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Abstract

This article discusses prospects and challenges related to the use of meta-regression
models (MRMs) for ecosystem service benefit transfer, with an emphasis on validity
criteria and post-estimation procedures given sparse attention in the ecosystem
services literature. We illustrate these topics using a meta-analysis of willingness to
pay for water quality changes that support aquatic ecosystem services and the
application of this model to estimate water quality benefits under alternative
riparian buffer restoration scenarios in New Hampshire’s Great Bay Watershed.
These illustrations highlight the advantages of MRM benefit transfers, together with
the challenges and data needs encounteredwhen quantifying ecosystem service values.
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Introduction

The demand for information on ecosystem service values (ESVs), combined
with a lack of time and resources required to conduct primary valuation
studies, has led to common use of benefit transfer to quantify these values
(Plummer 2009; Bateman et al. 2011a, 2011b; Ferrini, Schaafsma, and
Bateman 2015; Johnston and Wainger 2015; Richardson et al. 2015;
Johnston, Rolfe, and Zawojska 2018). Benefit transfer is defined as the use of
research results from preexisting primary studies at one or more sites or
policy contexts (called study sites) to predict welfare estimates such as
willingness to pay (WTP) or related information for other, typically unstudied
sites or policy contexts (called policy sites) (Johnston et al. 2015a). Among
the different approaches to benefit transfer in the literature,1 there is
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emerging consensus over the advantages of methods that synthesize data from
multiple sources, such as meta-analysis (e.g., Rosenberger and Phipps 2007;
Boyle et al. 2009; Johnston and Rosenberger 2010; Kaul et al. 2013; Rolfe,
Brouwer, and Johnston 2015; Johnston, Rolfe, and Zawojska 2018).
The most common applications of meta-analysis for ESV benefit transfer

involve meta-regression models (MRMs). These models generate parametric
functions that characterize the systematic influence of economic, ecological
(or resource), beneficiary (population), and primary study attributes on
comparable measures of value.2 The resulting functions are used to predict
values at policy sites where original valuation studies have not been
conducted. Explanatory variables in these MRMs can link directly to
biophysical models and enable adjustments in ESV estimates for the
attributes of ecosystems, regions, populations, and policy contexts. There are
many examples of such MRMs applied to different types of environmental
and ecosystem service improvements including water quality (Johnston,
Besedin, and Stapler 2017), recreational fishing (Johnston et al. 2006), forest
recreation (Zandersen and Tol 2009), and wetlands-provided ecosystem
services (Brander et al. 2012), among many others.3

Despite this work, further advances in methods and understanding are
required if meta-analyses are to be relied on for widespread ESV prediction,
particularly within large-scale applications. The capacity of MRMs to support
valid and reliable4 benefit transfers depends on multiple criteria, including
the use of appropriate econometrics (Nelson and Kennedy 2009; Boyle and
Wooldridge 2018) and specifications able to accommodate expected patterns
such as the sensitivity of values to scope, scale, and spatial dimensions
(Johnston, Besedin, and Stapler 2017; Johnston, Besedin, and Holland 2018;
Johnston, Rolfe, and Zawojska 2018; Kling and Phaneuf 2018; Newbold et al.
2018a, 2018b; Smith 2018).5 ESV applications are often deficient in these
areas (Bateman et al. 2011b; Richardson et al. 2015; Johnston, Rolfe, and
Zawojska 2018). Invariance of transferred welfare estimates to dimensions
such as these can signal a lack of construct validity (Johnston, Besedin, and
Stapler 2017).6 The estimation of MRMs for ecosystem service valuation also

2 For additional details on MRMs, see Smith and Pattanayak (2002), Bergstrom and Taylor
(2006), Moeltner, Boyle, and Paterson (2007), Nelson and Kennedy (2009), Johnston and
Rosenberger (2010), Boyle et al. (2013), Boyle, Kaul, and Parmeter (2015), Rolfe, Brouwer, and
Johnston (2015), Boyle and Wooldridge (2018), Johnston, Besedin, and Holland (2018), and
Johnston, Rolfe, and Zawojska (2018).
3 For additional examples, see reviews in Nelson and Kennedy (2009), Johnston and
Rosenberger (2010), Rolfe, Brouwer, and Johnston (2015), and Johnston, Rolfe, and Zawojska
(2018).
4 For a formal discussion of valuation validity and reliability, see Bishop and Boyle (2019).
5 Here we define scope as the quantity or quality of an ecosystem service change for which a
value is predicted; scale is defined as the geographic area over which the change takes place.
6 As described by Bishop and Boyle (2019, p. 564), construct validity reflects the extent to which
a value measure is consistent with “prior expectations about how the true value ought to be
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requires robust primary study data for the type of values under study, with
sufficient study reporting for metadata development (Loomis and
Rosenberger 2006).
In addition, multiple procedures are required to predict and aggregate values

for policy sites using MRM or other transfer functions. These procedures must
address challenges such as (1) linking biophysical information on the scope and
scale of environmental changes to MRM functions, (2) accounting for the extent
of the market and other spatial dimensions of households and environmental
changes, (3) addressing practical dissimilarities or gaps between MRM
variables and measurable conditions at the policy site, (4) accounting for the
systematic influence of methodological factors on value estimates, and (5)
ensuring that the resulting predictions have theoretical and empirical
properties required to ensure validity for the intended uses.
Concerns such as these are sometimes overlooked in the ecosystem services

valuation literature, leading to many MRMs that—despite having superficially
acceptable statistical performance—are poorly suited to credible benefit
transfer applications. As noted by Johnston, Rolfe, and Zawojska (2018,
p. 202), “Many applications [of meta-analysis in the ecosystem services]
literature lack minimal properties necessary to promote valid and reliable
[benefit transfer] estimates.” Even if the underlying MRM is suitable for this
purpose, valid transfers also depend on the post-estimation procedures used
to predict ESVs from the estimated benefit function. These issues are seldom
discussed. The academic literature focuses primarily on estimation and
interpretation of the underlying MRMs rather than the evaluation and use of
these models for benefit transfer. The practical steps and challenges involved
in benefit prediction and aggregation using these MRMs—or properties of the
resulting value estimates—are not often considered in detail.
This article discusses prospects and challenges related to the use of MRMs for

benefit transfer. We begin with a summary of key issues and challenges
associated with the use of MRMs to forecast values for large-scale ESVs,
including post-estimation issues given sparse attention in the literature. We
illustrate these issues using a meta-analysis of WTP for water quality changes
that support aquatic ecosystem services (Johnston, Besedin, and Stapler
2017) and the application of this model to estimate aggregate water quality
benefits under alternative riparian buffer restoration scenarios in New
Hampshire’s Great Bay Watershed. The MRM is reviewed with respect to key
validity criteria to highlight both advantages and limitations of the model.
Benefit transfers from this MRM are compared for multiple scenarios, scopes,
and scales of environmental improvement in the case study area, aggregated
over different market extents.

related to other variables. Such prior expectations are motivated by theory, intuition, and past
empirical evidence.”
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The goal of this illustration is practical. Unlike publications that focus on MRM
estimation and interpretation, here we emphasize often-unreported steps and
choices associated with the use of MRM benefit functions for ESV prediction,
as well as patterns in the resulting welfare forecasts. Attention is given to
topics such as the consistency between variables used in published MRMs
(typically reflecting data reported by primary studies in the metadata) and
biophysical data of the type available to quantify ecosystem service changes.
We also consider the properties and construct validity of the resulting value
predictions. These illustrations highlight the advantages of MRM benefit
transfers together with challenges and data needs.

Meta-Analysis Properties and Benefit Transfer Validity

The potential advantages of meta-analysis for benefit transfer are established in
the literature (Rosenberger and Phipps 2007; Nelson and Kennedy 2009;
Rosenberger and Johnston 2009; Johnston and Rosenberger 2010; Kaul et al.
2013; Rolfe, Brouwer, and Johnston 2015; Boyle and Wooldridge 2018;
Johnston, Rolfe, and Zawojska 2018). Meta-regression analyses synthesize the
results of multiple prior studies into a single set of parametric predictors that
can be used within benefit transfer, providing a means to ground transfers in
a broad base of prior information.7 The resulting function allows predicted
values to be tailored to the needs of particular policy evaluations.8

There is emerging consensus over the advantages of methods that synthesize
data from the literature in this way, including potential improvements in benefit
transfer reliability—or reductions in generalization error (e.g., Rosenberger and
Phipps 2007; Boyle et al. 2009; Johnston and Rosenberger 2010; Johnston and
Thomassin 2010; Kaul et al. 2013; Rolfe, Brouwer, and Johnston 2015; Johnston,
Rolfe, and Zawojska 2018). The capacity of MRMs to synthesize information
across studies that vary across commodity, site, policy, and population factors
can obviate the need to find one study that is a close match to the policy site
across all dimensions (Stapler and Johnston 2009). Meta-analytic transfers
can also reduce the risk of error caused by the use of a study site that differs
from the policy site in influential ways or a primary study that suffers from
measurement error, and can help diagnose and ameliorate the effect of
selection biases in the literature (Stanley 2005; Hoehn 2006; Rosenberger
and Johnston 2009; Boyle and Wooldridge 2018).

