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EXAMPLES AND CLASSIFICATION OF
RIEMANNIAN SUBMERSIONS SATISFYING A BASIC EQUALITY

BANG-YEN CHEN

In an earlier article we obtain a sharp inequality for an arbitrary isometric immer-
sion from a Riemannian manifold admitting a Riemannian submersion with totally
geodesic fibres into a unit sphere. In this article we investigate the immersions which
satisfy the equality case of the inequality. As a by-product, we discover a new char-
acterisation of Cartan hypersurface in S4.

1. INTRODUCTION.

Let M and B be Riemannian manifolds. A Riemannian submersion it : M —> B is
a mapping of M onto B satisfying the following two axioms:

(51) 7T has maximal rank;

(52) the differential •n, preserves lengths of horizontal vectors.

The mappings between Riemannian manifolds satisfying these two axioms were stud-
ied by Nagano in [10] in terms of fibred Riemannian manifolds. In particular, he derived
the fundamental equations analogous to Weingarten's formulas for Riemannian subman-
ifolds. O'Neill further studied such mappings in [11] and called such mappings Rieman-
nian submersions.

Throughout this article, we only consider Riemannian submersions -n : M —>• B with
m > b > 0, where m = dim M and b = dim B.

For each p € B, n~1(p) is an (m - 6)-dimensional submanifold of M. The submani-
folds ir~l(p),p € B, are called fibres. A vector field on M is called vertical if it is always
tangent to fibres; and horizontal if it is always orthogonal to fibres. We use corresponding
terminology for individual tangent vectors as well. A vector field on M is called basic if
X is horizontal and 7r-related to a vector field X, on B, that is, n,Xu = X.n(u), for all
u € M.

Let H and V denote the projections of tangent spaces of M, onto the subspaces
of horizontal and vertical vectors, respectively. We use the same letters to denote the
horizontal and vertical distributions.
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392 B.-Y. Chen [2]

Associated with a Riemannian submersion TT : M -» B, there are two natural (1,2)-
tensors T and A on M defined as follows:

For vector fields E, F tangent to M, the tensor T is defined by (see, for instance,

[11]):

(1.1) TEF = UVVE{VF) + VVHE{HF).

The other tensor A, known as the integrability tensor, is defined by

(1.2) AEF = VVnECHF) + nVHE(VF).

In particular, for any horizontal vector field X and any vertical vector field V, we
have

(1.3) AXV = HVXV.

It is well-known that, for horizontal vector fields X, Y, the tensor A has the alter-
nation property:

(1.4) AXY = -AYX.

Associated with each Riemannian submersion TT : M ->• B, the invariant A* on M

is defined by

b m

(1.5) An = £ J2 ll^.^ll2' b = dimB' m = dimM'
t = l a=6

where Xi,...,Xb are orthonormal basic horizontal vector fields and Vb+i,... ,Vm are
orthonormal vertical vector fields on M. It is easy to verify that Av is well-defined. It is
easy to see that a Riemannian submersion n : M —> B has totally geodesic fibres if and
only if T vanishes identically.

By applying an idea from [4, 5], the following inequality was established in [6].

THEOREM A. Let n : M —• B be a Riemannian submersion with totally geodesic
Gbres. Then, for any isometric immersion of M into a unit sphere SN, we have

m2

(1.6) An < — H2 + b(m - b),

where b — dimB, TO = dimM and H2 is the squared mean curvature of the immersion.

By applying this theorem the author proves that if a Riemannian manifold M admits

a non-trivial Riemannian submersion IT : M —* B with totally geodesic fibres, then it

cannot be isometrically immersed in any Riemannian manifold of non-positively sectional

curvature as a minimal submanifold. Moreover, he proves that if M admits a minimal

immersion into a Euclidean space, then locally M is the Riemannian product F x B
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[3] Riemannian submersions satisfying a basic equality 393

of a fibre F and the base manifold B and the minimal immersion of M is locally the
product immersion (4>F, 4>B) of some minimal isometric immersions 4>F : F -> E m i and
4>B : B —> E"*2 into some Euclidean spaces (see [6] for details). Here, by a non-trivial
Riemannian submersion we mean a Riemannian submersion whose horizontal and vertical
distributions are not both totally geodesic distributions.

