn) dφ 0 i n L2> l o c .4)

Since F{Xn) = 0, F(X) = 0. Thus 31' is closed.

We can choose Y from (3l')±Γi3l such that (Y)φ has the maximal sup-

port, i.e., {x: {Y)φ{x)^r0} contains {x: {Y')φ{x) =¥ 0} a.e. μ for every Y' of

(3l')±Π3l. Note the relation F(Y)2(Y);2d <Y>^f dφ. Then Z ^F{Y)(Y)^dY

is well defined as an element of 31. It is easy to see that (Z, X)φ = F(X)

holds for every X of 3ΪU2{Y) (linear sum), where 2{Y) = \\hdY; h is locally

square <F>-integrableJ.

We shall finally prove 91 = 9Ϊ'US(F). Let U be any element of 31.

Set U1 = \F(U){Z)~ldz. Then U1 e S(F) and F&Γ1) = F(U) (Z)-ψ

ιF(Z) = F(U).

Therefore F{U2) = 0, where U2 = U - UK Consequently U2 e 3V. We can

now conclude that 91' U S(F) =) 9̂ . The converse relation is clear.

Following S. Watanabe [15], we shall define a Levy measure. Let

f(x,y) be a SxS-measurable function. Set Σ /(»,-,&*) by P/ί) if it

is well defined. A kernel n{x,dy) on S such that n{x,{x}) = 0 is called a

Levy measure if, for any / such that Pf{t) is integrable,

(2.4) PΛt)

4) There exists an increasing sequence of stopping times {Tp} with the limit ζ such that
each stopped process (X—Xn}tAT converges to 0 in L2-sense.

5) */(x) = ί n(x,dy)f(y).
J S
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becomes a martingale. The existence of Levy measure is proved in [15].

Let %Rl°c be the orthogonal complement of %Rι

c

0C. Then the set of all

Pf(t) — \nfdφ which are locally square integrable is dense in 30̂ °°. Let

FQ be the set of all SxS-measurable functions f{x9y) such that nf2 is

locally ^-integrable. Then for each / e FQ we can associate Qf of 2JIJ?C

in such a way that if Pf(t) is locally integrable, Qf agrees with (2. 4) and

satisfies

(2. 5) (Qf)φ = nf\

We shall write sometimes Qf as \f(xS9 y)q{ds, dy).

§3. Extension of generator.

Let φ be of 9tJ and ^{Aφ) be the set of all bounded measurable func-

tion u such that there exists a locally ^-integrable function f on S satisfy-

ing

(3. 1) Xu

t = U(xt) - u(x0) + \'fdφ
Jo

is of yjlίoc. We define the operator Aφ for ^(Aφ) by Aψu = — / . It is

uniquely determined up to measure 0 relative to a canonical measure of φ.

In particular ®(G) is the set of all bounded function u such that (3. 1)

holds for bounded / and φ of the form t A f We define Gu for κeS)(G)

by —/. G with its domain 3)(G) is the generator of the standard process.

The following proposition is immediate.

PROPOSITION 3. 1. Let (φ9μ) be a canonical system. Then 3)(G) c

and Aφu = Gu holds for « e 3)(G). Furthermore S)(G) coincides with (M

^4^^ w bounded and agrees with 0 a.e. y}, r£;Â r̂  y w ίΛ̂  canonical measure of the

singular part ψ of φ relative to t Λ f.

Let {̂ w} be (at most) countable family of ®(A^). If S is a manifold,

it is natural to take such {ηn} as its coordinate system. We shall call a

bounded measurable function u on S is of the class C2{S) if for each x0 of

S there exists a C2-class function U[yl9 , yN) on RN(N= 1,2, •) such

that M(aj) = U(ηx{x)9 *9ηN(x)) holds in a neighborhood of #0. We define

differential operators BVt for such u e C2(5) by
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(3.2)

= 0,

THEOREM 3. 1. Let (φ9μ) be a canonical system. Then C\S)(Z^){AΨ) and

every u of C2{S) has the following expression.

(3. 3) Aφu (x) = - | - Σ\aij{x)BViBvMx) + Σ bi(x)BViu(x)

- u{x) - Σ BvMx) (Vi(v) - Vi(x))Mx, dy)9 a.e. μ.