7 Results can also help researchers characterize the literature around a topic and allow the
analyst to test hypotheses regarding factors that influence study results (Smith and Pattanayak
2002; Boyle and Woodridge 2018).
8 Other (non-regression) types of meta-analysis may also be used for benefit transfer, such as
the synthesis of prior valuation estimates to generate mean unit values, for example weighted
by measures of study precision. For an introduction to different types of meta-analysis applied
in economics, see Stanley and Doucouliagos (2012). Here we emphasize MRMs, as these are the
most common form of meta-analysis found in the benefit transfer literature.
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Despite these advantages, the ability of an MRM to provide valid and reliable
predictions depends on multiple factors, including the procedures used for data
synthesis, statistical analysis, value prediction, and benefit aggregation (Smith
and Pattanayak 2002; Nelson and Kennedy 2009; Boyle et al. 2013; Boyle,
Kaul, and Parmeter 2015; Nelson, 2015; Boyle and Wooldridge, 2018;
Johnston, Rolfe, and Zawojska 2018). Considerations such as these are
frequently overlooked in the ecosystem services literature, leading to
transfers that violate conditions for construct validity in welfare estimates
(Plummer 2009; Bateman et al. 2011b; Johnston and Wainger 2015;
Richardson et al. 2015).
Prior reviews of MRMs in environmental economics find that many violate

best practice guidelines for econometric analysis (Nelson and Kennedy 2009).
Boyle and Wooldridge (2018) discuss additional issues related to metadata
construction and MRM specification, as related to the validity and reliability
of predictions. They distinguish between MRMs used to understand a body of
empirical literature and those used to predict values. Among their key
findings is that “no single estimated meta-equation is suitable for prediction
in all benefit-transfer applications” (Boyle and Wooldridge 2018, p. 633).
Care must be taken to construct metadata and specify equations to predict
values grounded in a consistent theoretical definition and commodity type.
Hence, “a one-size-fits-all use of an estimated meta-equation to support
benefit transfers is likely not appropriate” (Boyle and Wooldridge 2018,
p. 633). Kling and Phaneuf (2018), Newbold et al. (2018b), and Moeltner
(2019) consider whether and when MRM specifications should be further
restricted to impose theoretical properties such as adding-up on benefit
transfers, in some cases reaching contrary conclusions.9

Among commonly acknowledged requirements for valid valuation via MRMs
is at least a minimal degree of commodity and welfare consistency across
metadata observations (Smith and Pattanayak 2002; Bergstrom and Taylor
2006; Loomis and Rosenberger 2006, Nelson and Kennedy 2009; Johnston
and Rosenberger 2010; Boyle and Wooldridge 2018; Johnston, Rolfe, and
Zawojska 2018). Moeltner and Rosenberger (2014, p. 470) characterize
commodity consistency as a situation in which “basic commodities under
consideration [within the metadata] must be essentially equivalent.” Welfare
consistency implies parallel consistency in the theoretical welfare constructs
measured across observations. Many ESV MRMs are estimated using primary
study data sets that pool value metrics that have no such relationship, such

9 The adding-up property in MRMs relates to sequential use of the model to predict WTP for
additive improvements. Assume that WTPA is predicted WTP for a quality improvement from A
to B, WTPB is predicted WTP for a quality improvement from B to C, and WTPC is predicted
WTP for a combined improvement from A to C. The adding-up property implies that WTPA +
WTPB¼WTPC, when each is predicted separately by the MRM, and utility is held constant at
the original level for all calculations. For a more formal definition, see Kling and Phaneuf (2018).

Johnston and Bauer Using Meta-Analysis for Large-Scale Ecosystem Service Valuation 27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
9.

22
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2019.22


as estimates of consumer value, producer value, and measures that do not
reflect welfare-theoretic values of any type. Prior MRMs have also pooled
value estimates linked to dissimilar goods and services such as recreation,
flood control, fisheries production, carbon sequestration, raw material
provision, nutrient cycling, water supply, existence, aesthetics, and others
(Johnston, Rolfe, and Zawojska 2018). The lack of metadata consistency
within such models raises validity concerns (Bergstrom and Taylor 2006)—
neither theory nor economic intuition justifies the inclusion of such
dissimilar welfare measures within the estimation of a single meta-analytic
value function.10

Any remaining differences in commodity, site, or population characteristics
that might influence value must be captured using right-hand side variables
in the MRM. However, even similar environmental changes may be defined in
different ways across the literature, and reconciling these measurements
across studies is not always straightforward (Smith and Pattanayak 2002;
Johnston et al. 2005; Van Houtven, Powers, and Pattanayak 2007; Rolfe,
Brouwer, and Johnston 2015). This can lead to trade-offs between the
number of studies (N) and independent variables (K) within an MRM
(Moeltner, Boyle, and Paterson 2007, p. 252)—“should the researcher discard
explanatory variables that are not common to all studies (thus preserve N at
the cost of K) or discard observations that do not include all key regressors
(thus preserve K at the cost of N)?” Accuracy can be diminished if the
resulting variables are quantified in low-resolution or categorical terms (e.g.,
high, medium, and low) (Johnston et al. 2012; Johnston, Besedin, and Stapler
2017). Moreover, the usefulness of any valuation exercise is reduced if
variables are defined in ways that cannot be directly linked to the
quantitative biophysical, health, or engineering outputs used to quantify
effects for policy analysis (Loomis and Rosenberger 2006; Johnston et al.
2012; Schultz et al. 2012; Boyd et al. 2016).
The validity of MRM benefit transfers further depends on the extent to which

these transfers reflect theoretical patterns expected in welfare estimates (Kling
and Phaneuf 2018). For example, microeconomic theory suggests that
predictions of per household WTP for most ecosystem service changes
should respond to the scope and scale of the change, as well as substitutes
and spatial dimensions. For nonmarginal changes, diminishing marginal
values are typically expected. Hence, linear “scaling-up” of value predictions

10 Recent work demonstrates that gains in transfer reliability may sometimes be achieved by
relaxing narrow, ex ante commodity and welfare restrictions in favor of those supported by
empirical relationships (e.g., Moeltner and Rosenberger 2014; Johnston and Moeltner 2014;
Moeltner 2015). For example, in some cases reliability may be improved by pooling metadata
on otherwise similar Hicksian and Marshallian welfare measures (Johnston and Moeltner
2014). Pooling of this type within MRMs has been justified based on structural relationships
between these two welfare measures, grounded in microeconomic theory (Londoño and
Johnston 2012).
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is unlikely to produce valid estimates, particularly when scaled to a large degree
(Bockstael et al. 2000; Bateman et al. 2011b; Brander et al. 2012; Johnston and
Wainger 2015). Theory also suggests that most ESVs should be sensitive to
household income, among other population attributes, although naïve income
adjustments may not always improve transfers (Johnston and Duke 2010).
Expectations such as these influence the type of MRM specifications required
for validity.
A final set of questions and concerns—and those perhaps given least

attention in the literature—relates to the post-estimation steps required to
predict and aggregate values from a metafunction. These procedures can
have a profound impact on benefit predictions. For example, as shown by
Johnston, Besedin, and Ranson (2006) for the treatment of primary study
methodological variables when predicting benefits, the use of ad hoc
procedures can cause WTP predictions to vary more than 15-fold. This
sensitivity can be reduced with best practices for post-estimation value
prediction (Stapler and Johnston 2009; Boyle and Wooldridge 2018).
One often overlooked post-estimation concern relates to variable measurement

conventions applied in the MRM (discussed previously), including those used to
quantify the biophysical scope and scale of ecosystem service changes. First, one
must assess whether the ecosystem service of interest at the policy site is a good
match for the service(s) covered by the MRM. Assuming a good match exists, one
must then link the relevant biophysical changes predicted at a policy site to
ecosystem service measures used within the existing MRM and obtain any
required data or biophysical model outputs.
For example, Rolfe, Brouwer, and Johnston (2015) meta-analyze per

household WTP per kilometer of river in “good” health, where studies in the
metadata define good health using different types of biophysical criteria. The
usefulness of such results for benefit transfer requires a defensible and
replicable way to predict this outcome (kilometers in good health) using
biophysical information available to policy analysts. Even for a given benefit
function, different analyst assumptions regarding biophysical measures or
indices can lead to different benefit predictions. Walsh and Wheeler (2013,
p. 81) demonstrate that different assumptions regarding the mathematical
structure of water quality indices “can have a profound effect on benefits.” In
addition, MRM variables are often defined in ways that are biophysically
ambiguous, potentially exacerbating the challenge of linking measured policy
effects to MRM benefit estimates.
A second post-estimation concern relates to the role of spatial dimensions in

benefit estimation, including the assigned extent of the market for benefit
prediction and aggregation. As noted by Bateman et al. (2006, 2011a),
Schaafsma (2015), Johnston et al. (2017), and Johnston, Besedin, and Holland
(2018), choices such as these can swamp the effects of other procedural
choices in benefit transfer. A related challenge is that—depending on the
MRM specification—average and aggregate benefits may vary depending on
whether average benefits are predicted for one large market or multiple
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component submarkets. In such cases, is it sufficient to predict values assuming
one constant “average” ecosystem service change and baseline over one large
market area? Or, should values be predicted for smaller areas, reflecting the
specific changes and baselines in those areas? If one chooses the latter
approach, what is the appropriate size of the subareas to be considered?
When values depend on spatial dimensions (Schaafsma 2015; Glenk et al.
2019), predicted aggregate values for average environmental changes
everywhere will not, in general, be equal to the same values averaged over
the population for spatially heterogeneous changes. Similar questions apply
to other contextual considerations that vary over space such as income and
substitutes.
A third consideration is whether the desired policy site ESV scenarios are

suitable for valuation using the MRM in question. For example, would a
particular scenario require values to be predicted outside the data range of
the primary study metadata? With a few exceptions, the literature provides
little guidance for these post-estimation procedures, leading to wide variation
in applied practice. Compounding this challenge is a tendency of these
procedures and assumptions to remain unreported, leading to lack of
methodological transparency.