In this article we investigate the Riemannian submersions TT : M —> B with totally
geodesic fibres and the isometric immersions of M in SN which satisfy the equality case
of inequality (1.6) identically. In order to do so, we recall briefly the definition of Hopf's
fibration:

Consider 5 2 n + 1 as the unit hypersphere in C n + 1 centred at the origin and let z be
its unit outward normal. Let J be the natural almost complex structure on <Cn+1. Then
Jz defines an integrable distribution on S2n+1 with totally geodesic leaves. Identifying
the leaves as points we obtain the complex projective n-space CPn. By taking as the
horizontal distribution, the orthogonal complements to Jz in TS2n+1, one can make this
into a Riemannian submersion, known as the Hopf fibration:

(1.7) nc •• S2n+1 -> CPn

with great circles as fibres.

Similarly, consider S4k+3 as the unit hypersphere in Q*+1 and let z be its unit outward
normal. Let J l t J2, J3 be the natural almost complex structures on Q*+1 with

(1.8) J\J2 = J3, J2J3 = J\, J3J1 = ^2-

Then J\Z, J2z, J3z define an integrable distribution on Sik+3 with totally geodesic leaves.
Identifying the leaves as points we obtain the quaternionic projective fc-space QPk which
can be made into a Riemannian submersion:

(1.9) TTQ : Sik+3 -> QPk

by taking as the horizontal distribution, the orthogonal complements to J\z, J2z, J3z in
TSik+3. Fibres of nQ are totally geodesic 3-spheres in 54fc+3. The projection (1.9) is also
known as the Hopf fibration.

The following result shows that there exist many Riemannian manifolds which admit
Riemannian submersions with totally geodesic fibres and which also admit isometric
immersions satisfying the equality case of (1.6) identically into some unit spheres.

THEOREM 1 . We have:

(a) Let B be a Kaehler submanifold ofCPn and let xg : n^iB) -* B be the
restriction of Hopf's fibration He to n^1{B) C 5 2 n + 1 . Then the inclusion
map ic • n^(B) -> 5 2 n + 1 is an isometric immersion such that

(a.l) the fibres of n^ are fibres of the HopfGbration ire and
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(a.2) LC satisfies the equality case of (1.6) identically (with m = 1 + 6;
b = dimRB).

(b) Let B be an open portion of a totally geodesic QP1 C QPk and let TTQ :
TTQX(B) -> B be the restriction of Hopf's fibration nQ to XQX(B) C S4fc+3.
Tien the inclusion map IQ : UQ1(B) —¥ S4k+3 is an isometric immersion
such that

(b.l) the fibres of KQ are fibres of Hopf's fibration ITQ and

(b.2) LQ satisfies t ie equality case of (1.6) identically (with m = 3 + b;

b = diniR B).

Let 7T : M ->• B and TT' : M' -¥ B' be two Riemannian submersions with totally
geodesic fibres. Then n and it' are said to be equivalent provided there exists an isometry
/ : M —> M' which induces an isometry fs '• B —» B' so that the following diagram
commutes (see [7, 8]):

M —!-> M'

B -^2-» B<
As a converse to Theorem 1, we have the following.

THEOREM 2 . Let w : M —>• B be a Riemannian submersion with totally geodesic

fibres. Then we have:

(i) If M admits an isometric imbedding <j>: M -> 5 2 n + 1 wiici carries fibres of
n to fibres of TTC : S2n+1 —¥ CPn and 4> satisfies t ie equality sign of (1.6),
tien tiere exists a Kaehler submanifold B\ C CPn such that n : M —> B
is equivalent to nc '• TT^^BJ) —¥ B\ and <j> is congruent to the inclusion
map: LC : v^Bi) -> S2n+l.

(ii) If M admits an isometric imbedding <j>: M —¥ S*k+3 which carries fibres of
w to fibres of KQ : Sik+3 -* QPk and <j> satisfies the equality sign of (1.6),
tien tiere exists an open portion Bi of some totally geodesic QP1 c QPk

such that IT : M —* B is equivalent to TTQ : TTQ1(B2) -» B2 and <f> is
congruent to the inclusion map: LQ : ir^(Bi) —* Sik+3.

Let n : M —• B be a Riemannian submersion. An isometric immersion 0 : M —> SN

is called mixed-totally geodesic if its second fundamental form h satisfies

(1.10) h(X,V) = 0

for any horizontal vector X and vertical vector V on M.

