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Abstract

We give conditions which imply that a complete noncompact manifold with quadratic
curvature decay has finite topological type. In particular, we find links between the
topology of a manifold with quadratic curvature decay and some properties of the
asymptotic cones of such a manifold.

1. Introduction

Let M be a complete noncompact Riemannian manifold. In this paper, we are interested in the
following basic problem: find geometric conditions which imply that M has finite topological
type, i.e. it is homeomorphic to the interior of a compact manifold with boundary. For example,
it is known that if M is flat or has nonnegative sectional curvature, then it has finite topological
type. (In fact much stronger results on the structure of M hold in this case by the work of
Cheeger and Gromoll [CG72].)

In studying our basic problem, an important general principle to keep in mind is that
what is really relevant should be the geometry at infinity. For instance, a manifold which
is flat or nonnegatively curved only outside a compact subset has finite topological type
by [GW82]. We might then expect that this conclusion also holds for manifolds which are in some
sense ‘asymptotically flat’ or ‘asymptotically nonnegatively curved’. Indeed, Abresch [Abr85]
generalized the results of Greene and Wu in the following form. Assume that, for some m0 in M
and some constants C, ε > 0, the sectional curvatures K of M at all points m satisfy

K ≥−C/d(m0, m)2+ε,

where d denotes the distance function on M . Then M has finite topological type. Moreover, this
theorem is optimal in the sense that on any noncompact surface Abresch constructed a complete
metric for which we have

K = o(1/d(m0, m)2),

as m goes to infinity.
We now introduce the class of manifolds which will be the focus of this paper.

Definition 1.1. Let (M,m0) be a pointed complete noncompact Riemannian manifold.

(1) We say that M has lower quadratic curvature decay if for some C > 0 the sectional
curvatures K of M at all points m satisfy

K ≥−C/d(m0, m)2.
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On manifolds with quadratic curvature decay

(2) We say that M has quadratic curvature decay if for some C > 0 the sectional curvatures K
of M at all points m satisfy

|K| ≤ C/d(m0, m)2.

Remarks.

(i) If (M,m0) has (lower) C-quadratic curvature decay and m′0 is any point in M , then it is
easy to see that (M,m′0) has (lower) C ′-quadratic curvature decay for some constant C ′ > 0.

(ii) Having (lower) C-quadratic curvature decay is independent of constant rescalings of the
metric.

(iii) Lott [Lot03] has a slightly different definition of quadratic curvature decay. Namely, he
considers the condition

lim sup
r→∞

sup
m,d(m0,m)=r

r2|K| ≤ C.

Qualitatively, this is the same definition as ours, but quantitatively it is a bit more general.

The examples of Abresch mentioned above show that having quadratic curvature decay does
not restrict the topology of surfaces. We also quote this striking result of Gromov (see [LS00,
Lemma 2.1]): on any noncompact manifold there exists a complete metric of C-quadratic
curvature decay for some C > 0. Therefore, we need to find additional assumptions that restrict
the topology of a manifold carrying a metric of quadratic curvature decay. This is done, for
example, by Lott and Shen [LS00], Sha and Shen [SS97], Lott [Lot03], do Carmo and Xia [CX00],
and Xia [Xia99]. Another related question, which was raised by Lott and Shen [LS00] (see
also [Lot03]), is the following: given a constant C > 0, what are the topological constraints on
manifolds having C-quadratic curvature decay?

In this paper, we will establish a link between the topology of a manifold having lower
quadratic curvature decay and the geometry of its asymptotic cones. Before stating our main
technical result, let us first say a few words about asymptotic cones; more details will be given
in the next section. If (M,m0, dM) is a pointed metric space and if {Ri} is a sequence of
positive numbers going to infinity, we can consider the sequence of rescaled pointed metric spaces
{(M,m0, dM/Ri)}. If this sequence is precompact in the pointed Gromov–Hausdorff topology,
then any of its limit points is called an asymptotic cone. Intuitively, an asymptotic cone has to
reflect the large-scale metric behaviour of M . Moreover, an asymptotic cone may not be unique
(i.e it may depend on the converging subsequence of the original sequence) and may even not
be a metric cone, see [CC97, Men00b]. Now, even if {(M,m0, dM/Ri)} is not precompact, there
is a construction using ‘ultrafilters’ and ‘ultralimits’ which allows us to get from this sequence a
pointed metric space denoted by Coneω,{Ri} (M,m0), where ω is a nonprincipal ultrafilter. We
call this space also an asymptotic cone, and it indeed generalizes the first definition given above.
Recall finally that a metric space M is said to have a pole at some point m0 if for any point m
there exists a ray (i.e. a minimizing geodesic on [0,∞)) starting at m0 and passing through m.
We can now state our first result.