Illustrative Application: Predicting Water Quality Benefits from Buffer
Restoration

This section illustrates the use of an applied MRM for ESV benefit transfer.
Among the goals of this illustration are to (a) demonstrate the characteristics
of the MRM required for valid benefit transfers, (b) clarify the post-
estimation steps and choices required to generate and evaluate predictions
using the model, and (c) discuss the advantages and disadvantages of the
resulting benefit predictions. The intent is to clarify often-undocumented
properties and practices that affect transfer value validity. The empirical case
study analysis implements a benefit transfer to quantify per household and
aggregate market WTP associated with water quality improvements of the
type that could result from the restoration of vegetated buffers within New
Hampshire’s Great Bay watershed. We use an existing MRM for this purpose
to enable focus on model evaluation and post-estimation benefit transfer,
rather than on estimation of an original MRM.
Benefits are predicted using an application of the MRM estimated by

Johnston, Besedin, and Stapler (2017). This model was designed to support
benefit transfer for water quality improvements in U.S. water bodies
including rivers, lakes, and estuaries and reflects the type of MRM used by
the U.S. Environmental Protection Agency (U.S. EPA) for regulatory analysis
(U.S. EPA 2009a, 2010, 2012, 2015; Griffths et al. 2012). The metadata were
drawn from primary stated preference studies that estimated total (use and
nonuse) per household WTP for water quality changes in water bodies that
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support ecosystem services including aquatic life, recreational uses (e.g.,
fishing, boating, and swimming), and nonuse values.11 This MRM and
metadata have been used as the basis for multiple prior validity tests and
analyses (e.g., Newbold et al. 2018b; Moeltner 2019), so that the underlying
properties of the meta-analysis are well known. As such, this MRM provides
an established foundation from which to demonstrate an applied benefit
transfer.
Grounded in this MRM, we present the process used to apply the resulting

transfer function, along with assumptions and implications for valid benefit
transfer. To illustrate how transferred WTP estimates vary across different
types of water bodies, we predict values for improvements to the Great Bay
and two of its tributaries, the Squamscott River and Exeter River. Values for
improvements to each of these areas are predicted independently, holding
conditions at other areas constant. We consider various scenarios of water
quality change for these water bodies, based on current baseline quality. We
also consider values predicted and aggregated over different market areas.
The goal is to consider the responsiveness of WTP estimates to factors such
as scope, scale, extent of the market, and baseline condition. We also describe
the water quality index (WQI) used to quantify water quality baselines and
changes within the MRM, as well as how the index is defined as a function of
water quality parameters.

The Meta-Regression Model

As described by Johnston, Besedin, and Stapler (2017), all observations in the
original metadata were identified and coded following the guidelines of
Stanley et al. (2013). To ensure welfare consistency, observations were
restricted to U.S. studies that estimated total (use and nonuse) value, used
established stated preference methods, reported comparable Hicksian WTP
measures, and provided sufficient detail to verify that valuation methods met
minimum quality standards. To ensure commodity consistency, studies were
limited to those for which per household WTP estimates could be mapped to
water quality changes measured on a standardized 100-point WQI that
relates pollutant concentrations to water body suitability for human uses
(Walsh and Wheeler 2013). The final metadata included 140 unique
observations from 51 stated preference studies published between 1985 and
2013 (Table 1).
The dependent variable in the MRM is the natural log of per household WTP

for water quality improvements specified in each original study, with all
values adjusted to 2007 USD (these values are subsequently updated to
2016 USD as discussed in Implementing the Benefit Transfer below).

11 The metadata exclude studies focusing on drinking-water quality.
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Table 1. Primary Studies in the Metadata (willingness to pay [WTP] is per
household per year in 2007 USD)

Reference Observations State(s)
Water Body
Type(s)

Mean
WTP

Aiken (1985) 1 CO River and lake 193.18

Anderson and Edwards
(1986)

1 RI Salt pond/marsh 180.71

Banzhaf et al. (2006) 2 NY Lake 57.47

Banzhaf et al. (2011) 1 VA, WV, TN,
NC, GA

River/stream 31.30

Bockstael et al. (1988) 1 DC, MD, VA Estuary 149.03

Bockstael et al. (1989) 2 MD Estuary 158.30

Borisova et al. (2008) 3 WV, VA River/stream 44.94

Cameron and Huppert
(1989)

1 CA Estuary 49.53

Carson et al. (1994) 2 CA Estuary 59.40

Clonts and Malone (1990) 3 AL River/stream 103.20

Collins and Rosenberger
(2007)

1 WV River/stream 18.19

Collins et al. (2009) 7 WV River/stream 120.52

Corrigan et al. (2009) 1 IA Lake 123.30

Croke et al. (1986) 9 IL River/stream 77.47

De Zoysa (1995) 1 OH River/stream 70.18

Desvousges et al. (1987) 12 PA River/stream 59.19

Downstream Strategies
(2008)

2 PA River/stream 12.74

Farber and Griner (2000) 6 PA River/stream 76.16

Hayes et al. (1992) 2 RI Estuary 397.44

Herriges and Shogren
(1996)

2 IA Lake 134.55

Hite (2002) 2 MS River/stream 60.08

Huang et al. (1997) 2 NC Estuary 258.65

Irvin et al. (2007) 4 OH All freshwater 21.67

Johnston et al. (1999) 1 RI River/stream 180.95

Kaoru (1993) 1 MA Salt pond/marsh 218.61

Lant and Roberts (1990) 3 IA, IL River/stream 143.93

Lant and Tobin. (1989) 9 IA, IL River/stream 55.63

Lichtkoppler and Blaine
(1999)

1 OH River and lake 41.93

Continued
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Independent variables expected to explain variation in this value measure
(and included in the model) characterize (1) the geographic region and
affected aquatic resources, (2) affected ecosystem services, (3) populations
whose values were measured, (4) baseline resource condition and water
quality change, (5) potential substitute resources and complementary land
uses, and (6) the primary study methodology and year (Table 2). Emphasis
was given to core economic and resource variables directly relevant to

Table 1. Continued

Reference Observations State(s)
Water Body
Type(s)

Mean
WTP

Lindsey (1994) 8 MD Estuary 66.80

Lipton (2004) 1 MD Estuary 63.98

Londoño Cadavid and
Ando (2013)

2 IL River/stream 38.68

Loomis (1996) 1 WA River/stream 93.07

Lyke (1993) 2 WI River and lake 78.75

Matthews et al. (1999) 2 MN River/stream 21.73

Opaluch et al. (1998) 1 NY Estuary 138.47

Roberts and Leitch (1997) 1 MN, SD Lake 8.35

Rowe et al. (1985) 1 CO River/stream 134.59

Sanders et al. (1990) 4 CO River/stream 160.69

Schulze et al. (1995) 2 MT River/stream 20.84

Shrestha and Alavalapati
(2004)

2 FL River and lake 156.46

Stumborg et al. (2001) 2 WI Lake 84.29

Sutherland and Walsh
(1985)

1 MT River and lake 146.03

Takatsuka (2004) 4 TN River/stream 286.88

Wattage (1993) 3 IA River/stream 53.89

Welle (1986) 6 MN Lake 167.28

Welle and Hodgson (2011) 3 MN Lake 145.10

Wey (1990) 2 RI Salt pond/marsh 147.26

Whitehead and Groothuis
(1992)

3 NC River/stream 41.01

Whitehead (2006) 3 NC River/stream 187.18

Whitehead et al. (1995) 2 NC Estuary 95.44

Whittington et al. (1994) 1 TX Estuary 194.72

Note: Complete citations to these referenced works are provided by Johnston, Besedin, and Stapler
(2017).
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Table 2. Meta-Analysis Variable Descriptions and Mean Metadata Values

Variable Description Mean

Ln_BaseQuality Natural log of the baseline water quality from which
improvements would occur, specified on the 100-point
water quality index (WQI).

3.589

Ln_QualityChg Natural log of the change in water quality, specified on the
100-point WQI.

2.907

Ln_Income Natural log of median household income (in 2007 USD) for the
market area based on historical U.S. Census data.

10.745

Non_Users Binary variable indicating that the survey was implemented
over a population of nonusers only (default is a sampled
population not restricted to nonusers).

0.086

Swim_Use Binary variable indicating that changes in swimming uses are
specifically noted in the survey.

0.264

Boat_Use Binary variable indicating that changes in boating uses are
specifically noted in the survey.

0.114

Game_Fish Binary variable indicating that changes in game fishing uses
are specifically noted in the survey.

0.057

River Binary variable indicating that the focal resource is a river or
multiple rivers.

0.686

Multi_Body Binary variable indicating the focal resource includes multiple
water body types (e.g., rivers and estuaries combined).

0.078

Ln_PropAgLand Natural log of the proportion of the land area in all counties
that intersect the improved focal resource that is
agricultural land based on the National Land Cover
Database.

�1.433

Ln_RelativeSize Natural log of the total shoreline length (in kilometers) of the
improved focal resource divided by the size of the market
area (in square kilometers). For a river, shoreline length is
given by two times the length of the river. For a bay,
shoreline length is the perimeter of the bay, not including
tributaries.

�1.198

ProportionChg Proportion of water bodies of the same hydrologic type as the
improved focal resource, within affected state(s). For rivers,
this is measured as the length of the improved river divided
by the length of all rivers of the same or lower order
(PropChgRiver). For bays and estuaries, this is defined as
the shoreline length of the water body as a proportion of all
analogous (e.g., coastal) shoreline lengths (PropChgBay).
ProportionChg is defined as the maximum of PropChgRiver
or PropChgBay.

