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Abstract
The realizing of variable output constant force has received wide attention. To achieve a force regulation in an
economic way, a configuration of the constant force mechanism (CFM) referring to positive and negative stiffness
combination method is proposed in this paper. By adjusting preloading displacement applied on positive-stiffness
structure of the CFM, the variable constant force output can be realized. The force–displacement expression of
the CFM in the non-preloaded condition is deduced by the established analytical models. Furthermore, parametric
sensitivity analysis with several architectural parameters are conducted for optimizing physical structures. Finally,
the correctness of the proposed principle is verified by experimental studies. The observed experimental results
show that the CFM under different preloading displacements can provide required output constant force, which is
consistent with proposed hypothesis.

1. Introduction
Constant force mechanism (CFM) also known as quasi-zero stiffness mechanism, which can perform
output a constant force in a certain range of input displacement [1–3]. The CFM that can maintain the
output force in a specific value has been widely adopted in application of ultraprecision polishing, micro-
manipulation, and vibration isolation [4–6]. Generally speaking, the constant force can be realized by
a closed-loop control method with force sensors and advanced algorithms. For instance, Choi et al.
adopted a robust force tracking control to improve the performance of SMA-based flexible gripper [7].
Huang et al. reported an automatic cell injection system based on force sensing and controlling method
[8]. Zhang et al. developed an automated robotic micromanipulation system with MEMS force sensor
for studying the Drosophila larvae [9]. However, the aforementioned method required expensive sensors
and complex algorithms which increases the cost of realizing constant force. To reduce the dependency
on complicated control algorithms, CFMs consisting with passive elastic structure were presented from
the perspective of mechanism design [10, 11].

During the literature review, CFM can be realized by designing a specific curved-beam, shape
optimization and stiffness combination methods. For curved-beam-based CFM, the constant force is
generated by designing a special shape beam. Wang et al. developed a constant force bistable micro-
mechanism with force regulation and overload protection functions [12]. Pedersen et al. designed a
compliant mechanism that can deliver a constant output force to modify characteristics of the actuator
by topology and size optimization methods [13]. Similar to the curved-beam CFM, the shape optimiza-
tion CFM generates a constant force output based on meticulously process. For example, Chen et al.
presented a constant force clip to overcome snap-fit mating uncertainty relying on shape optimization
of a cantilever-like structure [14]. Liu et al designed a compliant constant-force mechanism by topology
and geometry optimization methods, which can generate a nearly constant output force over a range
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Figure 1. Force–displacement curve of BSB.

of input displacements [15]. The difference between the curved beam and shape optimization CFM is
that the former referring to fixed-guided beam and the latter based on fixed-free cantilever beam [16].
However, both of curved beam and shape optimization CFM are required to obtain the specific shape
by analytical modeling which is a time-consuming process. Different with aforementioned two meth-
ods, stiffness-combination CFM obtains constant force by combination of PSS and negative-stiffness
structure (NSS) [17]. Ye et al. proposed a type of multistage CFM based on the parallel connection
of negative and positive stiffness modules [18]. Liu et al. designed a compliant constant force gripper
by using the combination of positive stiffness and negative stiffness mechanism [19]. Compared with
curved beam and shape optimization CFMs, the stiffness combination CFM attracted wide attention for
the advantages of simple structure, accurate output, and low requirement on materials.

However, in some applications, the changing of constant output force magnitude is desirable. For
example, in applications that the initial desired force is unknown and in applications where a system calls
for gradual change in output force over a range of motion [20]. Hence, to further expand the application
of CFM, the design of variable constant force mechanism (VCFM) could be highly beneficial for these
applications. Generally speaking, the variable constant force output can be realized by conventional rigid
link mechanism and compliant mechanism. Due to the advantages of frictionless, no backlash, vacuum
compatibility and compactness, a compliant VCFM is proposed in this study [21].

The main contribution of this paper is to propose a compliant VCFM with experimental verification.
The remainder of this is organised as follows. Section 2 introduces the principle of VCFM realization
based on the stiffness combination method. Section 3 presents the comparison of typical PSSs and
NSSs, including the design of VCFM. Analytical modeling of positive and negative stiffness structure
is established in Section 4. In addition, the sensitivity of structural parameters to constant force prop-
erty is conducted in Section 5. Furthermore, experimental validation is presented in Section 6. Finally,
conclusions are drawn in Section 7.

