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ABSTRACT

This paper shows how credibility theory can be encompassed within the theory of
Hierarchical Generalized Linear Models. It is shown that credibility estimates are
obtained by including random effects in the model. The framework of Hierarchical
Generalized Linear Models allows a more extensive range of models to be used than
straightforward credibility theory. The model fitting and testing procedures can be
carried out using a standard statistical package. Thus, the paper contributes a further
range of models which may be useful in a wide range of actuarial applications, inclu-
ding premium rating and claims reserving.

KEYWORDS

Credibility Theory; Hierarchical Generalized Linear Models; Generalized Linear Mo-
dels; Premium Rating: Random-Effect Models.

1. INTRODUCTION

Credibility theory began with the papers by Mowbray (1914) and Whitney (1918). In
those papers, the emphasis was on deriving a premium which was a balance between
the experience of an individual risk and of a class of risks. Biihlmann (1967) showed
how a credibility formula can be derived in a distribution-free way, using a least-
squares criterion. Since then, a number of papers have shown how this approach can
be extended: see particularly Biihlmann and Straub (1970), Hachemeister (1975), de
Vylder (1976, 1986). The survey by Goovaerts and Hoogstad (1987) provides an ex-
cellent introduction to these papers.
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The underlying assumption of credibility theory which sets it apart from formulae
based on the individual risk alone is that the risk parameter is regarded as a random
variable. This naturally leads to a Bayesian model, and there have been a large number
of papers which adopt the Bayesian approach to credibility theory: for example Jewell
(1974, 1975), Klugman (1987), Zehnwirth (1977). Klugman (1992) gives an introduc-
tion to the use of Bayesian methods, covering particularly aspects of credibility theo-
ry. A recent review of Bayesian methods in actuarial science and credibility theory is
given by Makov et al (1996).

It can be shown that, under suitable assumptions, a credibility formula can be deri-
ved as the best linear approximation to the Bayesian estimate, using a quadratic loss
function. Jewell (1974) showed that for an exponential family of distributions, the
credibility formula is the same as the exact formula, so long as the conjugate prior
distribution and a natural parametrisation is used. This result will be derived in a diffe-
rent way in section 3, in order to place the basic model of credibility within a wider
framework. The choice of structure for the collective and the parameterisation will be
discussed in more detail. Since exponential families form the basis of Generalized
Linear Models (GLMs) - see McCullagh and Nelder (1989) - it is natural to seek an
extension of credibility theory encompassing the full range of models which can be
formulated as GLMs. This is particularly apposite as GLMs have many very natural
applications in the actuarial field: see, for example Renshaw (1991), Renshaw and
Verrall (1994). This will also make possible more applications of credibility theory.

The main purpose of this paper is to show how credibility theory can be incorpora-
ted into the general framework of GLMs and implemented in the statistical package
Genstat. Although the formulation of the credibility model is similar in many ways to
the Bayesian approach, our approach is likelihood-based rather than Bayesian. The
dispersion parameters will be estimated directly from the data without specifying prior
distributions. No prior estimates for the parameters need to be supplied. All assump-
tions used in the model can be checked using, for example, appropriate residual analy-
ses. Recent advances in the statistical literature on GLMs allow unobserved random
effects to be estimated along with the parameter vector in the linear predictor. A useful
recent paper is Breslow and Clayton (1993) which covers the theory of generalized
linear mixed models (GLMMs). GLMMs allow the inclusion of normally distributed
random effects and have been applied to a wide variety of statistical problems. We use
the theory of Lee and Nelder (1996), which develops hierarchical generalized linear
models (HGLMs). HGLMs also allow the inclusion of random effects, but these are
not restricted to be normally distributed. Pure random-effect models, in which no fixed
effects are included in the linear predictor, are known in the actuarial literature as
credibility models. They form one part of a much wider class of models which have
many potential applications to actuarial data.

