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Abstract. We discuss practical aspects of the novel Faraday Rotation Measure Synthesis tech-
nique, first described by Burn (1966), and recently extended and implemented by Brentjens
& de Bruyn (2005). The method takes advantage of the excellent spectral coverage provided
by modern radio telescopes to reconstruct the intrinsic polarization properties along a line of
sight, using a Fourier relationship between the observed polarization products and a function de-
scribing the intrinsic polarization (the Faraday dispersion function). An important consequence
of the Fourier relationship and discrete frequency sampling is the need, in some cases, to de-
convolve the sampling response from the reconstructed Faraday dispersion function. Practical
aspects of the deconvolution procedure are discussed. We illustrate the use of the technique by
summarizing a recent investigation carried out with the WSRT. We conclude by briefly describ-
ing the applicability to future programs which will be carried out with the next generation of
radio telescopes such as LOFAR.
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1. Introduction
Polarimetric radio observations enable the study of synchrotron emission radiated by

relativistic electrons as they are accelerated by magnetic fields. The plane of polarization
of synchrotron radiation is perpendicular to the component of the magnetic field in the
plane of the sky (B⊥). The polarization vector can be modified by the Faraday rotation
effect. Faraday rotation is induced by thermal electrons, coincident with magnetic fields
which are at least partially oriented along the line of sight (LOS) between the source and
the observer. The amount of Faraday rotation is characterized by the Faraday rotation
measure (RM):

RM = 0.81
∫ observer

source
ne

�B · d�l, (1.1)

where the electron density ne is expressed in units cm−3 , the magnetic field B is in μG,
and the pathlength l is in parsecs. The projection of the field along the line of sight
( �B · d�l) is referred to as B‖. Faraday rotation modifies the polarization angle via

χ(λ) = χ0 + RM · λ2 , (1.2)

where χ0 is the intrinsic polarization angle, and χ(λ) is the polarization angle observed
at wavelength λ.

Traditionally, RM is determined by plotting the observed polarization angle as a func-
tion of the square of the observing wavelength, and performing a least-squares fit to the
data. There are three potential problems with this approach,
• The observed polarization angle is only known modulo π radians; thus, with mea-

surements in only a few wavelength bands, the RM fit is often arbitrary. This is commonly
referred to as the nπ ambiguity. For an illustration of the problem (and how closely spaced
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adjacent χ(λ) measurements can help to resolve the ambiguity), see Figure 1 of Rand &
Lyne (1994).
• Polarized emission with different RM values can be present in a single line of sight.

The signal from these different regions mixes, and makes a linear fit inappropriate.
• Faint sources with high rotation measure will be undetectable in individual channels

due to low signal-to-noise, and will remain undetectable even after integrating all channels
due to bandwidth depolarization. Thus, no χ(λ) data points would be available for a
traditional linear fit.

One way to deal with the nπ ambiguity is to rely on resolving smooth spatial gradients
in the polarization angle at each frequency. With this assumption, the appropriate value
of n can be determined in each pixel, yielding the correct polarization angle at each
frequency, and thus the true value of RM. This is the basis of the PACERMAN routine
developed by Dolag et al. (2005).

However, routines such as PACERMAN cannot deal with the second and third prob-
lems mentioned above, because it is ultimately based on calculating a single RM in each
LOS. In this contribution, we describe a novel technique introduced by Burn (1966),
and recently extended and implemented by Brentjens & de Bruyn (2005), who coined
the term RM synthesis to describe it, and discuss its application in various astrophysical
situations. The RM synthesis technique is summarized in § 2. A related deconvolution
issue is described in § 3. The use of RM-synthesis is illustrated in § 4 with results of
a recent observational program carried out with the Westerbork Synthesis Radio Tele-
scope (WSRT). We also briefly discuss future applications of this technique with the Low
Frequency Array (LOFAR) in § 5.

