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Abstract

A Demianski-type metric is investigated in connection with Einstein's field
equations corresponding to pure radiation fields. With the aid of complex
vectorial formalism, a general solution of these field equations is obtained.
The solution is algebraically special. A particular case of the solution is con-
sidered which includes many known solutions; among them are the radiating
versions of some of Kinnersley's solutions.

1. Introduction

In spite of the fact that an exact gravitational wave solution radiating from a finite
source must be algebraically general (Sachs [11]), many investigators have taken a
keen interest in obtaining algebraically special solutions of Einstein's field
equations. There are several reasons for it. One reason is that the Schwarzschild
solution, the Kerr solution [6], the NUT solution (Newman et al. [8]), the Demianski
solution [4], and the vacuum solutions of Kinnersley [7] are familiar members of
this class.

Many investigators have discussed the non-static generalization of some of the
above-mentioned vacuum solutions. Vaidya [12] has obtained a non-static general-
ization of the Schwarzschild solution, which represents the gravitational field of a
spherically symmetric source emitting null fluid. The non-static generalizations of
the Kerr and NUT solutions have been treated extensively (see, for example,
Vaidya and Patel [14], Vaidya [13] and Vaidya et al. [15]). Patel [9] has obtained
the radiating version of Demianski's solution. The object of the present investi-
gation is to obtain radiating versions, which are algebraically special, of some of
the vacuum metrics discussed by Kinnersley [7].

The field equations corresponding to the pure radiation fields are

RaP = -Snnkakp, kak*=0, (1)

where /z is the density of flowing radiation.
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[2] Radiation fields in general relativity 465

The formalism which we are going to use for the derivation of our solutions is
the complex vectorial formalism developed by Cahen et al. [1]. A detailed account
of this formalism is given by Israel [5], and we shall use his notation. A very brief
description of this formalism is given in the next section.

The following conventions are used. The Greek and the first half of the Latin
indices will range from 1 to 4 and the second half of the Latin indices will range
from 1 to 3. The Greek indices indicate coordinates and tensor components while
the Latin indices indicate tetrad components. The round brackets including the
indices will denote symmetrization.

In this paper a radiating space-time will be a simply connected, differentiable,
four-dimensional manifold with a metric tensor field g of signature + , —, —, —
that satisfies the field equations (1).

2. Complex vectorial formalism

A complete exposition of complex vectorial formalism is not attempted here.
We shall consider only those aspects of this formalism which are necessary for
our work.

Consider a four-dimensional pseudo-Riemannian space-time manifold K4. Let
ka and nx be two future pointing real null vector fields and ma be a complex null
vector field in F4. They are such that the metric on K4 has the form

(2)

with an overhead bar denoting the complex conjugation. Introducing the basic
1-forms,

61=kadxa, e2=mxdxx, 63 =~02, 0*=nadx*. (3)

Here x* are the local coordinates in F4.

Let Z" be a basis for the complex 3-space %>3 of self-dual 2-forms, given as

^= (7 A (7 ^ ^ = t/ A (7 , ^ = = •yly A t / — C7 A v h \ * /

where A denotes the exterior product.
The metric ypq for the space t?3 is given by

ypq =251
ipd2v-\5"z8

q
3. (5)

In the absence of torsion in the Riemannian space, the complex-valued con-
nection 1-forms am and the complex-valued curvature 2-forms £ p are determined
by the following equations known as Cartan's equations of structure:

dZ"=^"amAZn, \ ^
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where d denotes exterior differentiation. Since £ p is a complex 2-form, it can be
expressed in terms of Zp and Zp as follows:

£ p = CpqZ"-iRypqZ"+Ep-q Z«. (7)

Here Cpq is a complex-valued trace-free symmetric tensor, which corresponds to
the Weyl tensor, Epi is a hermitian tensor corresponding to the trace-free part of
the Ricci tensor and R is the scalar curvature. Note that Cpq is related to the five
Newman-Penrose components \j/A in terms of which the Petrov classification can
be made. In fact,