Theorem 1.2. Let M be complete noncompact manifold with lower quadratic curvature decay.
If M has infinite topological type, then there is a sequence of positive numbers {Ri} diverging
to infinity such that Coneω,{Ri} (M,m0) does not have a pole at its basepoint.

This result may be seen as a generalization of the first part of the main theorem of Petrunin
and Tuschmann [PT01]. Let us give a rough idea of the proof. Recall that there is a notion for a
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point in M to be critical for the (not smooth) distance function d(m0, ·). This is due to Grove
and Shiohama (see the surveys of Cheeger [Che91] and Grove [Gro93]). For a manifold with lower
quadratic curvature decay, we will prove a distance estimate at each critical point (Lemma 3.2).
This estimate is the analog of the one obtained by Sormani in another context, see the ‘uniform
cut lemma’ [Sor00b, Lemma 7]. If we assume that our manifold has infinite topological type,
then it follows by critical point theory that there is an infinite sequence of critical points qi such
that Ri = d(m0, qi) is diverging. Then we prove our theorem by slightly modifying the proof
of [Sor00b, Theorem 11].

In order to have some applications of our theorem, it would be interesting to know large
classes of manifolds for which all asymptotic cones have a pole. We consider here the case of
noncompact complete manifolds of nonnegative Ricci curvature. It is well-known that these
manifolds have at least linear volume growth and at most Euclidean volume growth of geodesic
balls. More precisely, for m0 in M and R> 0, denote by B(m0, R) the geodesic ball of radius R
and center m0, and by vol(B(m0, R)) its volume. Then for some constant c > 0 and all R≥ 1 we
have

cR≤ vol(B(m0, R)),

and for all R> 0 we have

vol(B(m0, R))≤ ωnRn.

Here n is the dimension of M and ωn is the volume of the unit sphere in Rn. The first inequality
is due to Calabi and Yau [Yau76] and the second one is a consequence of the Bishop–Gromov
volume comparison theorem [Gro99, Lemma 5.3.bis]. We say that M has Euclidean volume
growth if, for some constant v > 0 and some m0 ∈M , we have

∀R> 0, vol(B(m0, R))≥ vRn.

Note that by a standard application of the Bishop–Gromov volume comparison theorem, if a
manifold of nonnegative Ricci curvature has v-Euclidean volume growth at some point, then it
has v-Euclidean volume growth at any point (with the same constant v > 0). Likewise, we say
that M has linear volume growth if

lim sup
R→∞

vol(B(m0, R))
R

<∞.

Moreover, it was shown by Cheeger and Colding [CC97] and Sormani [Sor00a] that if M has
respectively Euclidean volume growth or linear volume growth, then every asymptotic cone is
a metric cone, and hence has a pole at its basepoint. Therefore, from Theorem 1.2 we get
the following corollary (whose first case was obtained by Sha and Shen [SS97, Theorem 1.1]
more directly).

Corollary 1.3. Let M be a complete Riemannian manifold. Assume that M has lower
quadratic curvature decay and nonnegative Ricci curvature. If M has either Euclidean volume
growth or linear volume growth, then M has finite topological type.

Remarks.

(i) There are examples of manifolds of nonnegative Ricci curvature, Euclidean volume growth
and infinite topological type, see [Men00a].

(ii) As already mentioned, the case of Euclidean volume growth was obtained also by Sha and
Shen [SS97, Theorem 1.1]. Sha and Shen treat also a case which is close to minimal volume
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growth [SS97, Theorem 1.2]. Namely, for R> 0 set

v(R) = inf
m∈B(m0,R)

vol(B(m, 1)).