2. RM synthesis: theory and practice
2.1. In theory . . .

As shown by Burn (1966), one can start by writing the observed complex polarization
vector as P (λ2) = pIe2iχ , where p is the fractional polarization. We now substitute
Eqn. 1.2 for χ, replacing RM with a generalized quantity φ, the Faraday depth. Since
the observed polarization vector originates from emission at all possible values of φ,

P (λ2) =
∫ +∞

−∞
pIe2i[χ0 +φλ2 ]dφ (2.1)

which can be rewritten as

P (λ2) =
∫ +∞

−∞
F (φ)e2iφλ2

dφ, (2.2)

where F (φ), the Faraday dispersion function, describes the intrinsic polarized flux, as a
function of the Faraday depth. Thus, we have a simple expression relating the intrinsic
polarized radiation along the LOS, F (φ), to the observed quantities, P (λ2). The relation
takes the form of a Fourier transform. The equation can be inverted to express the
intrinsic polarization in terms of observable quantities:

F (φ) =
∫ +∞

−∞
P (λ2)e−2iφλ2

dλ2 . (2.3)

However, one is confronted with a problem: namely, that we do not observe at wavelengths
where λ2 < 0. Nor do we observe at all values of λ2 > 0. These issues are addressed by
Brentjens & de Bruyn (2005).
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Figure 1. The RMSF of an artificial observation with 200 MHz bandwidth, centered at 1.4
GHz, using 512 frequency channels. The RMSF is shown (a) with the factor λ2

0 = 0, and (b)
with λ2

0 set to the weighted mean λ2 value as advocated by Brentjens & de Bruyn (2005). The
real part of the RMSF (i.e., Stokes Q) is shown with dashed lines, the imaginary part (Stokes
U ) with dotted lines, and the amplitude (P =

√
Q2 + U 2 ) with solid lines.

2.2. In practice . . .

Brentjens & de Bruyn (2005) introduce a window function, W (λ2), which is nonzero
only at values of λ2 which are sampled by the telescope. They proceed to show that Eqns.
2.2 and 2.3 can be rewritten to express the observed polarized emission as

P̃ (λ2) = W (λ2)P (λ2) = W (λ2)
∫ +∞

−∞
F (φ)e2iφ(λ2 −λ2

0 )dφ (2.4)

and, after some intermediate steps, the reconstructed Faraday dispersion function as

F̃ (φ) = K

∫ +∞

−∞
P̃ (λ2)e−2iφ(λ2 −λ2

0 )dλ2 = F (φ) � R(φ), (2.5)

where K is the inverse of the integral over W (λ2), the � denotes convolution, and R(φ)
is the RM spread function (RMSF)†. The RMSF is a crucially important quantity, and
is defined by

R(φ) ≡ K

∫ +∞

−∞
W (λ2)e−2iφ(λ2 −λ2

0 )dλ2 . (2.6)

The factor λ2
0 has been introduced in Eqns. 2.4−2.6 in order to improve the behavior of

the RMSF (see Figure 1). Brentjens & de Bruyn (2005) show that the optimal choice of
λ2

0 is the mean of the sampled λ2 values, weighted by W (λ2).
Brentjens & de Bruyn (2005) next move on to show that Eqns. 2.5 and 2.6 can be

written as sums; these are the equations which define the RM synthesis technique as it

† Brentjens & de Bruyn (2005) actually called this function the RM transfer function
(RMTF). However, in analogy to telescope optics, the quantity R(φ) is more similar to the
point spread function (PSF) than to the optical transfer function (OTF). It has therefore since
been renamed the RM spread function (RMSF).

https://doi.org/10.1017/S1743921309031421 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921309031421


594 G. Heald

is implemented in practice.

F̃ (φ) ≈ K
N∑

c=1

P̃c e−2iφ(λ2
c −λ2

0 ) , (2.7)

R(φ) ≈ K
N∑

c=1

Wc e−2iφ(λ2
c −λ2

0 ) , (2.8)

where the index c refers to the individual frequency channels in which the polarized flux
is observed at the radio telescope.

One of the main motivations for performing RM synthesis is to minimize the effects
of the nπ ambiguity. This is best done by splitting up the observing bandwidth into
many individual narrow frequency channels. By observing in this way, only the brightest
polarized emission will be detected above the noise level in each narrow channel. Adding
up the individual frequency channels may cause bandwidth depolarization. But the RM
synthesis operation is often able to recover such low-level polarized flux. In fact, one
interpretation of the RM synthesis technique is that of using a series of trial RM values,
and finding the one which maximizes the signal level resulting from the coaddition of the
polarized flux from all channels. In this interpretation, the flux as a function of φ – the
reconstructed Faraday dispersion function – will peak at the value of φ corresponding
to the actual RM of the source. At other values of φ, the polarization vector rotates at
the wrong rate through λ2 space, the polarization vector will not constructively interfere
throughout the band, and the total flux will thus be lower.