Thus, the purpose of this paper is further to unify the actuarial theory; to show how
modern statistical methods can be used to enable credibility theory to be applied in a
standard statistical package; to allow extensions of basic credibility theory and to
show how the assumptions made can be checked. This last point is important, since we
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regard many aspects of actuarial work as exercises is statistical modeling, rather than a
dogmatic application of risk theory models.

It should be noted that the theory can be applied to models that specify only the
mean and variance functions, using quasi-likelihood (Wedderburn, 1974, Nelder and
Pregibon, 1987) - see section 5.

The paper is set out as follows. Section 2 contains a brief introduction to GLMs and
derives some results which will be used elsewhere. Section 3 shows how credibility
theory can be treated within the context of HGLMs. Section 4 outlines more general
HGLMs, and how they are likely to be used for actuarial data. Section 5 outlines some
extensions to the models in sections 3 and 4.

2. INTRODUCTION TO GLMS

This section contains a brief introduction to GLMs, and derives some of the key re-
sults which will be used later in the paper. A complete treatment of the theory and
application of GLMs can be found in McCullagh and Nelder (1989).

The basis of GLMs is the assumption that the data are sampled from a one-
parameter exponential family of distributions. We first describe these and some of
their fundamental properties.

Consider a single observation y. A one-parameter exponential family of distribu-
tions has a log-likelihood of the form

y9-b(6)

<P
- + c(y,(p) (2.1)

where 0 is the canonical parameter
and cp is the dispersion parameter, assumed known.

Haberman and Renshaw (1996) review the application of Generalized Linear Models
in actuarial science, and include a section on loss distributions. In actuarial applica-
tions, many distributions belonging to one-parameter exponential families are useful.
However, Haberman and Renshaw (1996) show how it is also possible to fit certain
heavy-tailed distributions using Generalized Linear Models.

Some examples of such families are given below. It is straightforward to show that

(2.2)
at)

and Var(Y) = ^p-<p. (2.3)
d6

Note that Var(Y) is the product of two quantities. — is called the variance func-
dO

tion and depends on the canonical parameter (and hence on the mean). We can write
this as V(jx), since equation (2.2) shows that 0 is a function of |J..
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do
(2.4)

In actuarial applications, it is possible to include deterministic volume measures in the
definition of Var(Y). A GLM may be defined by specifying a distribution, as above,
together with a link function and a linear predictor. The link function defines the rela-
tionship between the linear predictor and the mean. The linear predictor takes the form

r\ = Xp (2.5)

where j8 is parameter vector
and X is defined by the design.

For a single observation, X is a row vector, and for a set of observations, X is the de-
sign matrix.

The linear predictor is related to the mean by r\ = g(n). The function g is called the
link function, and the special case g(/x) = 9 is called the canonical link function.

By way of illustration, the log-likelihoods for some common distributions are given
below.
(i) Normal

M-\f 2 j
The log-likelihood is ? y-^r - - log(2;rcr)

a1 2(72 2
Thus, 9 = (i and the canonical link function is the identity function.

92 v2 1
b(9) = — and c(y,6) = - ^ - T - - l o g ( 2 ^ a 2 ) .

2 2cr 2
V(p) = 1 and (p = a2.

(ii) Poisson
The log-likelihood is y log/I - fl - log y!
9 = log \i and the canonical link is the log function.
b(9) = ee and c(y, (p) = - log y!
V(fl) = /i and (p = 1.

(Hi) Binomial

Suppose R ~ Binomial (m, \x). Define Y = —. Then the log-likelihood is
m

log
my)

m
Hence 9 = log , and the canonical link function is the logit function.

b(6) = log(l + ee) and c(y, (p) = logfi-
\my)
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n(l-/j.) and <p = —.
m

Note that this parameterisation may be unfamiliar because of the definition of Y.
However, it enables us to give a coherent theory in the following section.

u2

(iv) Gamma (with mean fi and variance — ) .

- ^ + l o g i
u. u

The log-likelihood is : — + v log y + v log v - log T(v).