2. Principle of realization VCFM
To get a variable constant force, the output constant force should be obtained initially. In this paper,
the constant force is obtained by combination of a PSS and NSS in parallel. The negative stiffness is
generated by BSB with its buckling property, as shown in Fig. 1. Referring to this figure, as increasing the
input displacement, the BSB will appear in two stable buckling positions, which correspond to Fig. 1(b)
and (d), respectively. The first positive stiffness occurs at the interval (0, x1); the negative stiffness region
locates in the interval (x1, x3). When the displacement exceed x3, it begins to show the second positive
stiffness characteristic, where x2 denotes a random point in the negative-stiffness interval (x1, x3). To
obtain a zero-stiffness characteristic, the magnitude of positive stiffness Kp and negative stiffness Kn

must be equal.
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Figure 2. The realization principle of VCFM.

Figure 3. Force–displacement curves of the VCFM in the different preloading conditions.

In the interval of (x1, x3), the output constant force Fc1 can be derived referring to stiffness combination
method:

Fc1 = (Kp + Kb1)x1 (1)

where Kb1 denotes the value of first positive stiffness.
To realize variable constant output force, it means to regulate the magnitude of Fc1 with �Fc, namely

Fc1 ± �Fc. Referring to the Eq. (1), the force adjusting can be realized by two methods. One is to adjust
the value of Kp + Kb1. However, the changing in stiffness involves massive workload and the difficulty
to realize. The other method is to adjust the value of x1 to the mechanism that is adopted in this paper.

The principle of applying a preloading displacement to realize variable constant force output is
depicted in Fig. 2, where the symmetric BSBs and a linear spring are connected in parallel [22]. The
end of the linear spring is connected to the preloading device to provide a preload force Fr (or preload
displacement �r) enabling the linear spring in pretightened condition. Simultaneously, the BSB will
move upward when subjected to the preload force, but its deformation displacement is relatively small
compared to the linear spring. Through applying prior preloading force, the output constant force can be
regulated accordingly. In order to give a further explanation of this principle, force–displacement curve
of the CFM in the different preloading conditions is shown in Fig. 3.

Referring to this figure, when a preload displacement ±�r is applied, the positive-stiffness curve
moves along x-axis in negative or positive direction with �p, and a reaction force Kp�p generates
accordingly. The force–displacement curve of the BSB moves along x-axis in positive or negative
direction with �b, and a reaction force ∓Kb1�b generates in the initial state. In accordance with
�r = �p + �b, the following equations can be obtained:

Kp�p = Kb1�b (2)

Fc2 = Kp(x1 + �r) + Kb1x1 (3)

Fc3 = Kp(x1 − �r) + Kb1x1 (4)

where Fc2 and Fc3 are the output constant force of the VCFM in ±�r preloading displacement.
Particularly, the changing of constant force magnitude �Fc is merely dependent on the applied preload-
ing displacement on the linear spring. The actual numerical value of the changed constant force is the
product of the positive stiffness and the preload displacement, namely Kp�r. Meanwhile, the starting
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Figure 4. Comparison of typical PSSs.

position of the constant force is directly related to the predeformation �b of the BSB. According to
Eq. (3), the following equations can be derived as

�r = Fc2 − (Kp + Kb1)x1

Kp

(5)

�b = Kp�r

Kp + Kb1

(6)

Therefore, for a specific constant force, the required preload displacement can be derived by Eq. (5).
Furthermore, through the given preloading displacement +�r, the magnitude and the starting position
of constant force can be deduced by Eqs. (3) and (6), respectively.

3. Design of VCFM
In this section, the designed VCFM is introduced including the comparison of some typical PSSs and
BSBs.

3.1. Comparison of PSSs
As introduced in Section 2, the output force regulation can be realized by adjusting the preload dis-
placement applied on the linear spring. For a specific CFM, the PSS denotes linear spring. Hence,
choosing a suitable PSS is important for the realization of VCFM. Figure 4 presents the comparison
of force–displacement curves of four typical PSSs via Workbench software. The straight beam exhibits
highly nonlinear characteristics due to the stress stiffening. It is not suitable to act as a PSS because
it cannot ideally neutralize the negative stiffness region of the bistable mechanism [23]. The folded
beam exhibits good linear characteristics, but it is not suitable to apply preloading displacement in the
input-displacement direction. The diamond-shape mechanism is similar to the U-shape mechanism in
geometry shape. The difference is that the U-shape mechanism uses a flexible arc to connect flexible
rods, and the diamond-shape mechanism uses a rigid rod. Considering the deformation of the flexi-
ble arc, the U-shape mechanism is more prone to fatigue failure [24]. In addition, the analytical model
for the U-shape is much complex than the diamond-shape mechanism. Therefore, the diamond-shape
mechanism is chosen as a PSS for the designed VCFM.