0.188

Northeast_US Binary variable indicating that the survey included
respondents from the U.S. Department of Agriculture
(USDA) Northeast region.

0.071

Continued
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benefit transfer. To construct the data set, variables reported directly by
primary studies were supplemented with data on study sites, beneficiary
populations, and water bodies extracted from readily available national
data sets.12

Among key variables in the MRM is that characterizing the scope (or size) of
the water quality change, measured as a natural log (Ln_QualityChg). The model
also includes a spatial index variable (Ln_RelativeSize) that characterizes the

Table 2. Continued

Variable Description Mean

Central_US Binary variable indicating that the survey included
respondents from the USDA Midwest or Mountain Plains
region.

0.336

Southern_US Binary variable indicating that the survey included
respondents from the USDA Southeast or Southwest.

0.157

MedianWTP Binary variable indicating that the study’s willingness-to-pay
(WTP) measure is the median rather than the mean.

0.071

LumpSum Binary variable indicating that payments were to occur on
something other than an annual basis over an extended or
indefinite period of time.

0.186

Ln_StudyYear Natural log of the year in which the primary study was
conducted (converted to an index by subtracting 1980,
before making the log transformation).

2.212

ChoiceExp Binary variable with a value of 1 for studies that are choice
experiments (default is contingent valuation).

0.107

Thesis Binary variable with a value of 1 for studies published as
thesis projects or dissertations (default is all other
publication types, including but not limited to journal
articles).

0.144

Voluntary Binary variable indicating that WTP was estimated using a
payment vehicle described as voluntary (default is payment
vehicle described as binding or mandatory).

0.086

OutlierBids Binary variable indicating that outlier bids were excluded
when estimating WTP.

0.193

NonParametric Binary variable indicating that WTP was estimated using
nonparametric methods.

0.429

NonReviewed Binary variable indicating that the study was not published in
a peer-reviewed journal.

0.236

12 External data were extracted from the National Hydrography Dataset; Hydrologic Unit Code
Watershed Boundary Dataset; National Land Cover Database; NOAA Global Self-Consistent,
Hierarchical, High-Resolution Geography Database; and U.S. Census.
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size of the affected water body measured using shoreline length in kilometers
(geospatial scale), relative to the size of the sampled market area measured
in square kilometers (market extent). This specification enables the marginal
effect of water body size on WTP to decline as size of the sampled market
area increases, and vice versa. The inclusion of market area in this composite
index also provides a means to proxy for the effect of distance decay on
value, as larger sampled market areas generally imply greater distances to
affected water bodies, ceteris paribus (Johnston, Besedin, and Stapler 2017).
To characterize the scope of proportional effects on regional (potentially

substitute) water bodies, the variable ProportionChg measures the proportion
of water bodies (of the same hydrologic type) affected by the water quality
change, within each state. Potential land use complements to water quality
(specifically, the lack of complementary land uses) are characterized using
Ln_PropAgLand, representing the (natural log of the) proportion the affected
area with agricultural land use.13 The model also includes variables
characterizing affected uses (or ecosystem services) mentioned in each
primary study such as fishing and swimming (or nonuse only), as well as
indicators identifying the region of the United States where changes occurred.
The MRM is estimated using unweighted random effects ordinary least

squares with robust standard errors, allowing for cross-sectional correlation
among observations from the same study (Nelson and Kennedy 2009).14 The
model is specified as

�y js ¼ �x jsβþ ε js; (1)

where �yjs is the welfare measure for observation s in study j (the natural log of
mean or median WTP per household for the specified water quality change),
and �xjs is the vector of independent variables. This vector includes natural
logs of household income (Ln_Income), water quality change and baseline
(Ln_QualityChg; Ln_BaseQuality), relative geospatial scale (Ln_RelativeSize),
and agricultural land proportion (Ln_PropAgLand). Other variables enter

13 Affected areas are defined as counties that intersect or touch affected water bodies. The
rationale for this variable is that nonagricultural land uses (e.g., forests and residential) are
often associated with recreational and other human uses that can magnify the per household
value of water quality improvements (Johnston, Besedin, and Stapler 2017).
14 An alternative approach would be to weight metadata observations such that each study
(rather than each observation) is given equal weight—both weighted and unweighted
approaches are common in the literature (Boyle and Wooldridge 2018). As noted by Johnston
et al. (2005, p. 231), “Although weighting methods prevent studies providing multiple
observations from unduly influencing model estimation, they also imply that such studies are
no more informative, overall, than others (Bateman and Jones 2003).” Hence, the decision to
weight observations in an MRM is typically made on a case-by-case basis. Using earlier versions
of these metadata, Johnston, Besedin, and Wardwell (2003) and Johnston et al. (2005) find that
results are robust to the use of weighted versus unweighted regression.
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linearly.15 The vector β represents a conforming parameter vector. Following
standard specifications, ɛjs¼ ejsþ us, where us represents a systematic,
normally distributed, study-level random effect with E(us)¼ 0 and Var(us)¼
σu
2; and ejs is a standard iid (independent and identically distributed)

estimation level error, distributed with a zero mean and constant variance σe
2.

Results are shown in Table 3. Parameter estimates are jointly significant at
p<0.01 (χ2¼ 729.61, df¼ 24), with an R2 of 0.633. Signs of significant
parameter estimates match those suggested by theory. For example, WTP is
positively related to the scope of water quality change (Ln_QualityChg),
household income (Ln_Income), improvements to larger water bodies and
samples over smaller market extents (Ln_RelativeSize), and improvements that
affect a larger proportion of surrounding waters (ProportionChg). WTP is
negatively related to improvements in more agricultural areas (Ln_PropAgLand)
and samples limited to nonusers (Non_Users). The functional form implies
diminishing marginal utility with regard to scope and scale. Other properties of
the underlying MRM are discussed by Johnston, Besedin, and Stapler (2017).

Implementing the Benefit Transfer

Estimating the MRM is only the first step in benefit transfer. Few articles discuss
the procedures required to move from the estimated MRM to benefit transfer
predictions, along with the choices and challenges that are involved. The
objective of this section is to make these procedures transparent and
replicable. The basic steps of an ESV transfer are described by Johnston and
Wainger (2015).16 Two initial steps include establishing the need for benefit
transfer and developing the conceptual foundation for the exercise. The latter
involves development of an implicit or explicit “conceptual model of
relationships between ecosystem processes and human benefits, including
the biophysical pathways through which benefits are realized and their
connections to different beneficiary groups” (Johnston and Wainger 2015,
p. 247). Such a model should clarify the linkages between actions, changes in
ecosystem services, and the effect of these changes on utility (Bateman et al.
2011b; Olander et al. 2018). This conceptual model is developed within a
valuation context in which management scenarios, ecosystem services, and
affected populations can be defined. ESVs at policy sites are predicted
conditional on a set of biophysical changes in ecosystem services. These

15 This specification allows the MRM to reflect curvature in the valuation function, a
multiplicative rather than additive effect of independent variables, and the implied constraints
that WTP approaches zero when water quality change, income, and the geospatial index
variable (Ln_RelativeSize) approach zero.
16 Similar steps are described by Bateman et al. (2011b) for ecosystem services valuation in
general.
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changes can be quantified in various ways, including biophysical models, field
observations, or the use of hypothetical scenarios.
Here, we investigate three distinct water-quality change scenarios for three

different water bodies within the Great Bay watershed of New Hampshire,
USA (Figure 1): the Great Bay Estuary itself, not including tributaries

Table 3. Meta-Regression Results—Random Effects Model (Johnston,
Besedin, and Stapler et al. 2017)

Variable Parameter Estimate Standard Error

Ln_BaseQuality �0.064 (0.123)

Ln_QualityChg 0.281 (0.106)***

Ln_Income 0.628 (0.375)*

Non_Users �0.455 (0.121)***

Swim_Use �0.391 (0.220)*

Boat_Use �0.314 (0.183)*

Game_Fish 0.303 (0.207)

River �0.226 (0.128)*

Multi_Body �0.525 (0.145)***

Ln_PropAgLand �0.351 (0.095)***

Ln_RelativeSize 0.052 (0.019)***

ProportionChg 0.525 (0.189)***

Northeast_US 0.549 (0.249)**

Central_US 0.601 (0.112)***

Southern_US 1.366 (0.127)***

MedianWTP �0.264 (0.239)

LumpSum 0.727 (0.136)***

Ln_StudyYear �0.478 (0.080)***

ChoiceExp 0.487 (0.210)**

Thesis 0.557 (0.195)**

Voluntary �1.296 (0.209)***

OutlierBids �0.429 (0.120)***

NonParametric �0.477 (0.126)***

NonReviewed �0.679 (0.171)***

Intercept �2.281 (4.225)

R2 0.63

σε 0.541

Note: *** p< 0.01, ** p< 0.05, * p< 0.10.
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(Figure 2), and the freshwater and tidal portions of the Exeter-Squamscott
tributary (Figure 3). These define the geospatial scale of changes to be
considered. Market extents must also be defined—the location of households
for whom values are estimated. For the Great Bay Estuary, we evaluate WTP
over three different market areas: (1) residents in NH towns immediately

Figure 1. Great Bay Watershed in New Hampshire, USA
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adjacent to the bay (Figure 2), (2) residents of NH towns within the entire Great
Bay watershed (Figure 1), and (3) all residents of New Hampshire (Figure 1,
inset). For the Exeter-Squamscott River, we evaluate WTP for residents in
towns adjacent to the upper or lower portion of the river, respectively
(Figure 3). The water quality improvements to be considered include those

Figure 2. Great Bay Estuary Major Assessment Units and Baseline Water
Quality (Table 6)
Note: Water quality index values are calculated using equation (2).
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that could potentially arise because of intensive restoration of vegetated
riparian buffers around the focal water bodies, of the general type discussed
by Johnston, Holland, and Yao (2016) for the nearby Wells National Estuarine
Research Reserve. Restoration of this type can improve water quality through
various processes, such as nutrient uptake, reduction of storm-water runoff,
and shoreline stabilization by riparian buffer vegetation.