The other main reason for performing RM synthesis is to recover emission at multiple
Faraday depths along a particular LOS. This circumstance can occur, for example, when
a background polarized source shines through a foreground medium which both generates
Faraday rotation, and also produces its own synchrotron radiation in the same volume –
an excellent example is the Milky Way. In such a case, polarized flux appears at different
values of φ, as illustrated in Figure 2.

The idealized physical situations shown in Figure 2 illustrate some of the key ef-
fects which determine the form of the Faraday dispersion function. In the top panel, a
polarized background source is shown. The source has an intrinsic rotation measure of
+100 rad m−2 . In this case, no magnetoionized medium is present along the LOS between
the source and the observer, so the Faraday dispersion function is simply a delta func-
tion, with amplitude equal to the polarized flux density of the background source, and
centered at φ = +100 rad m−2 . In the middle panel, the situation is the same, except that
a region of ionized gas (A) is introduced along the line of sight. The region contains an
ordered magnetic field inclined with respect to the LOS (but does not contain cosmic-ray
electrons) in such a way that it provides an additional rotation measure of −50 rad m−2 .
Thus, the emission from the background source is shifted to φ = +50 rad m−2 . In the
bottom panel, cosmic-ray electrons are added to the intervening region (B), so that in ad-
dition to the extra Faraday rotation, the region also emits its own synchrotron radiation.
That which is emitted at the back of the region (furthest from the observer) is produced
without a rotation measure, but accumulates a net rotation measure of −50 rad m−2 by
the time it propagates to the front of the region. The emission from the front of the
region never accumulates any Faraday rotation on its way to the observer. The radia-
tion emitted in the middle of the region picks up a rotation measure between those two
values. In the simplest possible case, where the field distribution and particle densities
are uniform, the resulting Faraday dispersion function is a tophat function, or Burn slab,
as illustrated. It is present in addition to the radiation from the background source, for
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Figure 2. Three idealized physical situations along an imaginary LOS, and the Faraday dis-
persion functions which correspond to those situations. Refer to the text for a discussion of the
individual images.

which nothing has changed relative to the picture in the middle panel (the intervening
medium still changes its RM by −50 rad m−2 as before).

Real objects which could make up such a picture include unresolved radio galaxies or
pulsars as the background source, and the diffuse Milky Way, galaxy clusters, or galaxies
as the foreground medium. Distinguishing the contributions from different objects along
the LOS can be helped by including additional information about the spatial scales of,
and distances to, the different objects. This is referred to as Faraday tomography.

The RM synthesis technique was originally conceived for analyzing data along a single
LOS. However, many polarized sources are resolved, and it is now common to perform
the inversion in Eqn. 2.7 for every spatial pixel in full Stokes Q and U data cubes. The
output of such an operation is referred to as an “RM cube”, with φ as the third axis.
Frequency-dependent instrumental effects must be calibrated before generating an RM
cube. For example, the synthesized beam (for an interferometer) must be the same at all
frequencies. Also, the single dish primary beam attenuation must be corrected for at all
frequencies. Otherwise, the frequency-dependent instrumental signal will be picked up
by the RM synthesis operation, and appear in the RM cube.

2.3. Practical issues
There are a number of practical issues which were noted by Brentjens & de Bruyn (2005)
and which must be taken into account when doing an RM synthesis experiment. First,
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the FWHM of the RMSF determines the precision with which one can determine the RM
at the peak of a Faraday dispersion function. The FWHM is inversely proportional to the
full width of λ2 space covered by the observations, Δλ2 . Brentjens & de Bruyn (2005)
use a proportionality constant 2

√
3, but Schnitzeler et al. (2008) note that empirically,

a small correction is appropriate, and advocate using FWHM = 3.8/Δλ2 instead.
As seen in § 2.2, depending on the physical conditions along the line of sight, the

Faraday dispersion function can contain extended structures such as Burn slabs. The
signature of these structures in the observational domain is that the functional form of
||P (λ2)|| is a sinc function. Thus, at large values of λ2 , the degree of depolarization is high.
For this reason, the sensitivity to extended Faraday structures is inversely proportional to
the minimum sampled value of λ2 . At shorter wavelengths, the amount of depolarization
due to Faraday thick emission is minimized.

