Bull. Austral. Math. Soc. Vol. 59 (1999) [443-447]

ON COPIES OF THE NULL SEQUENCE BANACH SPACE IN SOME VECTOR MEASURE SPACES

J.C. FERRANDO AND J.M. AMIGÓ

In this note we extend a result of Drewnowski concerning copies of c_0 in the Banach space of all countably additive vector measures and study some properties of complemented copies of c_0 in several Banach spaces of vector measures.

1. PRELIMINARIES

Throughout this note (Ω, Σ) will be a measure space and X a Banach space. Our notation is standard [2, 3]. So ba (Σ, X) denotes the Banach space over K of all X-valued bounded finitely additive measures defined on Σ provided with the semivariation norm

$$||F||(E) = \sup \left\{ \sum_{A \in \pi} |x^*F(A)| : x^* \in X^*, ||x^*|| \leq 1, \pi \in \mathcal{P}(E) \right\},$$

for each $E \in \Sigma$, where $\mathcal{P}(E)$ is the class of all finite partitions of E by elements of Σ . The closed subspace of $ba(\Sigma, X)$ formed by the countably additive measures is denoted by $ca(\Sigma, X)$, while $cca(\Sigma, X)$ stands for the closed subspace of $ca(\Sigma, X)$ formed by those countably additive measures with relatively compact range. By $bvca(\Sigma, X)$ we denote the Banach space of all X-valued countably additive measures F of bounded variation defined on Σ , equipped with the variation norm $|F| = |F|(\Omega)$. It has been shown in [7] that (a) both $ca(\Sigma, X)$ and $bvca(\Sigma, X)$ contain a copy of c_0 if and only if either X contains a copy of c_0 or they contain a copy of ℓ_{∞} , and (b) if Σ is an infinite σ -algebra, then $ba(\Sigma, X)$ contains a copy of c_0 if and only if it contains a copy of ℓ_{∞} . If $ba(\Sigma, X)$ contains a complemented copy of c_0 , then X contains a copy of c_0 [8]. Assuming that each nonzero finite positive measure $\mu \in ca(\Sigma)$ is purely atomic, then $ca(\Sigma, X)$ contains a copy of c_0 or ℓ_{∞} if and only if X contains respectively a copy of c_0 or ℓ_{∞} [5, Theorem 2] and, with the same hypotheses, $bvca(\Sigma, X)$ contains a copy of c_0 or ℓ_{∞} if and only if X contains respectively a copy of c_0 or ℓ_{∞} [6]. On the other hand, $cca(\Sigma, X)$ contains a copy of ℓ_{∞} if and only if X contains a copy of ℓ_{∞} [4]. Note that $ca(\Sigma, X)$ may contain a copy of c_0 while X does not. Indeed, if $\Omega = [0, 1]$ and Σ coincides with the σ -algebra of

Received 29th October, 1998

This paper has been partially supported by DGES grant PB97-0342.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

[2]

all Lebesgue measurable subsets of [0, 1], then $ca(\Sigma, \ell_2)$ contains a copy of c_0 , [7]. In this paper we show by a straightforward technique that, assuming $cca(\Sigma, X) = ca(\Sigma, X)$, then $ca(\Sigma, X)$ contains a copy of c_0 if and only if X contains a copy of c_0 . This extends part (B) of Theorem 2 in [5] quoted above. On the other hand, we shall show that if $ca(\Sigma, X)$ or $bvca(\Sigma, X)$ contains a complemented copy of c_0 , then X contains a copy of c_0 . As background of this work we must mention [4, 5, 6, 7, 8].

Given a set A of a Banach space X, we represent by [A] the closed linear span of A. In the sequel we shall shorten to wuC the sentence "weak unconditionally Cauchy". Let us recall that a Banach space is said to have the Schur property if each weakly convergent sequence in X is norm convergent.