3.2. Comparison of BSBs
Generally speaking, the typical structural types of BSBs are V-shaped beam, cosine beam, and rigid-
flexible hybrid beam, as shown in Fig. 5. The cosine beam exhibits better linearity in the negative stiffness
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Figure 5. Comparison of typical BSBs.

Figure 6. 3D model of the VCFM. 1-antivibration stage, 2-working stage, 3-micrometer head, 4-base,
5-tightening nut, 6-VCFM, 7-connector 1, 8-force sensor, 9-connector 2, 10-voice coil motor.

stroke than other kind bistable beams. However, the complicated cosine shape beam requires exact pre-
stressing that results it difficult to meet different work conditions [25, 26]. V-shaped beam exhibits
similar negative-stiffness characteristics to rigid-flexible hybrid beam [27]. Owing to its advantages
of simple structure and easy modeling, V-shaped beam is chosen as the NSS to utilize in the CFM
design.

3.3. Mechanical design
The 3D model of the designed VCFM is depicted in Fig. 6. The voice coil motor is utilized to provide
driven force, and a force sensor is adopted to measure the reaction force. To adjust the preloading dis-
placement directly and easily, the micrometer head is used as a preloaded device which is fixed on the
base by a tightening nut. In addition, the base is mounted on the working stage through sliding grooves.
Therefore, the assembly errors can be compensated by driving the micrometer head to move along x
direction linearity. The preloading displacement �r applied on the diamond- shape mechanism is real-
ized by adjusting the micrometer head. The displacement �x at the end of the connector is generated by
driven force F.
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(a) (b)

Figure 7. Modeling of diamond-shaped mechanism: (a) schematic diagram of mechanism deformation,
(b) modeling of inclined cantilever beam.

4. Analytical modeling
To obtain the force–displacement relationship of the designed VCFM, analytical model of the positive
and negative stiffness structure is established in this section.

4.1. Modeling of PSS
As shown in Fig. 7(a), the diamond-shaped mechanism consists of four uniformed flexible beams and
rigid rods. In this figure, where L1 denotes length of the flexible beam, t1 represents width of the flexible
beam, θ1 is angle between the flexible beam and the horizontal plane, �y1 is the output displacement,
and F1 is the output force. The deformation of the diamond-shape mechanism can be calculated by
superimposing the deformation of each section of the inclined flexible beam. When the deformation
of one beam is studied, the other beams can be regarded as ideal rigid bodies. Considering the sym-
metric characteristic of the structure, the modeling of quarter diamond-shape mechanism is shown
in Fig. 7(b).

Referring to Fig. 7(b), the following equation can be deduced as

2(M0 − M1) = FxL1sinθ1 − FyL1cosθ1 (7)

Furthermore, the following relationship can be obtained:

Fx(L1cosθ1)2

2EI
− M1L1cosθ1

EI
= 0 (8)

Fx(L1cosθ1)3

3EI
− M1(L1cosθ1)2

2EI
= δmax (9)

where δmax is the maximum deformation of the beam, E is the Young’s modulus, I = b1t3
1/12 is the inertia

moment, and b1 is the out-plane width of the mechanism. δmax is composed of the deformation δbm caused
by the bending moment and the deformation δs caused by the shear, namely:

δmax = δbm + δs (10)

According to Hook’s law F = kδ, the following equation can be derived:
1

kmax

= 1

kbm

+ 1

ks

(11)

The maximum deflection due to bending moment can be expressed as

δbm = F1(L1cosθ1)3

12EI
(12)
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Figure 8. Modeling of BSB.

Figure 9. Parametric sensitivity analysis of the CFM: (a) L1, (b) t1, (c) θ2, (d) t2.