One of the advantages of using the RM synthesis technique is that narrow channels
can be utilized, meaning that bandwidth depolarization effects are minimized. However,
they are not totally eliminated. Bandwidth depolarization becomes a concern at values
of φ which cause the polarization angle to rotate by π radians between two adjacent λ2

samples. For high frequency applications, this effect only becomes important at extremely
large rotation measures. But at the low frequencies sampled by LOFAR, for example,
bandwidth depolarization can still be a serious concern.

A final consideration is the effect of minimizing the FWHM of the RMSF by combining
observations from different frequency bands. By using, for example, a combination of a
λ20cm and λ6cm band to increase Δλ2 , one will obtain an RMSF with a narrow FWHM,
but also extremely high sidelobes. The RMSF will be dominated by a fringe characterized
by the distance in λ2 between the two bands, and this fringe will be damped by an
envelope with width inversely proportional to the width of the individual bands. This
can be thought of as similar to the interference pattern in a Young double slit experiment
– the fringe spacing is set by the distance between the two slits (observing bands), and
the heights of the individual fringes are determined by the width of the slits. In an
observation where there is a large gap in λ2 coverage, the effect is qualitatively the same.

2.4. To weight or not to weight?
The window function W (λ2) introduced earlier can be used to weight the individual values
of P (λ2) that go into the calculation of the Faraday dispersion function. By weighting
each value by the square of the signal-to-noise ratio (S/N), one can hope to maximize
the precision with which we determine the RM at the peak of the profile (at the expense
of broadening the RMSF).

We have performed a Monte Carlo simulation to assess the effect of using such a
weighting scheme. We generated mock observations of a polarized point source with a
Faraday dispersion function described by (Q = 1/

√
2, U = 1/

√
2) at φ = 30 rad m−2 ,

and zero elsewhere. We used the same frequency coverage as was used to produce the
RMSF in Figure 1. Then we added noise to the artificial observation, such that the noise
level varies quadratically from channel to channel. The resulting S/N ranged from 1 in
the central channel, to about 1/12 in the first and last channels. Then we reconstructed
the Faraday dispersion function using RM synthesis, with and without S/N weighting,
and determined the RM at the peak of the Faraday dispersion function, φ̂, in each case.
We ran 2500 realizations of the simulation.

The simulation results show that the weighted version of the RM synthesis calculation
provides a significantly better determination of the value of φ̂. In Figure 3, we plot the
distribution of the φ̂ values determined in each run of the simulation, with and without
the signal-to-noise weighting. Without the weighting, the mean φ̂ determination was
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Figure 3. The distribution of φ̂ values determined during the Monte Carlo simulation described
in the text. Results are shown from the simulated Faraday dispersion functions which were
constructed (a) without weighting, and (b) with 4 × (S/N )2 weighting. The weighting scheme
serves to narrow the distribution of values. Both are centered at the actual value, 30 rad m−2 ,
but the unweighted distribution is ∼ 2 times broader.

29.4± 61.2 rad m−2 , whereas with weighting, the determination was 29.6± 30.0, yielding
a factor of 2 improvement in the precision. Note that with this frequency coverage, the
expected FWHM of the RMSF is ≈ 284 rad m−2 .

By weighting the P (λ2) values in this way, the RMSF is significantly broadened. Thus,
despite the increase in precision gained, the ability to distinguish two separate features
in the Faraday dispersion function will be markedly decreased. One should use different
weighting schemes to optimize for the detection of different types of polarized emission,
just as the weighting of visibilities measured by an aperture synthesis telescope should
be optimized for the characteristics of the emission being studied.

3. Faraday dispersion function deconvolution
As pointed out in § 2.2, after performing RM synthesis, the reconstructed Faraday

dispersion function, F̃ (φ), is the convolution of the actual Faraday dispersion function,
F (φ), with the RMSF, R(φ). When it appears that there may be multiple features in
a reconstructed Faraday dispersion function, confusion with RMSF sidelobes can make
the interpretation difficult. The situation can often be improved by performing a decon-
volution operation.

The algorithm is rather similar to the deconvolution routine CLEAN developed for use
with aperture synthesis radio telescope images and described by Högbom (1974). The
differences are (1) the deconvolution takes place in one dimension (Faraday depth) rather
than two (spatial) dimensions; and (2) the functions involved are complex quantities.