Sha and Shen showed that if M has nonnegative Ricci curvature and satisfies

lim sup
R→∞

vol(B(m0, R))
v(R)R2

= 0, (1.1)

then it has finite topological type (the condition on Ricci curvature is actually not necessary
here, as was shown later by Lott and Shen [LS00, Proposition 1.1]). It seems hard to have a
control on v(R) even on a manifold with nonnegative Ricci curvature so that it is not clear
that (1.1) implies linear volume growth. Indeed, Croke and Karcher [CK88, Example 2,
p. 754] construct a complete metric on R4 which has positive Ricci curvature and sectional
curvatures decaying at infinity at a rate d(0, ·)−2+δ (for δ ∈ (0, 2/3)), and which satisfies

∀ε > 0, lim
R→∞

(sup {vol(B(m, ε)), d(m, 0)≥R}) = 0.

(iii) Sha and Shen asked whether it is true that every manifold with lower quadratic curvature
decay and nonnegative Ricci curvature has finite topological type. Actually this does not
hold and counterexamples were constructed by Menguy.

So far we have considered manifolds having C-quadratic curvature decay for some C > 0.
Now, we will look more precisely at the influence of the constant C: does having C-quadratic
curvature decay with C small imply anything on the topology? In this generality, we cannot
hope to get much because of the examples constructed by Lott [Lot03, Theorem 2]. Namely, for
any C > 0, there exists a surface of infinite topological type carrying a metric with C-quadratic
curvature decay (and satisfying some Euclidean type volume growth conditions). Here, we are
able to get the following.

Theorem 1.4. Given an integer n and a constant v > 0, there exists a constant C = C(n, v)> 0
such that if M is an n-dimensional Riemannian manifold with nonnegative Ricci curvature and
moreover

(1) M has C-quadratic curvature decay,

(2) M has v-Euclidean volume growth, ∀m ∈M, ∀R> 0, vol (B(m, R))≥ vRn,

then M is diffeomorphic to Rn.

Next, we apply the techniques used to prove Theorem 1.2 to get (implicit) estimates of the
criticality radius on some manifolds. Recall that the criticality radius at some point m0 is the
largest R ∈ (0,∞] such that there is no critical point of d(m0, ·) (other than m0) in the geodesic
ball B(m0, R). It is always bigger than the injectivity radius at that point.

Theorem 1.5. Given constants n ∈ N, C, Λ, v > 0, there exists R=R(n, C, Λ, v)> 0 with the
following property: if (M,m0) is a pointed n-dimensional Riemannian manifold such that

(1) M has C-quadratic curvature decay,

(2) M has bounded sectional curvature |KM | ≤ Λ2,

(3) M has Euclidean volume growth, ∀m ∈M, ∀t ∈ R, vol (B(m, t))≥ vtn,

then the criticality radius at m0 is greater than or equal to R. Moreover, for fixed n, Λ and v,
the function R goes to infinity when C goes to zero.
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Note that our assumptions (1) and (3) above are scale invariant, so that we cannot hope to get
similar results without (2) or at least without some extra assumption which is not scale invariant.
We would like also to emphasize here that the existence of R is actually already known. Namely,
on the one hand, Klingenberg [Kli59] gave a general lower bound on the injectivity radius i at
m0 in the following form:

i≥min (l, π/Λ),
where l denotes the length of the shortest geodesic loop at m0. For this estimate, no lower bound
on the volume growth is needed, nor any quadratic curvature decay assumption. On the other
hand, Cheeger et al. [CGT82] gave a lower bound on l in terms of Λ, a lower bound on the volume
growth, and the dimension of the manifold. These together give a lower bound on i under the
assumptions (2) and (3) of our theorem, and hence a lower bound on the criticality radius at m0.
However, this lower bound is at most π/Λ and, under the assumptions of C-quadratic curvature
decay and C small, we get a qualitative improvement of it.

The organization of the paper is as follows. In the next section, we recall the necessary
background material on ultralimits and asymptotic cones. In § 3, we prove our distance estimate
for critical points and deduce from it a slightly more general form of Theorem 1.2. In § 4, we prove
Theorem 1.4. In the last section, we prove first the existence of the function R in Theorem 1.5
(actually under less restrictive assumptions) and then finish the proof of Theorem 1.5.