The deformation caused by the shear force can be written as

δs = 6(1 + μ)F1L1cosθ1

5EA
(13)

where A = b1t1 is the cross-sectional area of the beam. According to Eq. (10), the maximum deformation
can be derived as

δmax = F1(L1cosθ1)3

12EI
+ 6(1 + μ)F1L1cosθ1

5EA
(14)
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Table I. Architectural parameters of the VCFM.

Parameter Value Unit
L1 25.0 mm
θ1 7 deg
t1 1.5 mm
b1 10 mm
L2 35.0 mm
θ2 7 deg
t2 1 mm
b2 6 mm

Therefore, the force–displacement expression of the diamond-shaped mechanism is

F1 =
(

2(L1cosθ1)3

Eb1t3
1

+ 12(1 + μ)F1L1cosθ1

5Eb1t1

)−1

�x1 (15)

4.2. Modeling of BSB
As shown in Fig. 8, when applied an input displacement �x2, the corresponding output force F2 is
generated. L2 and t2 are the length and width of the BSB, respectively, and θ2 represents the inclination
angle between the horizontal plane and the beam.

Referring to ref. [28], the jth buckling force can be expressed as

Fj =
4EIdλ

2
j

l2
j

(16)

where Id = b2t3
2/12 is the inertia moment, and lj is the length at the jth critical segment, λj =

π , 4.493, 2π ..., j = 1, 2, 3.... The negative-stiffness expression of the BSB can be deduced as

kn ≈ 33EId

L3
2

(17)

In accordance with Eqs. (11) and (12), the following equation can be deduced by

F2 = ES
�x2

L2

(
�x2

L2

− sinθ2

) (
�x2

L2

− 2sinθ2

)
(18)

where S = b2t2 is the cross-sectional area of the beam. From Eqs. (10) and (13), the fundamental force–
displacement formula of the CFM in the nonpreloaded condition can be obtained:

F = Eb1t3
1�x

2(L1cosθ1)3
+ ES

�x2

L2

(
�x2

L2

− sinθ2

) (
�x2

L2

− 2sinθ2

)
(19)

5. Sensitivity analysis
In general, the more flatness and larger stroke of constant-force output, the better the performance of
CFM. To find an optimal solution of parameters, the analysis of structural parametric sensitivity of CFM
is conducted.

To analyze the parametric sensitivity of constant-force performance, a series of force displacement
curves, related to L1, t1, θ2, and t2, are depicted in Fig. 9. Referring to this figure, some conclusions can be
summarized as follows: Firstly, the length of L1 varies gradually from 22 to 28 mm with a 2 mm interval.
The variation tendency of L1 is positively correlated to the travel range of the constant force, meaning
that the larger the L1 becomes, the longer the constant-force travel range. However, the amplitude of force
is inversely proportional to L1. In addition, the smaller the L1, the greater the influence of L1 exists on
the force. Secondly, t1 of the diamond-shaped mechanism increases from 1.2 to 1.8 mm with an interval
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Figure 10. Experimental setup.

of 0.2 mm. It is seen that the force increases as t1 increases. The relationship between the force and t1 is
approximately direct proportional. Thirdly, θ2 of the bi-stable beam varies gradually from 6◦ to 9◦ with
an interval of 1◦. It should be pointed that the constant-force travel range becomes larger and larger as
θ2 is increasing. An increase of 1◦ for θ leads to a force increase of approximately 2 N. Nonetheless, the
relationship between the force and θ is not directly proportional. Finally, t2 of the bistable beam changes
gradually from 0.6 to 1.2 mm with a 0.2 mm interval. These observations imply that t2 has no apparently
significant connection with critical buckling positions and ranges, merely making a difference to values
of stiffness. The most interesting phenomenon is that multiple force–displacement curves can always
intersect at one point. As discussed previously, it can be concluded that θ2 of the bistable beam has the
greatest influence on the constant-force performance.

6. Experimental verification
In this section, experimental setup is established to verify the reliability of designed physical configura-
tion and the correctness of analytical analysis. The VCFM prototype is fabricated with high flexibility
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Figure 11. Comparison of force–displacement curves in non-preload condition.

material PLA-ST, with its density ρ =1250 kg/m3, Young’s modulus E = 1.477 GPa, and Poisson’s
ratio μ = 0.3. Referring to the FEA-based optimization method [29], the obtained optimal architectural
parameters are shown in Table I.