6 = and the canonical link is the reciprocal function.

b(6) = - log(-0) and c(y, (p) = v log y + v log v - log F(v).

V{H) = H2 and<p = v~'.

This section has given a brief introduction to GLMs. The following section shows how
standard credibility theory can be applied in this context. Section 4 will show how
more general models can be formulated.

3. THE BUHLMAN MODEL FOR EXPONENTIAL FAMILIES

In this section, we derive the credibility formulae for exponential families of distribu-
tions, under the assumptions made by Biihlmann (1967). It is possible to extend this to
other models: for example the assumptions of Biihlmann and Straub (1970) can be
incorporated using weight functions. This section derives just the credibility formulae.
A brief discussion of the estimation of the dispersion parameters is given in section 4,
where the appropriate references are cited.

Denote the data by y,, for/ = 1,2, ..., t;j = 1,2, ..., n,. Assume for the moment, as is
common in credibility applications, that n, = k, V i, but note that this restriction is not
necessary for the derivation of HGLMs.

Thus, (' indexes the risks within the collective. In credibility theory, it is assumed
that each risk has a risk parameter, which we denote by £, for risk i.
The assumptions of the model of Biihlmann (1967) are

(i) The risks, and hence ^ , are independently, identically distributed,

(ii) y:j %, are independently, identically distributed.

We assume that y £, is distributed according to an exponential family. Define

m(^) = E yy K, . Note that under the assumptions of the model, E\yt]K, does not
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depend on J. Hence the canonical parameter for observation ytJ does not depend on j ,
and we assume that it can be written as follows.

where 8 is the canonical link function and u, is a random effect for group i. Thus, for
the standard credibility model, m(^J = ur Define v, = 8 (uj; then, in this case,

0; = v,. (3.2)

Again, note that there is no j dependence here. Note also that this also implies that
Var(yv \%J does not depend on /

This has defined the distribution of the random variable within each risk, conditio-
nal on the risk parameter. It is also necessary to define the structure of the collective -
the distribution of {£,: J = 1, . . . ,£}. This is often done by defining a Bayesian prior
distribution; here we use the same form of distribution for the random effects, but do
not perform a Bayesian analysis. Instead, we define a "hierarchical likelihood", h,
which we maximize.

We define the conjugate hierarchical generalized linear model (HGLM) by defi-
ning the kernel of the log-likelihood for 8(u) as

(3.3)

In the actuarial literature, this distribution (the distribution of the random effects) is
known as the structure of the collective. Note that we define the log-likelihood of <fj,
implicitly through that of 6(m(^l)). We have conditioned on £, through m(^J = u,, since
it is the latter that we wish to estimate.

From (3.3) and the distribution of yyK,, we may define a hierarchical log-

likelihood as

2 > | 5> (3.4)

p) + a]01'-a2*(01') (3.5)

When the distribution of both the data and the random effects is normal, this is Hen-
derson's joint log-likelihood (Henderson 1975). In other cases, it is an obvious exten-
sion of the joint log-likelihood, called the hierarchical log-likelihood. We have now
defined a hierarchical generalized linear model (HGLM), in this case the conjugate
HGLM. In the particular case described in this section, the linear predictor for yt] con-
sists solely of a random effects term which is modelled in the second stage of the
likelihood, (3.2). It is possible to incorporate more structure into the model by inclu-
ding fixed effects and generalizing the form of the random effects model. However, in
this section we are concerned solely with showing that the estimates obtained under
the basic model described above are the usual credibility estimates. Thus, we require
an estimate of m(^J = u,. The mean random effects {u,: i= \, ..., t] are estimated by
maximizing the hierarchical likelihood, (3.4), as follows.
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Using (2.2)

3.

dv,

• = u,.

Hence — — = > . — \ + a,-aou,.
dv, ~ A <P

*2ui-

Equating — to 0 gives
dv,

k

where yl+ = } yu.