The implementation of RM synthesis deconvolution proceeds as follows. First, the
location of the peak of the reconstructed Faraday dispersion function, φp , is searched
for (either by locating the peak of ||F̃ (φ)||, or alternatively the peak of cross-correlation
of that function with the RMSF). Once φp is determined, the values of the real and
imaginary parts of ||F̃ (φp)|| are scaled by a loop gain parameter g, typically taken to be
0.1. This is stored as a “clean component”. Next, a version of the RMSF, shifted and
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Figure 4. An example of RMCLEAN results. In panel (a) we display the Faraday dispersion function
of a relatively bright polarized point source in the field of NGC 7331, observed during the
WSRT-SINGS survey. The gray line is the original reconstructed Faraday dispersion function,
and the black line is the deconvolved Faraday dispersion function. The resulting profile clearly
shows two distinct components. In panel (b), the observed polarization angle at each frequency
is plotted with gray points. The polarization angle predicted by the clean components extracted
by RMCLEAN are displayed with the black line. Clearly, the model matches the data quite well. A
traditional linear fit to the polarization angle vs. λ2 would not have been possible in this case.

scaled to be equal to g||F̃ (φp)|| at φ = φp , is subtracted from the Faraday dispersion
function. The residuals are searched for a new peak, and the loop (scale, store, subtract,
and search) is repeated until the residuals are all below a user-specified threshold, or
a maximum number of iterations have been performed. Finally, the clean components
are convolved with a restoring function – we use a real-valued gaussian with FWHM
approximately the same as the main lobe of the RMSF – and added to the residuals. The
result is the deconvolved Faraday dispersion function.

This algorithm has been implemented within the MIRIAD software package, as a task
called RMCLEAN, during analysis of the WSRT-SINGS survey data described in § 4.1. The
routine is available upon request.

An example of this operation is shown in Figure 4. In the left panel, the original recon-
structed Faraday dispersion function, of a bright polarized point source in the WSRT-
SINGS survey, is compared to the deconvolved version. In the right panel, the observed
χ(λ2) values are compared to those predicted by the clean components extracted during
the deconvolution operation, as a check that the behavior predicted by the model matches
the data. It can also be seen that a linear fit to the χ(λ2) data would be insufficient to
characterize the situation. RM synthesis is particularly powerful in similar cases where
the S/N level is much lower.

4. Applications
In recent years, several research projects have made use of the RM synthesis technique.

Many of them have been performed using data from the WSRT, which is equipped with
a powerful and flexible correlator, and which can provide many channels over a large
simultaneous bandwidth in all four Stokes parameters. Those projects have mostly made
use of data at low frequencies, near 350 MHz; see for example the work by Brentjens
(2008), Schnitzeler et al. (2008), and Bernardi et al. (2008).
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4.1. The WSRT-SINGS survey

One of the data sets to which RM synthesis has recently been applied is the WSRT-SINGS
survey. The survey has been described by Braun et al. (2007), who also give an atlas
of the observed galaxies in Stokes I emission. The targets were selected mainly from the
Spitzer SINGS survey (Kennicutt et al. 2003), if they have optical diameters D25 > 5′

and declination δ > 12.5◦. Each galaxy in the survey was observed for a total of 12 hours,
split between two wide 160 MHz frequency bands centered at 22 cm and 18 cm. All four
polarization products were recorded. The polarization data has been analyzed using RM
synthesis (Heald et al., in prep.), which is particularly useful for this survey in order
to recover faint diffuse polarized emission and its associated RM. The final noise level
in Stokes Q and U after RM synthesis was typically 25 − 35μJy beam−1 depending on
the particular target. Because of the large gap between the 18 cm and 22 cm bands,
the first sidelobes of the RMSF reach ∼ 78% of the main lobe. Thus, deconvolution
of the Faraday dispersion functions was performed (see Figure 4 for an example which
also illustrates the high sidelobes caused by the gap between the 18 cm and 22 cm
bands).