Here aιj are positive definite, symmetric, locally φ-integrable functions, and bι are

locally φ4ntegrable functions.

Proof. Let X** = Xi + Yt, X1 e m\oc and Y1 e W«c be the decomposition

of Proposition 1. 2. Then

by [16]. Set ψ1 = \ Aφti^ψ. Let U{y19 , yN) be a C2-class function on

Λ^. Since η^Xt) = XI +Yi + ψ1 — Vi(xo)9 formula on stochastic integral [4]

is applicable and we obtain

, ηN{xt)) ~ UfaiXo), , ηN{x0)) = X't + Ψ't,

where

(3. 4) X\ = Σ Γ -jg- rfX{ + Γ [/7(̂ (t/)) -

(3. 5) φ't = -L Σ Γ - ^ g - r f O * , ^> +
^ Jo dyidyj

- Σ - |

Suppose u of C2(S) coincides with Uiη^x), , ^(as)) on a neighbor-

hood V of a point x0. Then we can conclude from (3. 4) and (3. 5) that

u{xtAτ) — u(x0) = XtΛT + ΨtΛT> where Xt<=%Rloc and ψt agrees with 0^ replac-

ing Uiηtix), , ^(α)) by u(x) in the expression (3. 5). Here T is the

hitting time for Vc. Set
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(3.6) aij = (X\X% bί = Λφr]i.

Then we obtain the expression (3. 3) for x of F, provided u e ^{Λφ). Since

such {V} covers 5, we obtain (3. 3) for all x provided u e 3ΰ(Aφ).

We shall show that C2(S) c ® ( ^ ) . Let u e C2(S) and, {Fw} and {ΫFm}

be open coverings of S such that Ϋm c Wm and that for each m there exists

Um(y19 , 2/iO of C2-class function on /?*»» satisfying u(x) = U^η^x), ,
w-l

Set F4 = Vm - U Vk and define Tλ{ω) = Γ^^CU) if a?0(ω) e F4? where

is the hitting time for the set WL Define Tm by induction as Tm-X+

Tm_^). A similar argument as the preceding paragraph concludes that

OΛΓJ — uixr^) is the sum of two elements belonging to Wlloc and

Sΐ1^; the latter is absolutely continuous with respect to φ. Therefore u(xtAτJ

—u{x0) has a similar decomposition. Note that Tm increases to +oo. Then

we can conclude that u e %){Aφ).

COROLLARY. If u and v are of ^{Aφ), uυ is of ^S){Aφ) and

(3. 7) {Xu, Xv)φ = Aφuυ - uAψv - υAφu

holds. In particular if u and v are of C2{S), then (Xu,Xv)φ is expressed as

(3. 8) Σ cf'BvtuBvjV + J (u(x) - u(y)) (v(x) - v{y))n{x, dy).

Proof It suffices to prove the case u = v. We may apply the theo-

rem by setting ηx = u. Then u2 e ® ( ^ ) and from (3. 5) and (3. 6) we

obtain

(3. 9) Aφu
2 = {Xu

c)φ + 2uAψu + J («(2/) - u{x))2n{x, dy),

where XJ is the projection of Xu to Ttι

c

oc. Note that

(3. 10) (XS)φ

where Z^ is the projection of Xu to Wt)°c. Therefore {Xu)φ = {Xu

c)φ

Aφu
2 — 2uAφu. The expression (3. 8) follows from (3. 7) by calculating the

right hand of (3. 7) using (3. 3).

§4. Transformation by MF.

A functional Mt is a MF {multiplicative functional) if MtMs{θt) = Mt+S is

satisfied for t + s < ζ. We shall assume the following (M. 1) ~ (M. 2)

throughout this paper.
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(M. 1) Mt is strictly positive for t < ζ and Mt = 0 for t ^ ζ.

(M. 2) Mt is a local martingale.

It is known that there exists a standard process (xf, ζM

9 %f9Px) having"

Pf(x,E) = Ex(Mt; xt^E) as its transition function. We shall call such

(#f, Px) an Mrprocess of {xt,Px). The operator and generator etc. of

(x?9 Px) are denoted by A*9 GM etc. We define the Mrprocess on the

same space (xt9 95C, Ω) as that of (xt,Px). Then we have

(4. 1) EX(MT; B, T<ζ) = P»(B; T<ζ) B^®τ

for any stopping time T (see [5]). Thus if Px {T < ζ) = 1, (S3Γ»PJ and

(^TfPx) are mutually absolutely continuous. Hence continuous functional

Zt with respect to (xt,PJ may be considered as a continuous functional

with respect to {xt,Pχ). Furthermore, we obtain

(4. 2) £,(jT

o

A tM sdZ^) = Ex(MtATZtAT) = E»(ZtAτ)

if Z, is of 2ΪC and if PX(T < ζ) = 1.