In view of Theorem 2, we prove the following.

THEOREM 3 . Let n : M —> B be a Riemannian submersion with totally geodesic

fibres. If an isometric immersion <j>: M —• SN carries the fibres of n to totally geodesic

submanifolds ofSN and satisfies the equality case of (1.6), tien we iave
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(1) dim A O 3 and

(2) M is immersed as a minimal mixed-totally geodesic submaaifold of SN.

The Cartan hypersurface in S4 C E5 is defined by the equation:

(1.11) 2x3
5 + 3(z? + x\)xb - &{x\ + x\)xb + 3\/3(:r? - x\)x4 + &\flxix2x$ = 2.

E. Cartan proved that this hypersurface is the homogeneous Riemannian manifold
SU(3)/SO(3) (equipped with a suitable metric) and its principal curvatures in S4 are
given by 0, \ / 3 , - \ / 3 . It is also known that the Cartan hypersurface is a tubular hyper-
surface about the Veronese surface with radius r = n/2.

The next result classifies isometric immersions <f> : M3 -> S4 from Riemannian 3-
manifold into S4 which satisfy the hypothesis of Theorem 3. This result provides a new
characterisation of Cartan's hypersurface.

THEOREM 4 . Let TT : M3 - > B b e a Riemannian submersion with totally geodesic
fibres. If 4> : M3 —¥ S4 is an isometric immersion carrying fibres to totally geodesic
submanifolds of S4 and if<f> satisfies the equality case of (1.6), then either

(a) 4> is a totally geodesic hypersurface of S4 or

(b) <p is congruent to the Cartan hypersurface.

2. P R O O F O F T H E O R E M 1.

Let B be a submanifold of CPn and TTQ : ̂ {B) —> B the Hopf fibration restricted to
itcl{B). Consider the unit sphere 5 2 n + 1 as the unit hypersphere of the complex Euclidean
(n+ l)-space Cn + 1. Let z be the unit outward normal of 5 2 n + 1 and J the almost complex
structure of C"+1. Then fibres of 7r£ are great circles in 5 2 n + 1 and the characteristic
vector field £ on the Sasakian 5 2 n + 1 is given by £ = Jz. Clearly, the restriction of £ to
n^iB) is a vertical vector field of the Riemannian submersion TT£ : uf l(B) —> B and the
fibres of n are fibres of the Hopf fibration nc : 5 2 n + 1 -> CP".

Let V c and V denote the Levi-Civita connections on C n + 1 and n^.l(B), respectively.
Then we have

(2.1) Vc
x{Jz) = JX

for any horizontal vector X of -KQ : n^1(B) -¥ B.

For any horizontal vector E, we have 0 = (E, z) = {E, Jz) = 0. Thus we get

0 = (JE, z) = (JE, Jz)=0

which implies that the tangential component, PE, of JE is also a horizontal vector on
ncl{B). Hence, we find from (1.3) and (2.1) that

(2.2) AXZ = PX.
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Consequently, we obtain from (1.5) that

(2.3) ArHI^H2 .

where P-H is the endomorphism of the horizontal distribution 7i defined to be the restric-
tion of P on H.

Now, suppose that B is a Kaehler submanifold of CPn. Then B is a minimal
submanifold of CPn. Thus, according to a result of [9], the pre-image 7r^x(B) is a
minimal submanifold of S2n+1.

Because the horizontal distribution H is J-invariant, (2.3) implies that A*
= dimjuB = b. From these we conclude that the inclusion map ic '• Kcl{B) -» 5 2 n + 1

satisfies the equality case of (1.6) identically. This proves statement (a).

Next, assume that B is an open portion of a totally geodesic QPl C QPk. Consider
the unit sphere S4k+3 as the unit hypersphere in the flat quaternionic (m + l)-space Q*+1

defined by {z € Qk+1 : \z\ = l } . Let z be the unit outward normal of S4k+3 in Q*+1 and
let J\, J2, J3 be the standard quaternionic structures on Qm + 1.

If we put £o = Jaz, then the fibres of TXQ : ̂ (B) —• B are totally geodesic 3-spheres
in 54*+ 3 . Moreover, $1,^2.^3 form an orthonormal frame of the vertical distribution V of
the Riemannian submersion TTQ.