Quantifying Water Quality Change

A core component of any ESV benefit transfer is quantification of the change in
ecosystem services for which values are to be estimated, in units that are
meaningful for value prediction. This requires the definition of biophysical
units that link ecosystem service changes at the policy site to variables in the
MRM that characterize baselines and changes (i.e., scope). Here, this is done
using a standard 100-point WQI to quantify water quality changes of the type
that could occur because of riparian buffer restoration (Walsh and Wheeler

Figure 3. Exeter-Squamscott River Watershed, a Subwatershed in the
Southern Portion of the Great Bay Watershed (Hydrologic Unit Code
0106000308)
Notes: The Exeter River is the freshwater portion of the river from the headwaters to the Exeter town
center (indicated by hash mark across river), and the Squamscott River is the tidal portion of the river
from the Exeter town center to the Great Bay. Baseline water quality is shown for select river segments
(Table 6). Water quality index values are calculated using equation (2).
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2013). As described by Johnston, Besedin, and Holland (2018), WQIs combine
information on physical and chemical water quality parameters into a single
index linked to the ecosystem services or uses provided by a water body
(Abbasi 2012; Walsh and Wheeler 2013; Van Houtven et al. 2014). They are
among the most common means to measure water quality for valuation and
benefit transfer (Griffiths et al. 2012; Walsh and Wheeler 2013). Here we
apply the WQI methodology and classification of U.S. EPA (2009b), adapted
from Cude’s (2001) Oregon Water Quality Index.
Implementing the WQI to quantify baselines and changes entails three steps:

(1) obtaining pollutant data and projections for the water body, (2)
transforming these data into subindex values, and (3) combining the
subindex values into an aggregate WQI score. The pollutants used by the
WQI, along with their required units of measure and associated WQI
subindex weights, are shown in Table 4. To establish baselines, pollutant data
were obtained from the New Hampshire Department of Environmental
Services (NHDES). These data were averaged across all sampling periods and
monitoring stations for several NHDES Water Quality Assessment Units in
each of our three focal water bodies to produce WQI pollutant parameter
values for each pollutant subindex.17 These pollutant parameter values were
transformed into corresponding subindex values using functions and
thresholds in Table 5.18

Finally, the subindex values weights were used to calculate the WQI for each
major water body using the weighted geometric mean, as described by Walsh
and Wheeler (2013),

WQI ¼
Y6

i¼1

QWi
i ; (2)

where Qi is the calculated water quality subindex for parameter i and Wi is the
weight of the ith parameter from Table 4. The resulting baseline WQI values for
each assessment unit are shown in Table 6 and vary across study areas (Figures
2 and 3). U.S. EPA’s (2009b) water quality classification identifies the minimum
WQI value on a 100-point scale required for human uses (e.g., drinking,
swimming, fishing, and boating), and links to the MRM variables
Ln_QualityChg and Ln_BaseQuality, both of which are measured in WQI units.

17 We investigate water quality in each assessment unit rather than averaging pollutant data
across the entire water body in order to produce a range of water quality values that could
then be used in sensitivity analyses. Average pollutant concentration values for each
assessment unit are listed in Bauer and Johnston (2017).
18 These functions are drawn from U.S. EPA (2009b, tables 10-1 and 10-3 and appendix F).
There are six water quality subindices in each WQI; however, note that the WQI for freshwater
rivers and streams includes biochemical oxygen demand, whereas the WQI for estuaries
includes chlorophyll-a.
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Although these calculations estimate water quality baselines for our case
study sites, they are not sufficient to predict water quality changes from
particular management interventions at these sites. In some cases, these
changes can be quantified using modeling exercises that predict changes in

Table 4. Water Quality Index (WQI) Pollutants, Concentration Units, and
Index Weights

Pollutant Unit
Freshwater
WQI Weight

Estuarine
WQI Weight

Dissolved oxygen (DO) mg/L 0.24 0.26

Fecal coliform (FC) colonies/100 mL 0.22 0.25

Total nitrogen (TN) mg/L 0.14 0.15

Total phosphorous (TP) mg/L 0.14 0.15

Total suspended solids (TSS) mg/L 0.11 0.11

Biochemical oxygen demand (BOD) mg/L 0.15 �–

Chlorophyll-a (ChA) μg/L �– 0.08

Table 5. Water Quality Index Parameter-Subindex Equations

Parameter Value Subindex

DO DO≤ 3.3 10

3.3< DO < 10.5 �80.29þ 31.88*DO – 1.401*DO2

10.5≤ DO 100

FC FC≤ 50 98

50< FC≤ 1,600 98 * exp[�0.00099178*(FC - 50)]

1,600< FC 10

TN TN≤ 3 100 * exp(�0.4605*TN)

3< TN 10

TP TP≤ 0.25 100–299.5*TP – 0.1384*TP2

0.25< TP 10

TSS TSS≤ 28 100

28< TSS≤ 168 158.48 * exp(�0.0164*TSS)

168< TSS 10

BOD BOD≤ 8 100 * exp(�0.1993*BOD)

8< BOD 10

ChA ChA≤ 40 100 * exp(�0.05605*ChA)

40< ChA 10

Note: See Table 4 for definition of abbreviations.
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relevant ecosystem service or environmental quality measures that would
occur because of specified actions. Spatially explicit forecasts are typically
required (Bateman et al. 2011a, 2011b; Ferrini, Schaafsma, and Bateman
2015; Johnston, Besedin, and Holland 2018; Glenk et al. 2019). In many
situations, however, models sufficient to predict these changes are
unavailable (Olander et al. 2017). In such cases, changes are sometimes
quantified using illustrative “what if” scenarios reflecting future conditions
that might occur (Johnston and Wainger 2015).

Table 6. Baseline Water Quality Estimates

Water Body NHDES Assessment Unit (ID) Type Baseline WQI

Exeter Rivera Exeter River–Brentwood
(NHRIV600030803-05)

River/Stream 85

Exeter Rivera Exeter River–Exeter
(NHRIV600030805-02)

River/Stream 84

Exeter Rivera Exeter River–Exeter Dam
(NHIMP600030805-04)b

Impoundment 77

Squamscott River Squamscott River South
(NHEST600030806-01-01)

Estuary 71

Squamscott River Squamscott River North
(NHEST600030806-01-02)

Estuary 86

Great Bay Great Bay Safety Zone 1
(NHEST600030904-02)

Estuary 87

Great Bay Great Bay Safety Zone 2
(NHEST600030904-03)

Estuary 85

Great Bay Great Bay Open
(NHEST600030904-04-05)

Estuary 89

Great Bay Adams Point South
(NHEST600030904-04-06)

Estuary 92

Great Bay Upper Little Bay South
(NHEST600030904-06-12)

Estuary 93

Great Bay Adams Point Mooring Field
(NHEST600030904-06-10)

Estuary 84

Great Bay Upper Little Bay
(NHEST600030904-06-19)

Estuary 91

Great Bay Lower Little Bay
(NHEST600030904-06-18)

Estuary 88

Great Bay Lower Little Bay Marina
(NHEST600030904-06-14)

Estuary 89

a Water quality data were limited for much of the Exeter River. The “Brentwood” assessment unit was the
farthest upstream unit that contained a relatively complete set of pollutant data.
b Beginning in 2016, impoundment area NHIMP600030805-04 behind the Exeter River dam became part
of river area NHRIV600030805-32.
Note: NHDES, New Hampshire Department of Environmental Services; WQI, water quality index.
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Here, we illustrate benefit transfers using scenarios of potential water quality
improvements in affected areas, including 3, 5, 7, and 9-point increases on a
100-point WQI, from minimum baseline conditions in each water body
(Table 6). These levels were chosen to fall in the general range of similar
changes considered by Johnston, Holland, and Yao (2016) for estuarine systems
in Maine, also potentially caused by buffer restoration.19 Using equation (2) and
information in Tables 5 and 6, one can further calculate changes in water
quality parameters that would be sufficient to generate these WQI changes. For
each level of improvement, we forecast WTP for each geospatial scale (water
body) and market extent introduced previously. We predict per household and
aggregate population-level WTP for each market area.