THEOREM 4. 1. Zeί (a;t, f, %t, Px) be α standard process with a canonical

system {φ,μ).

(I) Let {xt,Pχ) be a Mrprocess. Then {φ,μ) is also a canonical system of {xt,Px)

and ^(Aφ) = ̂ (A^) holds. Moreover, B - A*— Aφ is decomposed into the following

two linear mappings Bx and B2 from ^(Aφ) to locally φ-integrable functions;

(Bj) Bxuv = uBiV + vBλu holds for any u and v of ^{Aφ). There exists a locally

ψ-integrable function h such that

}1(4 f 3) I Σ / J S ^ J ^ hl{ΣlfnfJXucn, Xucm)φ}

holds for any measurable {f19 , fN] and {u19 , uN] of

(B2) There exists a SxS-measurable function f{x,y) such that n\ef — 1| is locally

φ-integrable and B2 is expressed as

(4. 4) B2u(x) = J (u(y) - κ(αθ) (efi'-v) - ϊ)n(x, dy).

(II) Conversely if Ar is a linear operator with domain %)(Aφ) such that B = A'—Aφ,

satisfies the conditions of (I), there exists a unique Mt-process such that Aζ = A'.

Proof. We divide the proof into several steps.
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1. Let Mt be a MF satisfying (M. 1) — (M. 2). Then it has the

following expression

(4.5) Mt = e^[xt+Qfl{t)-±<X>%-^n{efι-l-

Here, Xe WV?C and f = f(x,y) is a SxS-measurable function such that

nif^2 and n\ef2—1\ are locally 95-integrable, where fί = //{/<i> and f2

 = f—Λ

Conversely if X and / satisfy the above conditions, the MF defined by the

right hand of (4. 5) satisfies (M. 1) and (M. 2). Furthermore, we have

(4. 6) Mt - 1 = Γ M, rfΛΓ, + [βMtfi
Jo Jo

(See [4]).

2. Let zt e S)(i4^). Set

(4. 7) Z t = Xt + Q(ef-i)(t) and

We shall show that every w e ®(̂ 4̂ ) belongs to ®(̂ 4 )̂ and satisfies A*u =

(Aφ + B)u. Set 7t = \ MdZ. Then it is a local martingale and further
Jo

pi

XΊYt — \ MBudφ is also a local martingale. On the other hand, since
Jo

{4. 8) Xu

tYt = Mt («(»,) - «(*,)) -MX Aφudφ - Xu

t,
Jo

Mt(u{xt) — M(&O)) — Mt \ Aφudφ — \ MBudφ
Jo Jo

is a local martingale. Let {Sp} be the associated stopping times of the

above local martingale. We may assume, without loss of generality, that

each MtAsp is a martingale. Then,

(4. 9) Ex(MtAspu(xtASp)) ~ u(x) ~ Ex(MtASp\
t

o

ASp(Λφ + B)udφ) = 0

or equivalently,

(4. 10) Eϊ(u(xt*s,)) ~ u(x) - E^o

ASp(Λφ + B)udφ) = 0.

S t
(Λφ + B)udφ is a locally square integrable AF of

0
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the Mrprocess. Hence u belongs to ®(A^) and we get

(4. 11) Afu = (Λφ + B)u.

3. We shall next prove ®(A£) = %)(Aφ). Define M\ by M71 if t < ζ

and by 0 if t>ζ. Then M\ is a MF satisfying (M. 1) —(M. 2) relative to

(%t>Pχ) and MJ-process of {xt,Pχ) coincides with (xt9Px). Let φ1 be a

canonical AF of {x?9P%). Then S)(^i) g ®(iV) by the preceding paragraph.