7=1

Hence Q = ^ + ^

+ - ku, + <pa{ — tya-jU, = 0 (3.6)

+ <pa2

= Zy, + (1 - Z)m

where y, = —y,+, Z — and m = —i-.
k k + (pa2 a2

Thus, we have shown that, with the choice of distribution for the random effects defi-
ned in (3.3), and using the canonical link function, the estimate of u, is in the form of a

credibility estimate provided E(m(%,)) = — . This is straightforward to show, and was

also proved by Jewell (1974). The density of u, is proportional to
afi[-a2b(e',)

NOW

Integrating over the natural range of 0', and assuming ea' ' ~"2 ' is zero at the end
points, we have

Hence, using (2.2), £[«*(£,)] = E[u, ] = -^-.
a2

Thus, we have shown that the credibility estimate is the same as the estimate obtained
using a conjugate HGLM with pure random effects. This shows that credibility theory
is closely connected to the statistical theory of random-effect models. Of course, it is
possible to widen the scope of the models considerably. Fixed effects terms can also
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be included in the model, other link functions may be considered and the form of the
random-effect models can be generalized.

It is possible to formulate the pure random-effect model in another way, by inclu-
ding a fixed effect which is constant for all the data. This means that the overall mean
is estimated as a fixed effect and the randomeffects model departures from this overall
mean. There is no effect on the credibility estimates, but the above derivation is, in
some ways, closer to the actuarial theory.

The results in this section are closely related to those of Jewell (1974). The present
approach differs in that it is not presented as a Bayesian procedure, and the emphasis
is on the modelling aspects encapsulated within Generalized Linear Models.

The estimation of the dispersion parameters is discussed in section 4. This includes
the estimation of q> and of ax and a2. It should be noted that if a constant fixed effect is
included in the model, as outlined above, there is only one parameter to estimate in the
distribution of M,. For this reason we adopt this approach henceforth.

By way of illustration, we consider the four exponential families outlined in section
2. Note that we can derive the density of u, from the density of 6 (uj, defined in (3.3).
The density of w, is proportional to

afi',-a2b(e',) d6(ut )

ai8'l-a1b(8'l)

(ii) Normal
The random effects have log-likelihood whose kernel is

a^ul —a2 ——

, „ 2> m 1 , n a,
i .e . ut ~ N(m, <70) ax- —2 , a2 = —2 a n d m = E[u, ] = —L

a0 a0 a2

(ii) Poisson
M, has a likelihood proportional to

«, logW(-«2«,

Hence u, ~ Gamma, parameters a, and a2, and m = E[ul ] = — .
a2

(Hi) Binomial
u, has a likelihood proportional to

. . u,exp

(3.7)

-M, U - K .

«, (1 - «, )

3 a, and a2- a,, and m = E[ul] =
a2

i.e. w, ~ Beta, parameters a, and a2- a,, and m = £[«,] = — .
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(iv) Gamma
u, has a likelihood proportional to

exp — - + a2\ogu
I u,

i.e. a, ~ inverse gamma and m = E[ut ] = —-.
a2

Having shown that the estimates obtained using conjugate HGLMs for a simple ran-
dom-effect model are the usual credibility estimates, we now define a more general
framework which encompasses credibility models.

4. HIERARCHICAL GENERALIZED LINEAR MODELS

Standard GLMs model differences between groups, parametric variation and other
effects as fixed effects in the linear predictor. Random-effect models can be combined
with standard GLMs in order to formulate models with both fixed effects and the
random effects of credibility models. To do this, we define an extended linear predic-
tor for a single observation as

7]' = T] + V (4.1)
where TJ = X3, as in (2.5)
and v is a strictly monotonic function of u,v=v(u).

When v = 0, (4.1) reduces to the standard linear predictor for GLMs. When r\ = 0 and
v = 6(u), we have the basis credibility model described in section 3.