Cpq=2 - ^ ->A4 2<A3 • (8)
\ ^ 2<A3

The Einstein field equations (1) can be expressed in terms of Epi as

d*-q. (9)

3. The metric and the field equations

After obtaining the solutions corresponding to the field equations (9), we intend
to obtain the solutions of the Einstein-Maxwell equations corresponding to a
source-free electromagnetic field plus pure radiation. So for computational
purposes we consider a general metric of the Plebanski-Demianski type [10]. We
take the metric in the form

ds2 = 2(du+gG dfi) (dr+hG dfS) - 2L(du+gG dp)2

-M\(dy2l(G2)) + G2dn (10)

Here L and M are functions of u, r and y and h, g and G are functions of y only.
Introducing the basic 1-forms

01=du+gGdfi, y/262=M((dy/G)+iGdp),']

93 = 92, ei = dr-Ld1+hGdp, J

we express (10) as
ds2 = 2(dl9*-92e3). (12)

Using the results (4), (6) and (11), we can obtain the connection 1-forms ap. They
are given by

(13)
/ y

+2l(Mu+LMr)/M+i{(Gh)y-UgG)y}K2M2)-]63,
= -2lLr+i{L(gG)y-(Gh\}l{2M2)-] 61

2y] 62
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where suffixes denote partial derivatives.
The absence of the terms involving 93 and 04 in ax indicates that the null

congruence k" is geodesic as well as shear-free.
We can now use op given by (13) and Cartan's second equation of structure in

(6) to determine the curvature 2-forms £p . The expressions for £ p are very
lengthy and therefore are not given here. These expressions for £ p will give us
EPq and R. They are given by

E1T = {21M) [ M r r - {(gG)y}
2/(4M3)l

Etl = E2j = 0,
E^ =£3T = U2IM)lh(gG)yMr/(M

3)+g(gG)yMJ(M3)+G(MJM)y

- i{h(Mr/M)r+g(Mr/M)u+ G((gG)yK2M%}l
E2? = (l/M2)(h2 Lrr+2ghLur+G2 Lyy+g2 Luu+2GGyLy

+4LMMur+2Lu MMt-2Lr MMu+L{gG)y{Gh\l{M2)
-2{(Gh\/(2M)}2l

£32 = £23 = j2LEn+(sf2/M) tG(L,+MJM)y

+g{2L(gG)y/(2M2)-(Ghy(2M2)}u+ig(Lr+MJM)u

+h{2L(gG)y/(2M2) - {Gh)yl(2M2)}r+ih{Lr+MJM)r > (14)
- G{L(gG)y/(M

2) - (Gh)y/(2M2)}y-],

E^=2\Ln-ghMJ(M3)-h2 Mr/(M
3)+g2 Mu

2/(M*)+h2 M2/(M*)
+ {(MG)y}

2/(M*)+2ghMu Mr/(M*)+2(gG)y(Gh)y/(M
4)

-L{(gG)y}
2/(M*)+2MuMrKM2)+2LMr

2/(M2)-ghMr/(M
3)

-g2MJ(M3)l+(2iKM3MMXGh)y+4LrM(gG)y-Mu(gG)y

-UgG)y Mr+{(gG)y/(2M2)}u M3],
R = -E3i+4LEn+2Lrr+4M,MJ(M2)+4(Mr/M)u+4LXMJM)

-(Gh)y(gG)y/(M*)+2L{(gG)y}
2KM>).

Now from the field equations (9) we have all Ep9 = 0 except E2j, and R = 0.
Note that E2j will give us the radiation density \i.