RM cubes were constructed for 28 of the galaxies in the WSRT-SINGS survey. Linear
polarization detections were made in 21 of 24 observed spiral galaxies, but no detections
were made in the Magellanic and elliptical type galaxies. One of the fundamental products
of this project is a rotation measure map for each galaxy detected in diffuse polarized
emission. The RM maps were constructed by determining the value of φ at the peak of
each deconvolved Faraday dispersion function. An example for NGC 6946 is shown in
Figure 5. The distribution of rotation measures shows a clear gradient across the disk.
A clear sinusoidal pattern is revealed by determining the average RM in wedges, and
plotting as a function of the azimuthal angle in the galaxy. This sinusoidal pattern may
be indicative of an axisymmetric dynamo mode, as shown in Figure 1 of Krause (1990).
Using the rotation measure maps which we have determined, the observed polarization
angles were corrected to their intrinsic values. This reveals the magnetic field structure
in the galaxy, as shown in the last panel of Figure 5.

5. Conclusions and future applications
Use of the RM synthesis technique has recently become practical, thanks to the flexible

correlators of modern radio telescopes such as the WSRT. The technique is very pow-
erful in eliminating the nπ ambiguity which plagues the traditional least-squares fitting
technique, and moreover provides a simple way to recover multiple polarized structures
along a single LOS. In many cases, deconvolution is necessary, especially in observa-
tional programs in which large gaps in frequency coverage lead to high RMSF sidelobe
levels.

Forthcoming radio telescopes, such as LOFAR (Falcke et al. 2007), which is currently
being built in the Netherlands, will benefit greatly from the techniques reviewed here. At
the low frequencies which will be observed (30−240 MHz), the corresponding Δλ2 cover-
age is very broad, and this leads to a very narrow RMSF response. We expect to achieve
an RM precision which is more than two orders of magnitude better than in the combina-
tion of the 18 cm and 22 cm bands used in the WSRT-SINGS survey, for example. One of
the LOFAR Key Science Projects (KSPs), the Magnetism KSP, will make use of the RM
synthesis technique to study weak magnetic fields in the Milky Way, as well as in nearby
galaxies.
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Figure 5. Linearly polarized emission in the spiral galaxy NGC 6946, observed in the
WSRT-SINGS survey. (a) The distribution of the linearly polarized emission. (b) The distri-
bution of φ values, determined as described in the text. (c) Azimuthal variation in the mean
rotation measure value, together with a sinusoidal fit. (d) Magnetic field map, generated from
the Faraday rotation-corrected polarization angles and overlaid on the DSS image.
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Discussion

Kepley: How does RFI affect the RM-synthesis technique?

Heald: One should take care to remove strongly affected channels from the analysis.
But as for weak RFI, aside from increasing the noise level, it should not degrade the
results (as long as the RFI is not structured in the frequency domain).

Fletcher: George clearly shows (in M51) a possible m = 1 azimuthal mode in the
18/20 cm RMs. A note of caution on the interpretation should be added (in my opinion):
depolarization by unresolved magnetic fluctuations in the synchrotron emitting regions
can lead to complete depolarization along part of the observed line of sight. Rotation
measures at higher frequencies show a clear sign of a m = 0 + 2 azimuthal pattern near
the disc of M51 (Fletcher et al. in prep.), with a m = 1 pattern (as shown by George) in
a layer nearer to the observer (a thick disc or halo). Dynamo modellers should take note!

Heald: We see a hint of a contribution from an m = 0 mode, which may correspond to
the disk component of your model, but your point about depolarization effects at these
frequencies is well taken.

Han: 1) Comment: when we do pulsar observations with 512/1024 channels inside a
256 MHz band, PSRCHIVE software (developed by Willem van Straten) also uses RM
synthesis technique for RM. Afterwards, we still check the ΔPA from the upper and
lower half bands for the uncertainties of the RM measurements. 2) In your observations
of SINGS galaxies, your RM image is very impressive. Do you see different RM layers
during the process? I think maybe there are different layers in each part inside a galaxy?
You did average on that? How did you compose the final RM map?

Heald: 1) When signal-to-noise permits, one should always check for consistency in the
measurement domain. However, the real power of the RM-synthesis technique derives
from the capability to extract Faraday dispersion functions from data with signal levels
below the noise in each channel. 2) As Andrew Fletcher pointed out, depolarization at
these frequencies likely prevents us from detecting polarization from deeply within the
galaxies. But by using this technique at higher frequencies, where Faraday effects are less
severe, one could probe the different layers of disk and halo.

https://doi.org/10.1017/S1743921309031421 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921309031421


602 G. Heald

Wolfgang Reich

Tim Gledhill

https://doi.org/10.1017/S1743921309031421 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921309031421