Setting MRM Variable Levels

Benefit transfer also requires values (or levels) to be chosen for other
independent variables in the MRM (Table 2). These levels are inserted into
equation (1) for �xjs to predict WTP. Variable levels are chosen to reflect
current conditions at the policy site. Selection of these levels often requires
intermediate calculations using external data such as spatial landscape (GIS)
metrics and U.S. Census data, whereas other values are chosen based on
anticipated policy changes. Variables for study methodology are typically
assigned their mean values over the metadata, unless other levels reflect
“best practices” associated with reduced measurement errors in primary
studies (Johnston, Besedin, and Ranson 2006; Stapler and Johnston 2009;
Boyle and Wooldridge 2018).
Within the present application, levels for Ln_PropAgLand, Ln_RelativeSize,

ProportionChg, and their underlying geospatial components (e.g., shoreline
length, watershed area, town area, county area, and agricultural land area)
are calculated using GIS data layers available for the study area, based on our
predefined policy scenarios and market areas. These calculations follow
variable definitions in Table 2. For example, Ln_RelativeSize is calculated by
dividing the shoreline length of the focal resource (river or bay) by the size
of the market area and then calculating the natural log of this ratio.
Median household income (Ln_Income) and number of households for towns,

counties, and states were obtained from U.S. Census data for 2015 (2011–2015

19 These water quality changes are larger than one would typically experience due to large-scale
regulatory changes but can occur in small areas (e.g., because of extensive restoration). As
described by Newbold et al. (2018a, p. 475, citing U.S. EPA 2015), “Most contemporary EPA
regulations promulgated under the Clean Water Act are estimated to improve water quality by
<1% in the vast majority of water bodies.” In contrast, choice experiment attribute levels in
Johnston, Holland, and Yao (2016) for intensive riparian restoration at the Wells National
Estuarine Research Reserve (restoring up to 500 local riparian acres) allow for up to a
maximum of a 20 percentage point increase on a 100-point index of ecological condition, based
on “ecological models, field studies, and expert consultations” (p. 743).
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American Community Survey 5-year estimates; https://www.census.gov/
programs-surveys/acs/). Income for the Great Bay watershed was
approximated using a household-weighted average for Rockingham and
Strafford counties. Household incomes for groups of communities (e.g.,
communities adjacent to the Exeter River) were calculated as a household-
weighted average across the communities.20 The resulting variable levels are
presented in Table 7.
Values for the remaining (non-methodological) variables were selected based

on the scenario. Because none of the scenarios involved multiple geographically
distinct water body types,Multi_Body¼ 0. The Squamscott and Exeter scenarios
include a river, so River¼ 1. We are interested in forecasting WTP for users and
nonusers (Non_Users¼ 0) in New Hampshire (Northeast_US¼ 1) for water
bodies supporting three recreational uses (Swim_Use¼ 1, Boat_Use¼ 1, and
Game_Fish¼ 1). For methodological variables, we assume an annual,
mandatory, mean payment (LumpSum¼ 0, Voluntary¼ 0, and MedianWTP¼
0), with StudyYear¼ 2017. We also set OutlierBids¼ 1 and NonReviewed¼ 0,
under the assumption that these settings reflect best practices.21 Mean values
over the metadata (Table 2) are used for all remaining variables.

Calculating and Aggregating Values

The use of these variable levels for �xjs within equation (1) provides an estimate
of �yjs, or the natural log of per household WTP, for the particular water quality
change scenario, affected area, and assumed market extent. Exponentiating this
predicted value according to WTP ¼ exp(ŷjs þ σ2ε/2), provides an estimate of
per household WTP, where σ2ε is the model error variance from Table 3
(Johnston and Besedin 2009). The resulting estimate is denominated in 2007
U.S. dollars and can be converted to current dollars using standard CPI
adjustment (here we adjust to 2016 dollars). As this value reflects a mean
per household WTP estimate, it can be aggregated across households within
the specified market area to estimate aggregate population-level WTP.
This procedure is illustrated in Table 8 for the Squamscott River, 9-point WQI

increase scenario, using the minimum baseline water quality from Table 6.
Communities in this region include Exeter, Newfields, and Stratham, with a
median household income of $86,305.22 Given these conditions, the benefit

20 Because the meta-regression analysis used 2007 U.S. dollars in its estimation process, we
convert U.S. Census income data from 2015 USD to 2007 USD using the consumer price index
(CPI) from the U.S. Bureau of Labor Statistics (https://www.bls.gov/cpi/).
21 This follows Boyle and Wooldridge (2018) in setting levels for selected variables based on
assumed “best practices,” with others set at mean values. For additional discussion of the
treatment of methodological variable levels in MRM predictions, see Johnston, Besedin, and
Ranson (2006) and Moeltner, Boyle, and Paterson (2007).
22 The entry in Table 8, 11.232, reflects the natural log of this value after adjustment from 2015
to 2007 USD.
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Table 7. Geospatial and Socioeconomic Data for Benefit Transfer Scenarios

Variable Units Exeter River
Squamscott
River Great Bay Towns

Great Bay
Counties

Great Bay
Statewide

Market Area Towns/
Counties

Brentwood, Chester,
Danville, Exeter,
Fremont, Raymond,
and Sandown

Exeter,
Newfields,
and Stratham

Dover, Durham,
Greenland,
Newfields,
Newington,
Newmarket,
and Stratham

Rockingham
and Strafford

All New
Hampshire
Towns

Number of
Households

households 18,705 9,637 24,713 165,514 520,251

Household-Weighted
Median Income

2015 USD 80,724 86,305 71,668 75,329 66,799

Adjusted Median
Income

2007 USD 70,617 75,499 62,695 65,898 58,436

Focal River Length km 65.3 10.1 N/A N/A N/A

Focal Shore Length km 130.6 20.2 61.3 61.3 61.3

Other River Length km 1,191 1,191 N/A N/A N/A

Other Shore Length km 2,382 2,382 24.7 24.7 24.7

Market Area km2 353 111 302 2873 24,040

County Area km2 1,882 1,882 2,873 2,873 2,873

County Ag Land Area km2 115 115 181 181 181

Hydrologic Unit Code
(HUC) 10 Area

km2 331 331 1,172 1,172 1,172

HUC 10 Ag Land Area km2 38 38 95 95 95
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Table 8. Illustrating the Benefit Transfer Process for a 9-Point Increase on
the 100-Point Water Quality Index (WQI) in the Squamscott River
(baseline WQI¼ 71)

Variable
(A) Model
Coefficients

(B) Selected
Values Data Source (C) Product (A) * (B)

Ln_BaseQuality �0.064 4.260 NHDES �0.273

Ln_QualityChg 0.281 2.197 Scenario 0.617

Ln_Income 0.628 11.232 U.S. Census 7.054

Non_Users �0.455 0 Scenario 0.000

Swim_Use �0.391 1 Scenario �0.391

Boat_Use �0.314 1 Scenario �0.314

Game_Fish 0.303 1 Scenario 0.303

River �0.226 1 Scenario �0.226

Multi_Body �0.525 0 Scenario 0.000

Ln_PropAgLand �0.351 �2.795 GIS calculated 0.981

Ln_RelativeSize 0.052 �1.704 GIS calculated �0.089

ProportionChg 0.525 0.008 GIS calculated 0.004

Northeast_US 0.549 1 Scenario 0.549

Central_US 0.601 0 Scenario 0.000

Southern_US 1.366 0 Scenario 0.000

MedianWTP �0.264 0 Scenario 0.000

LumpSum 0.727 0 Scenario 0.000

Ln_StudyYear �0.478 3.611 Scenario �1.726

ChoiceExp 0.487 0.107 Metadata 0.052

Thesis 0.557 0.114 Metadata 0.063

Voluntary �1.296 0 Scenario 0.000

OutlierBids �0.429 1 Scenario �0.429

NonParametric �0.477 0.429 Metadata �0.205

NonReviewed �0.679 0 Scenario 0.000

Intercept �2.281 1 �2.281

Calculation Data Result Value

Sum of column (C) lnWTP 3.691

exp(lnWTPþ σ2ε/2) σɛ¼ 0.541 Household WTP2007 46.41

(CPI2016/CPI2007)*WTP07 CPI2007¼ 207.342
CPI2016¼ 240.007

Household WTP2016 53.73

WTP * #Households #Households¼ 9,637 Region-wide WTP $517,754

Note: CPI, consumer price index; NHDES, New Hampshire Department of Environmental Services; WTP,
willingness to pay.
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transfer predicts annual per household WTP¼ $53.73 (2016 USD) for a WQI
change from 71 to 80. When aggregated across all households in the three
adjacent communities, the result is a total WTP of $517,754 per year.

Predicted Welfare Patterns and Benefit Transfer Validity

Initial insight into the validity of MRM benefit transfers can be gleaned through
consideration of value surface patterns implied by the estimatedmeta-equation,
including parameter estimates and functional form. For example, do parameter
estimates indicate intuitive responsiveness of WTP to influences such as scope,
scale, and extent of the market? However, other types of insight can only be
provided through evaluation of the benefit predictions across different
management scenarios. For example, are these predictions consistent with
theory, intuition, and results of prior primary studies? Does the MRM
generate credible predictions for the particular range of environmental
changes under consideration?23 Results such as these can help determine
whether benefit transfer results are defensible for applied use.
Benefit transfers produce a range of WTP forecasts for water quality

improvements in the Great Bay watershed, with results varying as expected
over different scenarios. Table 9 and Figure 4 illustrate predicted WTP (per
household per year) for 3-, 5-, 7-, and 9-point WQI increases for the three
focal water bodies, assuming minimum baseline quality from Table 5.
Transfers for Great Bay improvements also consider three different market
extents when calculating per household WTP (adjacent towns, Rockingham
and Strafford counties, and the entire state of New Hampshire). These are
shown both numerically (Table 9) and graphically (Figure 4). Table 10
aggregates these per household estimates over all households within the
relevant market areas to generate total, population-level predictions.
Reported p-values (Tables 9 and 10) are calculated using Wald χ2 tests
(Greene 2012, p. 528), based on the underlying precision of MRM parameter
estimates (Table 3).
The results show multiple patterns in WTP that are relevant to validity

assessments and prospective policy applications. For example, annual per
household WTP increases as the size of the water quality improvement
increases (e.g., from a 3- to 9-point increase) for all focal water bodies
(Figure 4), but at a decreasing rate. These are intuitive findings consistent

23 For example, “most stated preference water quality valuation studies have examined
improvements or decrements in the order of 10-20% of the full range of possible water quality
levels represented on the [100-point water quality index] scale” (Newbold et al. (2018a,
pp. 474–475). MRMs grounded in this literature typically have few or no data points (in the
metadata) for very small water quality changes. WTP predictions for very small quality changes
may therefore occur outside the range of available data. This can lead to benefit estimates that
lack face validity (e.g., seem unreasonably high) or are sensitive to functional forms imposed by
the MRM analyst (Johnston, Rolfe, and Zawojska 2018).
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with positive scope sensitivity and diminishing marginal utility. For the Exeter
and Squamscott Rivers, mean WTP transfers range from $39 (3-point) to $54
(9-point) per household per year, for households in adjacent communities.
These reflect predictions that are consistent with the range of WTP values for
similar improvements found in the prior literature (Table 1) and results of
other water quality meta-analyses (e.g., Johnston et al. 2005; Van Houtven,
Powers, and Pattanayak 2007).