Equations £ l T = 0 and E^ = 0 involve only one unknown function M. They
can be solved to get

M2=F2(X*+Y% F2=f/Y, 2f=(gG)y, (15)
where

Xu=-(Y-z%, Xe = (Y-z\, Xr=-l, yr=0. (16)

Here, and in what follows, 9 and z are denned by the relations

(g/G)dy = dO, (h/G)dy = dz. (17)
We set R = 0 and use M2 given by (15), (16) and (17) to determine the following
form of the function 2L:

2L=2qX+2J+2(E*Y+F*X)/(X2+Y2), (18)
where

9 = -YJY, (19)
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and J, E and F are functions of u and y subjected to the condition

2E*+4JY-2XuY-(hG)yY/f=0. (20)

Then considering E3j = 0 and using the above relations we find that

U = 2XU- Ye-(g/F)2 [(y_/(2¥))„+(Ye/(2 Y))e~<

(21)

It then follows from E2^ = 0 that

E*=-F:, E:=F*. (22)

Using E22 = —Snfi, the radiation density n can be calculated. The expression for
pi in this general case is lengthy and hence is not given here.

We have, so far, worked with the general metric (10). A case in which/= Y
has been treated by Patel [9] in connection with radiating Demianski space-times.
In the next section we shall consider one more case which seems to be of physical
interest.

4. The case /# Y, Y = Y(y), G=s ina

We consider the case in which Y = Y(y). It then follows from (16) that

X = au-r, Y-z=-a6+b, (23)

where a and b are constants of integration. No additional constant is added in X
because such a constant can always be incorporated in the r-coordinate.

Since- F = Y(y) only, equations (20), (21) and (22) imply that

E*=kd+w, F* = -ku+m, (24)

where k, w and m are constants of integration. We now introduce a variable \j/
and a function A(i/0 as follows:

G = sina, (f/Y)idoc=dil/, (// Y)* sin a = Xty). (25)

Then we find from (21) that

, (26)

with
2N*=(hsmayX. (27)

Now we consider a case in which X^\X is a constant, say e, where £ = 1, 0, - 1 .
The case e = 1 has been discussed by Patel [9]. Therefore we shall restrict our
attention to the following three cases: case (i) X = e^, case (ii) X = sinh^ and
case (iii) X = A\ji+B, where A and B are constants.
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Here it should be noted that in the above three cases the radiation density n is
given by

Un=-2kl(X2+Y2). (28)

Now we shall discuss the details of these three cases.

CASE (i). A = e*.

In this case the results (21)-(24) show that the functions Y and N* satisfy the
following differential equations:

N^ + N* =2(a + l)N* + {2a(a + l)+2k}Y (29)
and

YM + Y^ = - 2N* - 2a Y. (30)

If we set p1 = l+4fc, then it can be seen easily that the differential equations
(29) and (30) are equivalent to the equations

(31)
and

z; ,+z;=(l+p)Z», (32)
with

Z = N*+Hp+2a+l)Y )
and (33)

Z*=N*+i(2a+\-p)Y.j

The solutions of (31) and (32) are given by

and I (34)

where Cu C2, C3 and C4 are constants of integration. Knowing Z and Z* from
(34) the result (33) gives us Y and N* as

PY = Z*-Z, 2pN*=Z(l+2a-p)+Z*(l+2a+p); (35)

hence we have

/isina""•-J2N*

- J , £* = - N * - ( a + l) 7.

and

We can therefore obtain the line-element in the final form as

ds2 = 2(du+g sin a dfi) (dr+h sin a dp)-2L(du+g sin a <$)2

(36)

), (37)
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where X = au—r, Y, h and g are given by (34), (35) and (36) and

2L=2a + l+
2E*Y+2^ku + m ^ a u - r \ (38)

(au-rf+Y2

where E* is given by (36).
Now if we take k = 0, the radiation density n vanishes and we get an empty

space-time. We have verified that this empty space-time is the transform of the
type D vacuum metric (case II D) of Kinnersley [7]. Thus the metric (37) is the
radiative extension of Kinnersley's vacuum metric (case II D). We have also
verified that the metric (37) is algebraically special.