Let M G S)(i4 î) and write AF defined by (3.1) relative to (#c, P J and

{xt>Pχ) by X? and X" M respectively. Then Lemma 4. 1 given after the

proof of this theorem concludes that <XU

C> = <XU

C'
M>M. Note that {e K^nfa, dy), φ)

is a Levy system of {xt,Pχ) (see [4]). Then we obtain

(4. 12) <Xu,M>M = <χuy

which implies (χu'MyM -̂  ^. This show that we can choose ψ as a canonical

AF of (α t,P?). Thus we obtains ®(^) c S)(i4J) c

4. It remains to prove the conditions (2^) and (52). Set

andj2?2M = (Q(e/_i), X^)^, where X and Qe/_i are the ones appeared in

(4. 7). Then B2u satisfies (B2) by (2. 5). (BJ follows from

n\ = \(X,

Thus we have proved (I) of Theorem 4. 1.

5. Conversely let A' be the operator of (II). We define

if Y = ̂ fndXu

c\ Then \F(Y)\^h\γfφ holds. Since m\oc coincides with

the closure of ( s \ fndXu

c

n; n = 1,2, ], F can be extended to Wc

oc uni-

quely in such a way that F(F) < h?(Y)\ holds for every Y of Hft1,00. Then

there exists a unique X of TVfc satisfying F(Y) = (X, Y)φ for all F e yjl\oc by

Proposition 2. 4. Define a MF by (4. 5) using this X and /. Then Mi-

process is exactly what we want by the first part of this theorem.
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LEMMA 4. 1. Let u e ^(Aφ) and let 0 = to<t1<- < tn -> +

Σ («(«O — w(ί»/n_i))2 converges to [XM]t, i.e.,

(4. 13) <ZM c>t + Σ (w(&.) - u(xs-))2

in the sense of ZΛloc, if sup |fn — f»-il ->0.
n

Proof, We may assume that Xu

t is square integrable. Meyer [7] has

shown that Σ {Xutn —X?^)2 converges to (4. 13), while the limit of the above

coincides with the limit of Σ (u(xtn) — uixt^))2 as is easily seen. Hence the

lemma holds.

Condition (Bx) of Theorem 4. 1 is not clear. But for u e C2(S)c2)(^),

it can be rewritten in a clear form.

COROLLARY 1. If u e C2(S), then it holds that

(4. 14) Bxu = HfBviU.

Here, {/*} are measurable functions such that there exists a locally φ-integrable

function h satisfying

(4.15) \Hfgi\<h\jlai5gigJY

for any family of functions {&}. In particular, if the range of C2(S) by Λφ is

dense in the space of locally φ-integrable functions, the expression (4. 1) togetther with

(4. 1) are equivalent to Condition (Bx).

COROLLARY 2. Suppose an operator Bx satisfies the condition of Corollary 1.

Then there exists an Mt-process such that A^u = (Aφ + Bx + B2)u holds for every

u e C2(S). In particular, if the range of C2(S) by Aφ is dense in the space of

locally φ-integrable functions, such Mt-process is unique.

Proof of Corollary 1. Let V be an open set such that u(x) —

., ηN{x)) for XZΞV, where U e C2(Rn). Then Xfc (= projection of Xu to

m\oc) is expressed as jRBv&dX1 for t <T = inf {/ > 0 ; 'xt e Vc] by (3.4).

Therefore, Bxu = H(XfX%BViu holds a.e. μ on V. Set f = ( X , ^ . It is

easy to see that {/*) satisfy (4. 15) by applying (4. 3).

The proof of Corollary 2 is similar to that of Theorem 4. 1 (II).

Remark. The condition (4. 15) is closely related to the ellipticity of ai3»

We shall discuss this problem in the next section.
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§5. Transformation of diffusion process with a boundary con-
dition.

As an application of Theorem 4. 1, we shall discuss how the boundary

condition of diffusion can be changed through the transformation by MF.

Let D be a connected domain in JV-dimensional manifold of class C°°

and have compact closure D. The boundary dD = D — D is assumed to be

N — 1-dimensional hypersurface of class C3. Let A be an elliptic operator

given on D by

/c Λ\ A*. - V nU <UL * όU

ijl OXiOXj

where aίj are contravariant tenser of order 2 of class C2 which is sym-

metric and positive definite, and bι are vectors of C1.