6.1. Experimental setup
As shown in Fig. 10, a VCFM prototype is fabricated with a 3D printer (model: 3DP-25-4F) to verify
the designed concept. The voice coil motor (model: TMEC100-015-000) is driven by a commercial
linear servo amplifier (model: ACJ-055-18) to deliver a nominal travel stroke of 10 mm. To measure
the reaction force of the mechanism, a force sensor (model: DS2-XD) is mounted at the end of input. A
grating ruler (model: LaRW1-3D, Fagor Automation) is integrated to measure the input displacement of
voice coil motor. The preload displacement is adjusted by the micrometer head for exhibiting different
force–displacement characteristics.

6.2. Experimental results
The comparison of force–displacement curves of obtained experimental data, theoretical and simulation
results in non-preloading conditions are depicted in Fig. 11. Referring to this figure, all these curves are
exhibiting constant-force property in some degree. The differs of obtained three curves can be explained
by following three reasons. First, the size of the finite element meshing process is relatively rough due to
the computer performance. Second, the material properties of final printed prototype may be different
from the given theoretical values partially because of the printing method and the filling density. Finally,
the variation of pretightening force on bolts for fastening VCFM could also lead to the deviation of
constant force during the experimental process.

Referring to the experimental data, the output force is ranging from 10.75 to 11.26 N in the interval
of [2, 4] mm with an approximate 11.15 N output constant force. The fluctuation value of constant force
is 4.5% of the maximum value. Meanwhile, the fluctuation of the force is +0.11 and −0.4 N, which
is +0.9% and −3.5% to the average constant force value 11.15 N. Therefore, it meets constant-force
definition proposed in the literatures [30]. Furthermore, according to Table II, Eqs. (10) and (13), the
positive-stiffness amplitude of the diamond-shaped mechanism Kp is 1.4 N/mm, and the first positive-
stiffness amplitude of the BSB Kb1 is about 5.9 N/mm.

The process to validate the proposed concept is equivalent to verify the correctness of Eqs. (3) and
(6). Considering the prototype dimensional size, stretchability, and the rebound limit of the material,
the applied preload displacements are 0, 2.5, 5, and 7.5 mm, respectively, as shown in Fig. 12.
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Table II. Comparison of analytical and experimental data.

�r E-�Fc A-�Fc Error E-�b A-�b Error
0 0 0 0 0 0 0
2.5 3.79 3.5 7.6% 0.52 0.47 9.6%
5 7.14 7.0 1.9% 1.0 0.95 5%
7.5 10.02 10.5 4.5% 1.45 1.43 1.3%

(a) (b) (c) (d)

Figure 12. Pictures of different preloaded states.

Figure 13. Experimental force–displacement curves in different preload displacements: (a) changing
of constant-force; (b) changing of constant-force starting point.

The force–displacement data responsible for the proposed VCFM are collected in different preload-
ing conditions. The changing of constant force and starting position is shown in Fig. 13 (a) and (b),
respectively. When preloading displacement of 0, 2.5, 5, and 7.5 mm are applied, the corresponding
constant force is 11.15, 14.94, 18.29, and 21.17 N. The constant force strokes are all close to 2 mm in
different preloading conditions. Referring to Eqs. (3) and (6), �Fc and �b can be deduced as illustrated
in Table II. The explanation for the error of experimental data �Fc and analytical data �b is listed as
follows. With the increasing of preloading displacement, the capability of elastic recovery of the mech-
anism is significantly reduced. In addition, the positive stiffness has changed after several times loading,
while the theoretical analysis still believes that the positive stiffness remains constant. Moreover, the first
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positive stiffness of the BSB presents noninearity characteristic, whereas theoretical analysis regarded
it as a constant value.

7. Conclusions
This paper proposed a configuration type of VCFM referring to the stiffness combination principle. By
adjusting the preload displacements on designed diamond-shaped compliant mechanism, the magnitude
of output constant force can be easily changed. The mathematical model of PSS and NSS is established
according to Hooke’s law. The analytical results indicated that the changing of constant force is only
related to applied displacement on PSS, and the starting position of constant travel is associated with
the predeformation of the BSB. Experimental studies are conducted on the prototype to further validate
the correctness of the theoretical analysis. By comparing the experimental and analytical results of �Fc

and �b in different preloading conditions, the errors are reasonable and acceptable which are all within
9.6%. The designed VCFM have a potential application in the field that requires force regulation to meet
different working environments.
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