Table 9. Predicted Annual per Household Willingness to Pay to Improve
Water Quality Index from Minimum Baselines

Region 3-Point 5-Point 7-Point 9-Point

Exeter River 39.95* 46.12** 50.69** 54.40**

Squamscott River 39.46* 45.55** 50.06** 53.73**

Great Bay Towns 62.69** 72.36** 79.54** 85.36**

Great Bay Counties 57.53** 66.41** 73.00*** 78.34***

Great Bay Statewide 47.77** 55.14*** 60.61*** 65.05***

Notes: *** p< 0.01, ** p< 0.05, * p< 0.10, with p-values calculated using Wald χ2 tests (Greene 2012,
p. 528). All values in 2016 USD.

Figure 4. Willingness to Pay (per household per year) for 3-, 5-, 7-, and 9-Point
Increases in Water Quality on the 100-Point Water Quality Index (WQI) for
Three Water Bodies Using the Minimum Baseline WQI Value for Each
Water Body from Table 6
Note: Three market regions (adjacent towns, two counties, and all of New Hampshire) were assessed for
the Great Bay.
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Per household WTP predictions are also similar across these two rivers,
reflecting the offsetting effects of different parameters. Although the baseline
water quality is better and the size of the improved water body (i.e., the
length of the river) is larger in the Exeter River, median household income is
higher in the Squamscott River (Tables 6 and 8). Annual per household WTP
is greater ($62–$85) for improvements to Great Bay (despite baseline water
quality being higher), primarily because of the size of the water body and the
relative lack of substitutes within New Hampshire (Tables 6 and 8). Results
such as these demonstrate the combined effects of scope, scale, substitutes,
and income on WTP predictions.
Results also demonstrate the effects of market extent. As the market area for

the Great Bay benefit transfer increases (from towns to counties to state),
annual per household WTP decreases. This reflects intuitive effects of
distance decay (Sutherland and Walsh 1985; Bateman et al. 2006, 2011a;
Schaafsma 2015; Glenk et al. 2019). That is, larger market areas are
associated with larger average distances between individuals and improved
resources, ceteris paribus, leading to an expectation of lower mean per
household WTP (Johnston, Besedin, and Stapler 2017).
Benefit transfers aggregated over an entire market area (or population) can

vary because of differences in per household WTP and in the number of
households in the market area. Despite comparable per household WTP
measures, regional WTP values aggregated across all households in the
adjacent communities for the three-town Squamscott River are lower than
values for the larger seven-town Exeter River region, because of the larger
number of households in the latter region (Figure 3, Table 10). For example,
aggregated WTP for a 3-point WQI increase in the Squamscott River is
approximately $0.38 million over the adjacent community population,
compared with $0.75 million for the Exeter River (Table 10).
Aggregated values for the seven communities immediately adjacent to the

Great Bay exceed those for the Exeter and Squamscott Rivers, because of

Table 10. Annual AggregatedWillingness to Pay (WTP; millions of dollars)
to Improve Water Quality Index from Minimum Baselines

Region 3-Point 5-Point 7-Point 9-Point

Exeter River Min 0.75* 0.86** 0.95** 1.02**

Squamscott River Min 0.38* 0.44** 0.48** 0.52**

Great Bay Towns Min 1.55** 1.79** 1.97** 2.11**

Great Bay Counties Min 9.52** 10.99** 12.08*** 12.97***

Great Bay Statewide Min 24.85*** 28.69*** 31.53*** 33.84***

Notes: *** p< 0.01, ** p< 0.05, * p< 0.10, with p-values calculated using Wald χ2 tests (Greene 2012,
p. 528). All values in 2016 USD. WTP values for Exeter and Squamscott Rivers are aggregated over
adjacent towns, as described in the main text.
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larger per household WTP values and the larger number of households in the
region. Moreover, as one expands the assumed extent of the market for the
Great Bay benefit transfer (from towns to counties to the state), aggregated
population-level WTP increases by roughly a factor of 30. Even though mean
per household WTP is lower for larger market areas (because of distance
decay), the summation of values over (much) larger populations overwhelms
this effect when estimating aggregate population-level WTP. Patterns such as
these demonstrate the often-dominant effect of assumed market area (the
area over which benefits are aggregated) when conducting benefit transfers
(Bateman et al. 2006).
Predicted WTP estimates for all scenarios are statistically significant, with

significance positively related to the scope of WQI change and the extent of
the market (Tables 9 and 10). Hence, variations in the valuation scenario
influence not only mean WTP predictions that emerge from an MRM, but also
(unsurprisingly) the relative precision of those predictions. Given findings
such as these, practitioners may wish to consider not only the predicted WTP
point estimate for a transfer, but also whether it is possible to reject the null
hypothesis that this estimate is different from zero. We reject this null
hypothesis in all cases, in most cases at p< 0.05 or better.

Challenges for Large-Scale Ecosystem Service Valuation

Results such as these illustrate many of the patterns desired for large-scale
benefit transfers, including responsiveness of welfare estimates to factors
that should—according to theory—influence per household and aggregate
WTP. Moreover, because the MRM includes an internal means to adjust WTP
estimates for variations in scope and scale, there is no need to “scale up”
estimates (Brander et al. 2012). However, meta-analytic methods are not a
panacea. Although the valuation literature tends to emphasize the advantages
of these methods, there are also limitations that should be considered. As
discussed previously, the validity of any MRM for benefit transfer depends on
multiple factors. However, even with an MRM judged to be sufficient across
all of these dimensions, challenges for benefit transfer can still arise. This
section discusses some of these challenges, using the previous MRM and case
study benefit transfer as an illustration.
Among the primary limitations is that all benefit transfer methods—including

MRMs—are constrained in terms of their capacity to account for unique
attributes of particular policy sites (Bateman et al. 2011a). All valuation
contexts are characterized by unique conditions, including ecosystem
services, substitutes and complements, populations, geospatial dimensions,
and other factors that influence economic values. Although MRM functions
can provide a means to adjust WTP predictions for some of these factors,
their ability to do so is limited by the set of variables in the model. This is
not an inherent shortcoming in meta-analytic methods—the ability to adjust
benefit estimates is usually greater within MRM benefit transfer than within
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other benefit transfer approaches (such as unit value transfer, single-study
benefit function transfer, and structural preference calibration24). However,
given limits in the information available from primary valuation studies in
the literature, these adjustments are still constrained. For example, the
illustrated MRM includes only two variables characterizing affected
populations (Ln_Income and Non_Users) and three variables characterizing
affected uses (Swim_Use, Boat_Use, and Game_Fish). Context-specific effects
beyond these variables—for example, possible effects on drinking water
(which is not valued by this MRM) or on regionally important cultural
resources—cannot be accommodated explicitly without adding corresponding
control variables and obtaining metadata that provide sufficient variation in
these variables.
Among other context-specific features that can only be accommodated in a

limited manner is the effect of complements and substitutes. As discussed by
Bateman et al. (2011a), Glenk et al. (2019), and Schaafsma (2015),
substitutes and complements for specific ecosystem service improvements
are often diverse and vary over space. This leads to two linked challenges for
benefit transfers: (1) identifying measures of substitutes and complements
that are similarly relevant across sites and (2) obtaining data on these
measures from primary studies or supplementary sources. Given these
challenges, most MRMs omit variables that capture the effect of substitutes
and complements on WTP. The illustrated MRM is comparatively superior in
this regard but still includes only one variable that captures spatially variable
substitute effects (ProportionChg) and one that captures potential effects of
complements (Ln_PropAgLand). As such, the capacity of this (or any) MRM to
predict the spatially heterogeneous effects of multiple substitutes and
complements on ESVs is limited. If more comprehensive and precise
estimates of these effects are required, primary valuation studies should be
conducted.25

There are also trade-offs implied by the functional forms for MRMs that
influence suitability for particular types of benefit transfer. For example, WTP