A conservative standard process whose semigroup maps C6) into C and

is strongly continuous is called a diffusion process if its infinitesimal genera-

tor G with the domain ®'(G) is a closed extension of A. Throughout this

section,we shall consider diffusion process satisfying the following hypoth-

esises.

HYPOTHESIS. I. (a — A)u = f has a solution u e SD'(G) Π C2 for f of a

dense subset of C.

HYPOTHESIS. I I . For each x0 of D, there exists {rjί9 , ηN) of C2-class

functions which is a coordinate system on a neighborhood of x0 and each ηt coincides

with the difference of two bounded regular excessive functions.

HYPOTHESIS. I I I . The resolvent kernel of the process does not have mass on

the boundary, i.e. G*(x9dD) = 0 holds for every α > 0 , x e D.

Let {yji, , ηx

N) be a class of C2-class functions satisfying the Hypothesis

II and Ux be an open neighborhood of x in which (ηx, , ηx

N) is a co-

ordinate system. Let {UXn} be a finite open covering of D. We shall fix

such {fyf1, , ηx

N

n)}.

LEMMA 5. 1. There exists a canonical AF φ such that each ηXn is of %)(Aφ)

and J lDdφ = t Λ ζ.

DEFINITION. We shall call I IQD dφ a local time on the boundary.

6) The space of all continuous functions on D.

https://doi.org/10.1017/S0027763000013106 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013106


18 HIROSHI KUNITA

Proof. By Hypothesis II, there exists a unique ψiM of 5lc such that

Then

Jo

is of 3JI. We shall denote by ψγn the singular part of φ\'n relative to

t Λ ζ. Let φ1 be a canonical AF. Set 9 = p* + 2 0<lfl 2""+n). Then 9 is

ηXinds^φ, which implies J?fne®(^,).

0

By Theorem 3. 1, any u of C2 is of 3)(^). Set h = u — Ga{a — Λ)u.

Then we obtain

h(x) = J

Note that (α — A)h = 0 on Zλ Then A coincides with hr =
everywhere, where T is the hitting time for the set 3D. Indeed we know
that h(x) = h'(x) except for irregular points oϊ dD. Therefore βG*+$h = βG*+$hr

holds everywhere. Letting β -> <>=> we obtain h = hr everywhere. Let R be
AΦudφ — \ Auds = 0. Then R^T a. e.

0 Jo

Px{vχ). Consequently, the fine support of the above is included in dD by

Getoor [2]. Thus we have

(5. 2) ^IDAφudφ = ^Auds.

Then by Corollary to Theorem 3. 1, we obtain that | IDd <XU, X"> < t A ζ

for u,v of C2. Since {Xu; u = GJ, {/} is dense in C] generates 3K([10]),

we can conclude that f IDd<X,F>< t Λ ζ for any X and F of 2}ίloc, using
Jo

Hypothesis I. Hence we have proved the lemma.

COROLLARY. Let φ be a canonical AF with the property of Lemma 5. 1.

Then Aφ — A if Aφ is restricted to D.

Proof. By (5. 2), Aφu = An holds for any u. Set u = ηi9 then the

coefficients bι of Aφ and A coincide. Noting the formula (3. 8), it is easy

to see that the coefficients aij of Aφ and A coincide each other.

By Hypothesis I, the infinitesimal generator is the closure of A restricted

to the domain S)'(G) Π C2, i.e., the process is characterized by the operator
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A and the domain S)'(G) Π C2. We shall characterize £)'(G) Π C2 in terms

of boundary condition.

THEOREM 5. 1. Let (#£,£, $ ί , P J be a diffusion process with ψ as a local

time on the boundary. Let v be a canonical measure of ψ. There exists an operator

L from C2 to the space of locally ψ-integrable functions expressed as

[D ό) JbU — 2-i OC —^—= Γ 2-Λ P o^

+ \[u(y) - u(x) - Σ -jξr (%) (Vi (V) - Vi(x))\n(x, dy) a.e.

and u e C2 is of 3)'(G) if and only if Lu = 0 a.e. v. Here (η19 , ηN) is a

canonical coordinate system^ aij are positive definite and symmetric locally ψ-integrable

functions on 3D, β% are locally ψ-integrable functions and n(x,dy) is the Levy

measure.

Such diffusion is called (A, L)-diffusion.