Let VQ and V denote the Levi-Civita connection on Qfc+1 and ^^(B), respectively.
Then, for any horizontal vector X on 7Tg1(5), we have

(2.4) Vx(Joz) = JaX, a =1,2,3

Since B is an open portion of a totally geodesic QPl, we find from (1.3) and (2.4)
that

(2.5) Ax£a = H(JaX) = JaX, a =1,2,3,

for any horizontal vector field X. From (2.5) we obtain

(2.6) AVB = Yll = 3 dimR B.

Since B is totally gedoesic in QPk, the inclusion map LQ : ir^iB) -¥ Sik+3 is also
totally geodesic. In particular, we have H = 0. Hence, we may conclude from (2.6) that
the equality case of (1.6) holds identically (with b = 4£ and m = 3 + 6). This proves
statement (b). D

3. P R O O F OF THEOREM 2.

Assume that IT : M —¥ B is a Riemannian submersion with totally geodesic fibres.
Suppose that M admits an isometric imbedding <f> : M -* S2n+1 C C n + 1 which carries
the fibres of n to fibres of the Hopf fibration nc : 5 2 n + 1 -> CPn.
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Let z denote the position vector field of M in C2 m + 1 . Then Jz is a unit vertical
vector field on M. For any horizontal vector X of M, we have V ^ Jz = JX as before.
Thus, we find from (1.3) that

(3.1) \\Ax{Jz)\\ < 1

for each unit horizontal vector X on M. Moreover, we know that the equality sign of
(3.1) holds if and only if JX is a horizontal vector on M.

Now, suppose that the imbedding <j>: M -> 5 2 n + 1 satisfies the equality case of (1.6)
identically. Then we obtain from (1.5), (1.6) and (3.1) that

(a) M is imbedded as a minimal submanifold of S2 n + 1 and

(P) the horizontal distribution % on M is J-invariant.

Since <j> : M ->• S2n+1 carries the fibres of 7r : M -* B to fibres of Hopf's fibration
7TC : 5 2 n + 1 -> CPn, the imbedding (j> gives rise to an isometric imbedding of B into CPn.
Further, since the horizontal distribution 71 is J-invariant, the imbedding of B into CPn

is a Kaehlerian. Thus, if we put

Mi=<f>{M), B1=7TC(M1), 7T1=7rC|Mi,

then 7T : M -»• B and -K\ : M\ -> Si are equivalent and also </> is congruent to the inclusion
map: i c : *\{B\) —• Sn + 1 . Consequently, we obtain statement (i).

Next, assume that M admits an isometric imbedding <j>: M —> S4k+3 which carries
the fibres of n to fibres of TTQ : S4fc+3 -> QP*.

Let J j , J2, J3 denote the canonical almost complex structures on Q*+1 induced from
the quaternionic structure of Q*+1. Then J\, J2, J3 are parallel with respect to the flat
Levi-Civita connection of Q*+1, that is, we have VQ Ja = 0 for a = 1,2,3.

Let z denote the position vector field of M in Q*+1. Then Jiz,J2z,J3z are unit
vertical vector fields on M. For any horizontal vector X of M, we have

(3.2) V$Jaz = JoX, a= 1,2,3.

Thus, for any unit horizontal vector X, we obtain from (1.3) that

(3.3) \\Ax(Jaz)\\£l, a = 1 , 2 , 3 .

We also know that the equality sign of (3.3) holds for each a € {1,2,3} if and only if
each JaX is a horizontal vector on M.

Now, suppose that <j> : M -* S*k+3 satisfies the equality case of (1.6) identically.
Then it follows from (1.5), (1.6) and (3.3) that M is imbedded as a minimal submanifold
of 54*+ 3; moreover, the horizontal distribution H on M is invariant under J\, J2 and J3 .

Since <j>: M ->• S4k+3 carries the fibres of n : M -> B to fibres of nQ : 54*+3 -> QPk,

the imbedding 0 gives rise to an isometric imbedding of B in QPk. Because the horizontal
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distribution W is invariant under Ji,J2,J3,B must be imbedded in QPn as an invariant
submanifold. Hence, after applying Lemma 4 of [3] we conclude that B is imbedded as
an open portion of a totally geodesic QPl C QPk. Therefore, if we put S2 = 4>{B),
M2 = </>(M) and TT2 = 4Q|M2. then we obtain statement (ii). D

4. P R O O F OF THEOREM 3.

Let 7T : M -» B be a Riemannian submersion with totally geodesic fibres. Denote
by V the Levi-Civita connection of M and by R the Riemann curvature tensor of M.
Then we have

R(E, F) = [VE, V F ] - V[E,F)

for vector fields E, F tangent to M.