24 Johnston et al. (2015a) describe these approaches. Preference calibration requires the analyst
to specify a structural utility function that describes individuals’ choices over market and/or
nonmarket goods. One then derives analytical expressions that determine a theoretically
consistent relationship between benefit measures from existing primary studies. Given the
mathematical complexity of these methods and the need to derive closed-form solutions,
approaches of this type almost always incorporate a small number of variables (e.g., Smith, Van
Houtven, and Pattanayak 2002; Smith, Pattanayak, and Van Houtven 2006).
25 The need for high quality, well-documented primary valuation studies to support policy
analysis and benefit transfer has been emphasized repeatedly in the literature (Loomis and
Rosenberger 2006; McComb et al. 2006; Rosenberger and Johnston 2009; Johnston and
Rosenberger 2010; Johnston et al. 2015b). Related issues are summarized by Johnston et al.
(2015b, pp. 565–567), who argue that “[those] who support valuation research have thus far
been unable to promote development of a large set of empirical valuation studies specifically
designed and documented for benefit transfer applications.”
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patterns implied in Figure 4 may lead to questions regarding how the model can
and should be used to estimate benefits for successive, small water quality
improvements over time. Even cursory examination of this figure suggests
that adding-up likely does not apply—predicted WTP for one 9-unit
improvement is much less than WTP for a 3-unit improvement multiplied by
3.26 Works such as Newbold et al. (2018b) and Moeltner (2019) have
responded with alternative functional forms for this MRM that impose the
adding-up property. These functions, however, reduce empirical performance
—they have poorer fit to the metadata (Johnston, Rolfe, and Zawojska
2018).27 As noted by Newbold et al. (2018b, p. 544), there is “a tradeoff
between improved statistical fit that can be achieved by allowing additional
model flexibility […], and consistency with theoretical restrictions that might
require reduced flexibility on the other.” Kling and Phaneuf (2018, p. 498)
further argue that practical failures of adding-up tests in applied market and
nonmarket situations suggest that these tests “are not likely to be fruitful in
informing benefit transfer.”28

Trade-offs such as these related to the choice of strong structural versus
reduced-form specifications for MRMs are discussed by Bergstrom and Taylor
(2006) and Johnston, Rolfe, and Zawojska (2018) and highlight the lack of
consensus in this area. As noted by Johnston, Rolfe, and Zawojska (2018,
p. 192), “All [MRM model specifications] require assumptions, and the
capacity of any assumed specification to approximate all aspects of empirical
reality cannot be assured.” Disagreements over the appropriateness of strong
structural specifications in MRMs are further related to a tension between
two competing motivations for economic meta-analysis. Historically, one of
the primary motivations for economic meta-analysis was to allow metadata
(from many prior studies) to reveal patterns caused by “misspecification
biases and specification searching in empirical economic research” (Stanley
2005, p. 205). Viewed from this perspective, the use of strong structural
specifications to compel—ex ante—MRMs to produce certain types of
empirical results is antithetical to the core purpose of meta-analysis. In
contrast, others have argued that structural specifications are required to

26 This is only a crude approximation of adding-up. A formal evaluation would adjust baseline
WQI to successively higher levels when calculating WTP for each successive improvement.
Adjustments would also be required for income effects (Kling and Phaneuf 2018). However, a
more formal evaluation by Moeltner (2019) shows that adding-up is violated when using this
MRM for benefit transfer.
27 This poor fit is not surprising. As noted by Kling and Phaneuf (2018), past evaluations have
shown that the adding-up property is routinely violated in both market and nonmarket situations.
Hence, these specifications are imposing a property on the MRM that is likely violated by many of
the primary studies in the metadata.
28 Specifications such as that of Johnston, Besedin, and Holland (2018) that define the
dependent variable in terms of WTP per unit of change can approximate the adding-up
property without sacrificing empirical fit, but this approach does not guarantee that adding-up
is satisfied perfectly.
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ensure welfare-theoretic consistency within meta-analytic transfers (Smith and
Pattanayak 2002; Newbold et al. 2018b).
Potential ramifications of MRM specification are further illustrated using

Figure 5, which shows the predicted marginal WTP (or demand) for WQI
improvements in the Great Bay, by residents of surrounding towns.29 By
illustrating marginal rather than total WTP, Figure 5 clarifies welfare patterns
implied by Figure 4, and particularly WTP patterns for small changes in
water quality. As shown by Figure 5, marginal WTP increases sharply for
ΔWQI < 3, suggesting high marginal WTP for the first few units of quality
change. Because of this pattern, repeated use of the MRM to predict values
for successive, small water quality changes will lead to large aggregate WTP
estimates for the combined change, ceteris paribus.30 This is among the
motivations used by Newbold et al. (2018b) and Moeltner (2019) to suggest
structural adding-up MRM specifications that, among other features,
attenuate WTP predictions for small changes.
However, it is important to notice that predictions such as these are outside of

the range of data support for the MRM—there are no observations of ΔWQI< 2.5
in the metadata. Moreover, none of the metadata observations report WTP for
successive water quality changes—all report WTP for one-time improvements.
Structural and nonstructural MRMs estimated from these metadata tend to
predict similar WTP estimates for one-time changes in water quality within the
range of the data. In contrast, debates over structural MRM functional forms
often center on WTP predictions for successive, small water quality changes.
Because there are no supporting metadata for predictions of this type, there is
little capacity to validate these predictions. More informed debates over WTP
predictions for small, successive water quality changes will require primary
studies that provide credible estimates of these values.
A related issue concerns the capacity of MRMs to predict ESVs over large scales,

such as multistate regions or nationwide. As shown by Table 3, the partial
elasticity associated with Ln_RelativeSize is small. Recall, this variable is
defined as the natural log of the ratio of total shoreline length (kilometers) of
the improved resource and the size of the benefit aggregation market area
(square kilometers). The inelastic magnitude of this effect implies that per
household WTP declines gradually with increases in market area size.31 Given
that only one primary study in the metadata considers more than a two-state
market area,32 it is unclear to what extent this small effect size applies to
larger market areas—as these are also (largely) outside the range of the
metadata. The implications for large-scale ESV transfers are implied by

29 All other aspects of the valuation scenario mirror those described previously.
30 Small (negative) WTP adjustments associated with the resulting increases in baseline water
quality (Ln_BaseQuality) are insufficient to offset this effect.
31 This pattern implies that distance decay is significant but small in magnitude.
32 Not including the District of Columbia.
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Table 10—aggregate values increase rapidly with the size of the assumedmarket
area. Hence, the model will potentially predict large aggregate WTP estimates
when applied to regions larger than a single state. Given the lack of support in
the metadata for such applications, practitioners should proceed with care.
A final note concerns the accuracy of MRM benefit transfer compared with

simpler forms of unit value or benefit function transfer, or naïve MRM benefit
transfers that overlook the validity concerns discussed previously. Direct
comparisons of this type are beyond the scope of this article but have been
conducted elsewhere. For example, Johnston, Besedin, and Stapler (2017) and
Johnston, Besedin, and Holland (2018) demonstrate the benefit transfer
accuracy gains made possible via the inclusion of spatial variables in MRM
benefit transfer for different variants of the same water quality metadata
used here. Johnston and Thomassin (2010) use an earlier, U.S.-Canada
version of the same metadata to demonstrate that MRM benefit transfer
reduces transfer errors compared with unit value benefit transfer. Using
other sets of metadata, Moelter and Rosenberger (2014) and Johnston and
Moeltner (2014) illustrate Bayesian approaches that can be used to evaluate
the extent to which commodity and welfare consistency increase benefit
transfer efficiency. This and other recent work is summarized by Johnston,
Rolfe, and Zawojska’s (2018) review of the recent benefit transfer literature.33

Figure 5. Predicted Demand for Water Quality Improvements (ΔWQI), Great
Bay by Residents of Adjacent Towns
Notes: Valuation scenario is identical to that in Figure 4 and described in the main text. WQI, water
quality index; WTP, willingness to pay.

33 Prior work does not find that more complex benefit function transfers, such as MRMs, always
outperform simpler methods (Johnston, Rolfe, and Zawojska 2018). Although benefit function
transfers and data synthesis methods have been shown to outperform unit value transfers, on
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Conclusion

Methodological advances in meta-regression modeling have improved the
capacity of benefit transfers to provide valid and reliable welfare predictions.
Variable and functional form specifications for these models can be adapted
to meet particular benefit transfer needs and theoretical expectations, and
there is increasing recognition of the trade-offs implied by different types of
MRM specifications. The future seems bright in terms of continued
development of meta-analytic techniques to support ecosystem service
valuation.
At the same time, many meta-analyses in the ecosystem services literature

omit fundamental elements required to ensure valid value predictions, and
the steps required to generate benefit predictions from underlying meta-
analytic benefit functions are often obscured. Clarity and transparency on
issues such as these are required to ensure credible uses of meta-analytic
tools. Few meta-analyses in the literature discuss the extent to which the
resulting benefit predictions are credible for applied use or evaluate the
impact of post-estimation procedures on benefit transfer results. In some
cases, simple unit value transfers may be more accurate than those
implemented using meta-analysis, particularly if the latter does not follow
best-practice standards. The illustrated case study is designed to demonstrate
how evaluations of issues such as these can help clarify the suitability of
MRM predictions for benefit transfer.
Recognition of these issues is needed. As noted by Johnston, Rolfe, and

Zawojska (2018), there has been a proliferation of benefit transfer tools
developed outside of the environmental valuation and benefit transfer
literature (Bagstad et al. 2013), and government agencies are applying
benefit transfer practices that are considered arbitrary and unjustified by
valuation researchers (Boyle, Kotchen, and Smith 2017; Smith 2018). Without
“cost-effective, straightforward, transferable, scalable, meaningful, and
defensible methods” (Olander et al. 2017, p. 170) for benefit transfer,
analysts may apply approaches that are unlikely to provide valid and
defensible estimates.
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average (Kaul et al. 2013; Rosenberger 2015), unit value and simpler function transfers have been
shown to be more accurate in some cases (e.g., Barton 2002; Lindhjem and Navrud 2008; Johnston
and Duke 2010; Bateman et al. 2011a; Klemick et al. 2018; Guignet et al. 2019). The literature has
yet to reach consensus on conditions under which this is likely to occur (Johnston, Rolfe, and
Zawojska 2018).
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