CASE (ii). X = sinh \j/.
In this case the differential equations to be satisfied by Y and N* are

(l-q2)Yqq-2qYq=2(N*+aY) (39)
and

(l-q2)N*q-2qN*=2{~k-a(a + l)} Y-2(a + l)N*, (40)

where q=cosh\j/.
If we set p2 = l+4k and 0<p O / 4 , then it can be seen easily that the dif-

ferential equations (39) and (40) are equivalent to the equations

(\-q2)Zm-2qZq+n(n + X)Z = 0 (41)
and

(1-S2)Z* -2qZ* + l(l+l)Z* =0, (42)

with 1 -q = n(n+1), 1 +q = 1(1+1),

Z = N*+i(\+2a+p)Y and Z* =N*+i(l+2a-p) Y. (43)

We need those solutions of (41) and (42) which will give us the Kinnersley vacuum
metric (case IIB) for a = k = 0 as a particular case. The solutions of equations (41)
and (42) can be seen from any standard text such as Coddington [3]. They are

Z = aiQn(q) and Z*=boq+biQM, (44)

where Qn(q) is the Legendre function of the second kind and its series expansion
is given by

Knowing Z and Z* from (44), the result (43) will give Y and N* as

pY = Z-Z*, 2pN*=(p-l-2a)Z+(p+l+2a)Z*. (46)

The functions g and h can now be determined as

/ i s ina= \2N*sinh\lid\p, gsina = - \ 2Ysinh\jjd\j/. (47)ina= \2N*sinh\lid\p, gsina = - \
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Therefore the metric of the solution reduces to

ds =2\du-( I 2Ysinh^#jd)?Tdr+f | 2N*sinh^#W

-(X2 + Y2)(#2 + sinhV<*/J2)-2L dfi-l | 2YsinhiA#W L (48)

where

2L = l+2a+2E*Y+2(-kU
2
 + "*X, X=au-r,

X -\-Y

and E* = -N*-(a + l)Y. (49)

The functions Y and N* are given by (47). If we put k = 0, we get p = 1 and
consequently « = 0 and / = 1. In this case we get an empty space-time for which
Y and N* are given by

Y = a1-bog-b1Ql(q) )
and (50)

J
We have verified that for this vacuum solution the Penrose spinors \pA do not

satisfy the equation

2 ^ | = - 3 ^ 2 ^ 4 . (51)

Hence we conclude that this empty space-time is of type II and not of type D
(Carmeli and Kaye [2]). However, if bx = 0 , then (51) is satisfied and the metric
becomes of type D. It is painless to verify that this metric is the transform of
Kinnersley's metric (case IIB). Thus the metric (48) represents a radiating
Kinnersley's metric (case IIB).

CASE (iii). X =

In this case also we have obtained the following two differential equations for
the functions Y and N*:

y2Zyr+yZy+y2Z = 0 (52)
and

y 2 Z y *+yZ*- ?
2 Z*=0 , (53)

with

Z = N*+(a+yJk)Y,Z*=N*+(a-Jk)Y and y = 2jk(A*p+B)/A. (54)

The solutions of (52) and (53) are given by

Z = c1J0(y)+c2K0(y) and Z* =dlJ0(-y)+d2K0(-yl (55)

where cu c2, d^ and d2 are constants and Jo and Ko are zero-order Bessel functions
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of the first and second kind respectively. In this case we have

= Z-Z*, 2jkN*=(a+y/k)Z*-(a-s/k)Z,

(56)
ina = - \2Y(A<I/+B)d<l/, hsina = - \

where Z and Z* are given by (55).
Here we have assumed that k is positive. The explicit form of the metric in this

case can be expressed as

| I 2N*(Ai]/+B)d\l/ldp\

, (57)

where

2.L=2aH , X=au — r, and £, = — iv —ai. (JO)
X2 + Y2

The functions N* and Y are given by (56).
Since Y is singular for k = 0, it follows that the metric (57) is also singular for

k=0.
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