2. Results

THEOREM 2.1. Assume $cca(\Sigma, X) = ca(\Sigma, X)$. Then $ca(\Sigma, X)$ contains a copy of c_0 if and only if X contains a copy of c_0 .

PROOF: Let Z denote a copy of c_0 in $ca(\Sigma, X) = cca(\Sigma, X)$, and let $J : c_0 \to Z$ be a topological isomorphism from c_0 onto Z such that $F_n := Je_n$ for each $n \in \mathbb{N}$ where $\{e_n:n\in\mathbb{N}\}$ is the standard unit vector basis of c_0 . We assume to the contrary that Xcontains no copy of c_0 . Since J is a bounded linear operator, the series $\sum_{n=1}^{\infty} F_n$ is wuC in $ca(\Sigma, X)$ and hence there exists a C > 0 such that $\sup_{n \in \mathbb{N}} \left\| \sum_{i=1}^{n} \xi_i F_i \right\| < C \|\xi\|_{\infty}$ for each $\xi \in \ell_{\infty}$. Then, given $E \in \Sigma$, the series $\sum_{n=1}^{\infty} F_n(E)$ is wuC in X, since for each $x^* \in X^*$ the map $u: ca(\Sigma, X) \to \mathbb{K}$ defined by $u(F) = x^*F(E)$ is a continuous linear form on $ca(\Sigma, X)$ and, consequently, $\sum_{n=1}^{\infty} |x^*F_n(E)| = \sum_{n=1}^{\infty} |uF_n| < \infty$. As we are assuming that X does not contain a copy of c_0 , according to a well known result of Bessaga and Pełczyński [1] the series $\sum_{n=1}^{\infty} F_n(E)$ is (BM)-convergent in X. So we may consider the linear operator $\varphi: \ell_{\infty} \to ca(\Sigma, X)$ defined by $\varphi\xi(E) = \sum_{n=1}^{\infty} \xi_n F_n(E)$. Actually $\varphi\xi \in ba(\Sigma, X)$ and φ is a bounded linear operator from ℓ_{∞} into $ba(\Sigma, X)$ since, given $\xi \in \ell_{\infty}$ and $E \in \Sigma$, we have

$$\left\|\varphi\xi\left(E\right)\right\| \leq \sup_{n \in \mathbb{N}} \left\|\sum_{i=1}^{n} \xi_{i} F_{i}\left(E\right)\right\| \leq \sup_{n \in \mathbb{N}} \left\|\sum_{i=1}^{n} \xi_{i} F_{i}\right\| \leq C \left\|\xi\right\|_{\infty}$$

So $\|\varphi\xi\| \leq 4C \|\xi\|_{\infty}$, which shows at the same time that $\varphi\xi \in ba(\Sigma, X)$ and that φ is a bounded linear operator from ℓ_{∞} into $ba(\Sigma, X)$. Moreover, since $\left\{\sum_{i=1}^{n} \xi_{i} F_{i}\right\}$ is a sequence of X-valued countably additive vector measures such that $\lim_{n\to\infty}\sum_{i=1}^{n}\xi_{i}F_{i}(E) = \varphi\xi(E)$ exists in X for each $E \in \Sigma$, according to the Vitali-Hahn-Saks' theorem [3, Chapter 1, Corollary 4.10] there exists a nonzero finite positive $\mu \in ca(\Sigma)$ such that $\varphi \xi \ll \mu$.

Consequently $\varphi \xi \in ca(\Sigma, X)$ for each $\xi \in \ell_{\infty}$, which shows that $\varphi(\ell_{\infty}) \subseteq ca(\Sigma, X)$. As $ca(\Sigma, X) = cca(\Sigma, X)$ by hypothesis, we have that $\varphi(\ell_{\infty}) \subseteq cca(\Sigma, X)$. Then, since

$$\|\varphi e_n\| = \|F_n\| = \|Je_n\| \ge \frac{1}{\|J^{-1}\|}$$

for each $n \in \mathbb{N}$, Rosenthal's ℓ_{∞} theorem [10] yields an infinite set $M \subseteq \mathbb{N}$ such that the restriction ψ of φ to $\ell_{\infty}(M)$ is a topological isomorphism into $cca(\Sigma, X)$. According to the above quoted result of [4], this implies that X contains a copy of ℓ_{∞} , contradicting the fact that X does not contain a copy of c_0 .