Remark. Wentzell [14] has obtained a similar expression of the boun-

dary operator L without our Hypothesises I—III. But our result is sharper

than his. In fact, it is not clear in [14] whether or not any C2-class func-

tion satisfying Wentzell's boundary condition belongs to 3)'(G).

Proof Let L be the restriction of operator Aψ to 3D. Then u e C2

is of ®'(G) if and only if Lu = 0 a.e. v by Proposition 3. 1 and Hypothesis

III . We may and do assume that canonical neighborhoods belonging to

{UXn} (defined at the paragraph after Hypothesis II). Then (ηi9 , ηN)

of expression (3. 3) may be considered as a canonical coordinate system on

a neighborhood of a boundary point. Let aij and βι be the restrictions of

coefficients aίj and V of (3. 3) to 3D, respectively. We have to prove

aiN = 0 for i = 1, , N.

Let r be a nonnegative constant. By formula on stochastic integral [4],

VN(%t)2+r — VN(Xo)2+r is the sum of the following Xr

t9 Y\ and Z\.

7) For any x0 of dD there exists a neighborhood U oϊx0 and a co-ordinate system fei, , ON)
such that dDΓiU and Df]U are characterized by τjN=O and rjN> 0 respectively. We call such
foi> * * *> VN) a canonical co-ordinate system. The neighborhood U is called a canonical neigh-
borhood. Let [Uly "-.Up] be an open covering of canonical neighborhoods. The expression
(5.3) means that Lu coincides with the right hand a.e. v if x e Ut and fa, -",VN) is a ca-
nonical co-ordinate of £/"$.
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\{\ηN{v)\2+r-

where F is the function on R taking the value 1 on x > 0 and 0 on x ^

X\ and Z\ converge to X°t and Z\ (r = 0), while Y\ converges to γDd <XN>

as r tends to zero. Consequently we obtain (XNy = \lDd(XN>9 which implies

aNN = 0. Now the inequality \exiN\^alia]fN concludes that 0 ^ = 0 for every/.

Remark. The boundary operator L depends on the choice of local time

on the boundary, obviously. Let ψr be another canonical AF and U

be the boundary operator relative to ψr. Suppose ψ -< ψf and let / = y .

Then L — fU as is easily seen.

Let {/*, i = 1, , N] be a contravariant tensor on the manifold D.

We shall call that {/*} is associated with locally p-integrable functions

relative to aίJ, if there exists a set of measurable functions {fi9 i = 1, ,JV}

on D such that ΣJ aiSfJs is locally p-integrable and Σ βί:f/i = /* holds for

each i. If the determinant \a\ of the matrix {aίj) is not zero everywhere,

such {fi} is unique and is equal to {ΣJ#ίj//} where aiS = ΛίJl\a\ and AίS is

the cofactor of aij. Hence a contravariant vector {/*} is associated with

locally-9-integrable functions if and only if each /* is measurable and

*Σ}aijf
ίfj is locally ^-integrable.

THEOREM 5. 2. Let {xt9Px) be an {A, L)-diffusion on D with a canonical

system (<p,μ). Let (xt,Px) be an (Ar

9L
r)-diffusion on D with the same canonical

measure. Then (Af>Lr)-diffusion is an Mt-process of (A9 L)-difusion if and only if

the following conditions (1) and (2) are satisfied.

(1). (a) aίj = aijr, (b) bι — bίr is a contravariant vector on D associated with

locally t Λ ζ-integrable functions relative to aίJ.

(2). There exists a φ-integrable function f on 3D such that L" = fU satisfies

(a7) aίj - aij"9 (b') {βι — βUf] is a contravariant vector on dD associated with locally

φ-integrable functions relative to aίj

9 and (c') there exists a bounded D-measurable
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function f{x,y) such that nf2 is locally φ-integrable and n'(x,dy) = ef(-*'y^n{x,dy)

a.e. μ2. Here μ2 is the restriction of μ to 3D.

Proof Suppose that {Ar, Z/)-diffusion is an Mf process of [A, L)-diffusion.

Then there exists a ^-integrable function / on 3D such that B of (4. 3)

agrees with A — A' on D and with L — Lrr on 3D by Theorem 5. 1 and the

remark after that. Hence (a) and (a') hold by Theorem 4. 1. Note that

the operator B is invariant under the choice of co-ordinate system. Then

so is Σ ( y — bif) !?u . Hence tf—b1' is a contravariant vector. We can

easily conclude from (4. 4) that bι — bu is associated with a locally p-integ-

rable functions relative to aij. The proof of (2) is similar. "If" part of

this theorem follows from the second half of Theorem 4. 1 and Hypothesis

I.