Assume that M admits an isometric immersion <j>: M -»• SN which carries the fibres
of •n to totally geodesic submanifolds of 5 " . Then the second fundamental form h of M
in 5 ^ satisfies

(4.1) h(V,W) = 0

for vertical vectors V, W on M.

FVom the equation of Gauss we know that the sectional curvature function K of M

satisfies (see, for instance, [2])

(4.2) K{X A V) = 1 + (h(X,X),h(V,V)) - ||*(*, V)||2

for unit horizontal vector X and unit vertical vector V on M. Hence, from (4.1) and
(4.2) we find

(4.3) K(X A V) ^ 1

for each unit horizontal vector X and unit vertical vector V. It is easy to see that the
equality sign of (4.3) holds if and only if we have h(X, V) = 0.

On the other hand, since the submersion n has totally geodesic fibres, K satisfies
(see [11, page 465])

(4.4) | |i4xV||2 = J i r ( * A V ) < l

for every unit horizontal vector X and unit vertical vector V. Thus, by applying (1.5),
(4.3) and (4.4), we obtain

(4.5) J4» ̂  b{m -b), b = dim B, m = dim M,

with equality holding if and only if M is mixed-totally geodesic in SN, that is, h(X, V) = 0
holds for any unit horizontal vector X and unit vertical vector V on M. Therefore, the
equality sign of (1.6) holds implies that

(4.6) i , = b(m-b), H = 0.
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Hence, M is immersed as a minimal mixed-totally geodesic submanifold of SN. The
converse is easy to verify. This gives statement (2).

Next, assume that dim M = 2. Then (4.6) implies that the Gaussian curvature G of
M satisfying G = 1 and M is immersed as a minimal surface in SN via </>. From these
we conclude that M is totally geodesic in SN. Hence, M is an open portion of a unit
2-sphere S2.

Let e\ be a unit vertical vector field and e2 be a unit horizontal vector field on M.
Then, it follows from the totally geodesy of fibres of TT that Ve,ei = 0. On the other
hand, it follows from (1.2) and (4.6) that we also have Ve2ei = ±e 2 . By applying these
we obtain G = ( i i ( e 2 l e i ) e i , e 2 ) = - 1 which is a contradiction. Therefore, we obtain
statement (1) of Theorem 3. D

5. P R O O F O F T H E O R E M 4.

Obviously, S3 admits the Riemannian submersion nc : S3 -> CP1 with totally
geodesic fibres and the inclusion map S3 C S 4 satisfies the equality case of (1.6) identi-
cally.

Now, assume that M3 is a Riemannian 3-manifold and n : M3 —>• B is a Riemannian
submersion with totally geodesic fibres. Suppose that M 3 admits a non-totally geodesic
isometric immersion <j> : M3 —¥ S4 which carries fibres to totally geodesic submanifolds
and which satisfies the equality case of (1.6) identically. Then, according to Theorem 3,
M3 is immersed as a minimal mixed-totally geodesic hypersurface of S4.
C A S E (i). dim B = 1. In this case, the fibres of n are 2-dimensional and the fibres are
immersed as totally geodesic surfaces in S4 . Thus, by applying the mixed-totally geodesy
and minimality of <j>, we know that <j> is totally geodesic. This is a contradiction.

C A S E (ii). dim B — 2. In this case, the fibres of ir are carries to great circles in S4 by 4>-
Hence, the second fundamental form h of <j> satisfies h(V, V) = 0 for any vertical vector
V. So, by applying the mixed-totally geodesy and minimality of 4>, we may choose e\ to
be a unit vertical vector field and e2, e$ to be orthonormal horizontal vector fields so that
eii ^2, €3 diagonalise the shape operator of M in S4. In this way we have

h(eu ei) = h(eu e2) = h(eu e2) = /i(e2, e3) = 0,

/ ( ) h ( 3 ) = Ae4,

for some function A ̂  0, where e4 is a unit normal vector field of M3 in S4.