COROLLARY 2.2. If X has the Schur property, then $ca(\Sigma, X)$ does not contain a copy of c_0 .

PROOF: Since X has the Schur property, then $cca(\Sigma, X) = ca(\Sigma, X)$. Given that X cannot contain a copy of c_0 , the conclusion follows from Theorem 2.1.

COROLLARY 2.3. [5, Theorem 2] If every nonzero finite positive measure on Σ is purely atomic, then $ca(\Sigma, X)$ contains a copy of c_0 if and only if X contains a copy of c_0 .

PROOF: Suppose that every nonzero finite positive measure on Σ is purely atomic and let $G \in ca(\Sigma, X)$ be nonzero. According to a theorem of Bartle-Dunford-Schwartz [3, Chapter 1, Corollary 2.6] there is some $\mu \in ca^+(\Sigma)$ such that $G \ll \mu$. By hypothesis μ is purely atomic, so there exists a finite or infinite pairwise disjoint sequence of atoms $\{A_n\}$ in Σ such that $\mu(A_n) > 0$ and $\bigcup_n A_n = \Omega$. Define $g: \Omega \to X$ such that $g(\omega) =$ $(G(A_n)/\mu(A_n))$ whenever $\omega \in A_n$ for each n. Then, as is well known, g is μ -measurable and $G(E) = (P) \int_E g(\omega) d\mu$ [Pettis integral] for each $E \in \Sigma$. But this implies that $G(\Sigma)$ is relatively compact in norm [9, Theorem 10.4.4], and consequently $G \in cca(\Sigma, X)$. Thus $ca(\Sigma, X) = cca(\Sigma, X)$ and Theorem 2.1 applies.

THEOREM 2.4. If $ca(\Sigma, X)$ contains a complemented copy of c_0 , then X contains a copy of c_0 .

PROOF: Set $Z = [F_n]$, let $J: c_0 \to Z$ be a topological isomorphism from c_0 onto Zwhere $F_n := Je_n$ for each $n \in \mathbb{N}$, and let P be a bounded linear projection from $ca(\Sigma, X)$ onto Z. We assume to the contrary that X does not contain a copy of c_0 and proceed as in the proof of the previous theorem until we show that the linear operator $\varphi: \ell_{\infty} \to$ $ca(\Sigma, X)$ defined by $\varphi\xi(E) = \sum_{n=1}^{\infty} \xi_n F_n(E)$ is well-defined and bounded. Consequently, $\varphi(\ell_{\infty}) \subseteq ca(\Sigma, X)$.

Since $PF_n = F_n$ for each $n \in M$, the bounded linear operator $Q : \ell_{\infty} \to c_0$ defined by $Q = J^{-1} \circ P \circ \varphi$ satisfies $Qe_n = e_n$ for each $n \in \mathbb{N}$. In fact,

$$Qe_n = J^{-1}P\varphi e_n = J^{-1}PF_n = J^{-1}F_n = J^{-1}Je_n = e_n,$$

[4]

which implies $Q\zeta = \zeta$ for each $\zeta \in c_0$. Hence, if $\xi \in \ell_{\infty}$, as $Q\xi \in c_0$ one has

$$Q^2\xi = Q(Q\xi) = Q\xi.$$

But this means that Q must be a bounded projection operator from ℓ_{∞} onto c_0 , a contradiction.

THEOREM 2.5. If $bvca(\Sigma, X)$ contains a complemented copy of c_0 , then X contains a copy of c_0 .