Condition (b) and (b') are closely related to the ellipticity of aij and aι'j.

COROLLARY 1. If aij is uniformly elliptic, the condition (b') is equivalent to

that {β1 — βίf'} is a contravariant vector such that each component is locally φ-

integrable.

COROLLARY 2. If aij = 0, (b') is equivalent to βι = βiιr. In addition if

(A, Lydiffusion has continuous path, then L — L".

The above corollary shows that the boundary condition can not be

changed through Mc-transformation if the sample path is continuous and if

§6. Appendix. Diffusion process with the given boundary con-
dition.

Suppose the boundary condition of the diffusion process is already known

such as Wentzell [14] and Sato-Ueno [11]. We are interested in the rela-

tion between such boundary conditions and the one obtained in the pre-

ceding section probabilistically. Our main result in this section is that the

diffusion process discussed in [11] satisfies Hypothesises I—III and the bound-

ary operator defined in the preceding section coincides with the given one.

Let L be a boundary operator defined by

(6 1» "

dVi
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Here (ηί9 9ηN) is a canonical coordinate system. We assume that n(x, dy)

is concentrated on 3D and if u e C2, Lw is continuous. We shall call the

diffusion process on D as (^£)-diffusion if the infinitesimal generator of the

diffusion coincides with the closure of A restricted to the domain {u e C2;

Lu = 0}.

Suppose AL~X -diffusion exists for each λ^O. Sato-Ueno [11] have

proved the following. For each a > 0, there exists a Markov process on

the boundary with the resolvent Ka

λ9 λ 2̂  0, whose infinitesimal generator is

the closure of LHa; the resolvent Ga of (^£)-diffusion is expressed as

(6. 2) GJ = GTnf + HaK*0LGTnf.

Here, G™m is the resolvent of (iί^-diffusion absorbed at the boundary, Hau

is a continuous function on D taking the value u on 3D and satisfying

{a — Λ)Hau = 0 on A and LG^ in is the extension of the operator LG™in

THEOREM 6. 1. Suppose (Ac-j Ydiffusion exists for each λ^O. Then (AL)-

diffusion satisfies Hypothesis I—III . Moreover we can choose local time ψ on the

boundary in such a way that

(6. 3) Ex ( £ e-Λtf{xt)dφ^ = HaK
a

of(x)

holds for every x e D and f.

COROLLARY. L coincides with the probabilistic boundary operator.

For the proof, we prepare several lemmas.

LEMMA 6. 1. A nonnegative measurable function on 3D is K*-excessive {exces-

sive relative to K% 2^0) if and only if it is the restriction of an a-excessive

function on 3D.

Proof. Let / ^ 0. Since Z£™in/ is positive, H«Kt(LG™in)f is a-excessive.

Note that LGfnf=~-GΓ1f is dense in C(3D). Then HaK*of (/^0) is

also α-excessive. Let u be a ^-excessive function. Then it is an increasing

limit of potentials K*fn(fn ^ 0). Therefore Hau is α-excessive. Conversely

suppose u is an α-excessive function on D. Then u is an increasing limit of
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GJn (fn ^ 0). Since HaGafn = HaK*0{LG™in)fn, the restriction of GJn on dD

is ^-excessive. Consequently, the restriction of u on dD is also iC-excessive.

COROLLARY. Every point of dD is regular to itself

Proof Let / be a positive continuous function on dD. Then u = H(ίK%f

is a continuous and α-excessive function. Since (a — A)u = 0 on D, u satisfies

u(x) = Ex{e-aT9*>u(xτdD). Note that K%f is dense in dD, we obtain that

f(x) = Ex(e-«τd»f{xTdD)) for every x of dD and /. Therefore Px(TdD = 0) = l

for every # of dZλ

LEMMA 6. 2. /,#£ (#?,PJ) be the Markov process on the boundary with K*λ,

^tO, as its resolvent. Then

Ex{e~«τ*; XTE e F) = E%{xψB e F) v^ G ^

w satisfied for every open set E of dD and Borel set F c E.