Let V be the Levi-Civita connection of M 3 and put

3

(5.2)
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Since the submersion has totally geodesic fibres, we have

(5.3) Veie, = 0.

By applying (5.1)-(5.3) and the equation of Codazzi, we find

(5.4) e!A = 0, e2A = 2Aw3
2(e3), e3A = 2Awi(e3),

Because the integrability tensor A satisfies the alternation property (1.4) for horizontal
vector fields X, Y, we obtain

(5.5) (Vejei,c<> = -(Veiei,ex) = -{Aeiehex) = 0 , i = 2,3.

Since the inequality (1.6) is an equality, we obtain from (4.4) and (4.6) that

11^x11 = ||^,ei|| = l .

Thus, by applying (5.4) and (5.5), we find

Ve2e! = ±e3, Ve3ei = ^e 2 .

Without loss of generality, we may assume that

(5.6) Ve2e, = e3, Veiex = - e 2 .

Hence, by combining (5.3), (5.4) and (5.6), we obtain

Ve,ei = 0, Ve,ei = e3, Ve3ei = - e 2 ,

(5.7) V e j e 2 = y , Ve,e2 =-e3(lnA)e3, Ve3e2 = ej - -e2(lnA)e3,

Ve je3 = - y , Ve2e3 = - e i - -e3(lnA)e2, Ve3e3 =-e 2 ( lnA)e 2 .

It follows from e\X = 0, (5.1), (5.7), and the equation of Gauss that the Riemann
curvature tensor R of M 3 satisfies

(5.8) 0 = 4<JR(e1)e2)e3,e2) = e2(lnA).

Similarly, we find

(5.9) 0 = 4(fl(e1,e3)e3le2) = e3(lnA).

It follows from e\\ = 0, (5.8) and (5.9) that A is constant. Hence, M3 is immersed as a

minimal isoparametric hypersurface in S4.

Finally, by applying (5.1), (5.7), the equation of Gauss, and the constancy of A, we

obtain

Thus, we obtain A2 = 3. Consequently, <f> : M3 -> S4 is congruent to the Cartan

hypersurface in S4. D
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6. A N ADDITIONAL RESULT.

Consider S2n+1 as the unit sphere in C n + 1 as before. For each tangent vector field of
5 2 n + 1 , let <p(E) denote the tangential component of JE, where J is the almost complex
structure on C"+ 1 . Then ip is the endomorphism on Sasakian manifold (S2n+1,<?,<p, £,??)
which satisfies

<P2 = -I + V ® 6

where / is the identity map, £ — Jz is the characteristic vector field, and r\ is the dual
1-form of f (see [1, page 33]).

Let B be a submanifold of CPn. Then the natural projection TT : ̂ (B) - > B i s a
Riemannian submersion with totally geodesic fibres. Let L : TTQ1(B) —¥ S2n+1 denote the
inclusion map.

In views of Theorem 1 and Theorem 3 we give the following.

PROPOSITION 5 . Tie immersion L : iTcl{B) -> S2n+1 is mixed-totally geodesic
if and only if the horizontal distribution of TT : ̂ ^{B) —> B is ip-invariant.

PROOF: Let z denote the unit outward normal of 5 2 n + 1 C Cm + 1. Then, for any
horizontal vector X of w : M —¥ B, we have

(6.1) V£(Jz) - JVxz = JX,

where V c and J are the Levi-Civita connection and the almost complex structure of
Cm+1. Since V = Jz is a unit vertical vector field of w, (6.1) implies that the second
fundamental form h of M in 5 2 n + 1 satisfies

(6.2) h(X,V) = FX,

where FX is the normal component of JX in 5 2 n + 1 .

Since JX is perpendicular to z and Jz, (6.2) implies that t : n^iB) —> 5 2 n + 1 is
mixed-totally geodesic if and only if the horizontal distribution % of TT : ITQ1(B) —> B is
^-invariant. D

REMARK 1. Similar result holds if B is a submanifold of QPm, t : ^(B) -> S4 m + 3

is the restriction of TTQ to TTQ1{B), and if ip were replaced by ¥>i,¥>2,¥>3 (induced from
Ji,J2,Ji) from the 3-Sasakian structures on 5 4 m + 3 (for 3-Sasakian structures, see, for
instance, [1, pp. 215-216]).
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