PROOF: Set $Z = [F_n]$, $J: c_0 \to Z$ a topological isomorphism from c_0 onto Z where $F_n := Je_n$ for each $n \in \mathbb{N}$, and let P be a bounded linear projection operator from $bvca(\Sigma, X)$ onto Z. By assuming to the contrary that X does not contain a copy of c_0 and reasoning as in the proof of Theorem 2.1, there is a C > 0 such that $\sup_{k \in \mathbb{N}} \left| \sum_{j=1}^k \xi_j F_j \right| \leq C \|\xi\|_{\infty}$. Define the linear operator $\varphi: \ell_{\infty} \to ba(\Sigma, X)$ by $\varphi\xi(E) = \sum_{n=1}^{\infty} \xi_n F_n(E)$. We only need to prove that $\varphi\xi \in bvca(\Sigma, X)$ and that φ is a bounded linear operator. So, if

$$E_i: 1 \leqslant i \leqslant n$$
 is a partition of Ω by elements of Σ then, given $\xi \in \ell_{\infty}$, we have

$$\sum_{i=1}^{n} \left\| \varphi \xi \left(E_{i} \right) \right\| = \sum_{i=1}^{n} \left\| \sum_{j=1}^{\infty} \xi_{j} F_{j} \left(E_{i} \right) \right\| \leq \sup_{k \in \mathbb{N}} \sum_{i=1}^{n} \left\| \sum_{j=1}^{k} \xi_{j} F_{j} \left(E_{i} \right) \right\|$$
$$\leq \sup_{k \in \mathbb{N}} \left| \sum_{j=1}^{k} \xi_{j} F_{j} \right| \leq C \left\| \xi \right\|_{\infty}.$$

So $|\varphi\xi| \leq 4C ||\xi||_{\infty}$, which shows at the same time that $\varphi\xi \in bvca(\Sigma, X)$ and that φ is a bounded linear operator from ℓ_{∞} into $bvca(\Sigma, X)$.

ADDED IN PROOF. Since $ca(\Sigma, X) \cong L_{w^*}(ca(\Sigma)^*, X)$, Theorems 2.1 and 2.4 can be viewed as particular cases of well known properties of $L_{w^*}(ca(\Sigma)^*, X)$.

References

- C. Bessaga and A. Pełczyński, 'On bases and unconditional convergence of series in Banach spaces', Studia Math. 17 (1958), 151-164.
- [2] J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Math. 92 (Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984).
- [3] J. Diestel and J. Uhl, Vector measures, Math Surveys 15 (Amer. Math. Soc. Providence, R.I., 1977).
- [4] L. Drewnowski, 'Copies of ℓ_{∞} in an operator space', Math. Proc. Camb. Phil. Soc. 108 (1990), 523-526.
- [5] L. Drewnowski, 'When does $ca(\Sigma, Y)$ contain a copy of ℓ_{∞} or c_0 ?', Proc. Amer. Math. Soc. 109 (1990), 747-752.
- [6] J.C. Ferrando, 'When does buca (Σ, X) contain a copy of ℓ_{∞} ?', Math. Scand. 74 (1994), 271–274.

{

- J.C. Ferrando, 'Copies of c₀ in certain vector-valued function Banach spaces', Math. Scand. 77 (1995), 148-152.
- [8] J.C. Ferrando and J.M. Amigó, 'On copies of c_0 in the bounded linear operator space', submitted.
- J.C. Ferrando, M. López Pellicer and L.M. Sánchez Ruiz, Metrizable barrelled spaces, Pitman Research Notes in Math. 332 (Longman, Essex, 1995).
- [10] H.P. Rosenthal, 'On relatively disjoint families of measures, with some applications to Banach space theory', Studia Math. 37 (1979), 13-36.

Depto. Estadística y Matemática Aplicada Universidad Miguel Hernández E-03202 Elche (Alicante) Spain e-mail: jc.ferrando@umh.es jm.amigo@umh.es