Vroof is similar to [10]. Note that each point of E is regular to

itself relative to (# t ,PJ by Corollary to Lemma 6. 1. Then we obtain

from Lemma 6. 1

EΛ(e-τ*K*f(xTΛ)) = EKKifixϊ,)), *x e 3D,

because the left hand is α-order balayage of HaKζf to the set E relative to

(xtfPχ) while the other is the balayage relative to (as?, P%). Since K%f is

dense in C(dD)9 we obtain the lemma.

LEMMA 6. 3. Let [xt, Px) be a standard process on S and let Ua{x, dy) be

a nonnegative kernel satisfying

(1) U9f(x) is a bounded regular a-excessίve function if f is a bounded positive

function,

(2) HiUzf = Uaf is satisfied if the support of f is included in the open set E,

where H%{x,dy) = Ex{e-aT^; xTβ e dy).

Then there exists a unique continuous and increasing AF At such that

(6. 4) UJ{x) =

https://doi.org/10.1017/S0027763000013106 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013106


24 HIROSHI KUNITA

Proof. It is well known ([6], [9]) that, for each bounded / ^ 0 , there

exists a nonnegative and increasing AF A{ such that UΛf(x) = Ea(\ e-*ιdA?\

We have to prove A{ = \ f(xs)dAs, where At = A\.
Jo

Let K be a closed set and {Gn}, a sequence of open sets decreasing to

K. Then we obtain

U.{x, K) = lim mjj^x, K) = HiUa(x, K),

because Ua{x9K) is regular. The above relation implies

where Af — A\κ and Tκ is the hitting time for the set K. Hence ^4^=0,

which concludes

r * ^ i n f {t>0; Af >0}.

Consequently the fine support of Af is included in K. Then by Getoor

[2], we obtain

(6.5) Af

This formula also holds for open set K. Indeed, let {Fn} be a sequence

of closed sets increasing to the open set K. It is easy to see that AF

t

n increases

with n and Af = \\mAF

t

n. Since AFn = I IDdAFn is satisfied for each n, we
n-^oo Jθ

obtain Af = Γ IDdAκ.
Jo

Now let K be a closed set. Note that At = Af Λ A? and that both

of Af and Af ° satisfy (6. 5). Then we obtain

Jo

The Lemma is now clear.

Proof of Theorem 6. 1. Set U*f = H^Kif. Then Uaf is α-excessive if

/ 5̂  0 by Lemma 6. 1. Since U*f is continuous if / is continuous," Uaf

satisfies the condition (1) of Lemma 6. 3. Let E be an open set of dD

containing the support of /. Then
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by Lemma 6. 2. Therefore there exists a unique 0<

ί

α) of 9lΐ such that

HαKif(x) = £Λ

It is clear that the support of ^ is included in 3Zλ

We shall next prove 0c

t°° does not depend on α. First we notice the

following relation

HαKlf - HβKtf + {α-β) GβHαK*of = 0.

Indeed, put the left hand of the above by u. It is easy to see that

(j3— A)u = 0 on D and L^ = 0 on 3D. Therefore u = 0. We have, on the

other hand,

ή (β- α)GβE.

as is easily shown. Hence

which implies ψ^ — ψf\ Thus we have proved (6. 3).

To show Hypothesis II, it suffices to prove any w e C 2 is written as

the difference of two bounded regular excessive functions. Set h = u — G*

(α — A)u. Then (α — A)h = 0. Therefore LHJi = Lh = Lu, Hence we

have h - (LH*YιLu. Consequently,

(6. 6) u = GM - A)u + HαKiLu.

Therefore any u of C2 is written as the difference of two α-excessive func-

tion. Hypothesises I and III follow immediately from [11] and the proof

is now complete.

Proof of Corollary to Theorem 6. 1. I t suffices to show that C2 c %){Aφ)

and Aφu coincides with Lu on 3D. Let u be of C2. Then (6. 6) implies
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u(x) = £,( j V '(α - A) u{xt)dt) - Ex ( j " e-*Lu(xt)dφt) .

Therefore

u{xt) — u{x0) — \ Λu{xs)ds — I Lu{xs)dψg
Jo Jo

is of 3Jlι°°. Hence u e SD(Â ) and A ^ = Lu on diλ
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