The hierarchical log-likelihood, (3.4), becomes

'•j '

where v, = v(uj.
The maximum hierarchical likelihood extimates (MHLEs) of p and u are obtained

from the pair of equations

— = 0 and — = 0
dp dv

which may be solved iteratively using the procedures written by the second author for
the statistical package Genstat.

We consider here the case when the canonical link function is used for the fixed ef-
fects and v = 0(u). In this case, equation (3.1) for observation ytJ becomes

0;=0y+0(M,) (4.2)

where 0,, = X,fi
6 is the canonical link function

https://doi.org/10.2143/AST.27.1.563206 Published online by Cambridge University Press

https://doi.org/10.2143/AST.27.1.563206


8 0 J A NELDER AND R J VERRALL

and Xy is the row from the design matrix for the fixed effects which relates to y,;.

The same log-likelihood is used for 6(uJ, as in (3.3). Then the kernel of h is

<p

Hence *L = ±1 (4.3)

and — = -^ «2M, (4.4)

where u'l} = E[yy \u,] = E[yt] | £ ] ,

Pk is the Mi parameter in the fixed effects

and xklJ is the kth entry of the row vector X,r

Note that in this case, unlike that in section 3, E[yu K , ] ̂  u,. Instead,

(4.5)

which implies that \i'l} = M, when r\i; = 0.

We include the overall mean as a fixed effect and require that the random effects
then have the appropriate mean (eg 0 for the identity link function).

The dispersion parameters given the fixed and random effects are estimated by
maximising the h-likelihood after a suitable adjustment. The adjustment, which results
in an adjusted profile h-likelihood, is necessary because the marginal maximum likeli-
hood estimates may be biased. Further justifications for this adjustment can be found
in Cox and Reid (1987) and Lee . nd Nelder (1996). For the normal distribution,
unbiased estimates are obtained. Mori, details on estimation theory for random-effect
GLMs can be found in McGilchrist (1994) and Schall (1991).

The joint estimates of the mean effects (fixed and random) and the dispersion pa-
rameters are obtained by iterating between the two sets of estimating equations. These
processes may be conveniently carried out in Genstat, for which a set of procedures is
available from the second author.

For the distributions illustrated in section 1, the likelihoods of the random effects
are again appropriate, but the estimate will be different because of the difference bet-
ween (3.1) and (4.2).
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5 . DISCUSSION

It is possible to extend the class of models to which these methods may be applied by
specifying just the mean and variance functions. This is useful when greater flexibility
is required in the modelling assumptions. For example, Renshaw and Verrall (1994)
show that the chain-ladder technique in claims reserving is essentially equivalent to
GLM with a Poisson likelihood and an appropriate linear predictor. By specifying just
the mean and variance function, this model may be applied to a much wider class of
data than is implied by the Poisson assumption (which obviously requires the variance
to equal the nean). This involves the use of extended quasi-likelihood (Wedderburn
1974, Nelder and Pregibon 1987). For HGLMs, the equivalent extension is the exten-
ded quasi-h-likelihood, in which the extended quasi-likelihood is used in the hierar-
chical likelihood. This extension makes it possible, for example, to include random
effects in the chain-ladder linear model to allow a connection between accident years.

HGLMs may also be of use when a particular factor is hard to model parametrical-
ly. An example of this, which has been mentioned above, is claims reserving, when it
is inappropriate to model the accident years as completely independent, but a parame-
tric relationship is also inappropriate. The same comment applies in motor premium
rating, when it is usual to group a factor such as the age of the policyholder. Such a
grouping may be inappropriate, as it may be crude or doubtful because it has been
decided before the analysis of the data (for example, according to the present rating
structure). However, it is often inappropriate, because of computational and theroreti-
cal considerations, to treat the ages as completely separate or to apply a parametric
model. In this situation, HGLMs may be useful.

Applications in life insurance include similar premium-rating situations as in ge-
neral insurance, and also graduation theory. The use of HGLMs for graduation would
have some similarities to Whittaker graduation, which can be regarded as a GLM with
a stochastic linear predictor (Verrall, 1993).
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