2. Asymptotic cones

2.1 Ultralimits
In this section, we recall standard facts about ultralimits. The material is taken from [Kap01,
ch. 9] and [KL97, § 2.4] and the reader should consult these sources for further references and
developments.

A nonprincipal ultrafilter is a finitely additive probability measure ω on the subsets of N such
that, for every I ⊂ N, we have ω(I) = 0 or 1, and ω(I) = 0 if I is finite. It follows easily from the
definition that if two subsets I and J have full measure, then I ∩ J also has full measure.

If Y is a compact metric space and if f : N→ Y is a map, then we can take the ‘limit’ of
f with respect to ω; this is the unique element y ∈ Y , denoted by ω-lim f , such that, for every
neighbourhood U of y, the preimage f−1(U) has full ω-measure.

Consider now a sequence (Mi, mi, dMi
) of pointed metric spaces. Any ultrafilter ω allows

us to put these spaces together and get a pointed metric space (Mω, mω, dMω
), which is called

the ultralimit of the sequence. To define this object, we proceed as follows. Let M∞ be the
space of sequences {pi}i∈N, with pi ∈Mi, such that the sequence {dMi

(mi, pi)} is bounded. For
two elements {pi} and {qi} of M∞, we can in particular consider the number d∞({pi}, {qi})
defined by

d∞({pi}, {qi}) = ω-lim {i 7→ dMi
(pi, qi)}.

Here d∞ is a pseudodistance on M∞ and we define

(Mω, dMω
) = (M∞, d∞)/∼,

where we identify two elements of M∞ whose d∞-distance is zero. Finally, the sequence {mi}
defines an element of Mω which we denote by mω.

The following proposition shows that ultralimits are generalizations of Gromov–Hausdorff
limits (see [Kap01, Propositions 9.2 and 9.4] and [KL97, Lemma 2.4.3] for the proof, and [Gro99]
for background material on Gromov–Hausdorff convergence).
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Proposition 2.1 [Kap01, KL97]. Let (Mi, mi, dMi
) be a sequence of pointed metric spaces and

let ω be a nonprincipal ultrafilter on N. If (Mi, mi, dMi
) is a precompact family in the pointed

Gromov–Hausdorff topology, then the metric space (Mω, mω, dMω
) is a limit point of this family

in the pointed Gromov–Hausdorff topology.

2.2 Asymptotic cones
Ultralimits are particularly useful to define the notion of asymptotic cone for a metric space.

Definition 2.2. Let (M,m0, dM) be a pointed metric space and let {Ri} be a sequence of
positive real numbers diverging to infinity. For each i, let (Mi, m0, dM/Ri) be the space (M,m0)
with the rescaled metric dM/Ri. The generalized asymptotic cone of (M,m0), with respect
to {Ri} and a given nonprincipal ultrafilter ω, is defined by

Coneω,{Ri} (M,m0) = ω-lim (M,m0, dM/Ri).

Remarks.

(i) We use the word ‘generalized’ in the definition to avoid confusion with the more traditional
notion of asymptotic cone, as explained in the introduction. Namely, assume that the
sequence (M,m0, dM/Ri) is precompact in the pointed Gromov–Hausdorff topology.
(By the Gromov compactness theorem, this is for example the case if M has nonnegative
Ricci curvature [Gro99, Theorem 5.3].) Then there is a subsequence of this sequence which
converges to a metric space (X, x, dX), called also the asymptotic cone of (M,m0). This
space X may not be a metric cone (see [Men00b]) and may even not be unique (i.e. it may
depend on the convergent subsequence, see [CC97]). However, by Proposition 2.1 above, for
a suitable convergent subsequence, X will be the same as the asymptotic cone introduced
in Definition 2.2.

(ii) The usual choice of the sequence Ri is Ri = i, but this is not necessary. The definition
of Coneω,{Ri} (M,m0) actually makes sense for any positive sequence of real numbers
{Ri}, and not only for divergent sequences; nevertheless, for a general sequence, the
terminology ‘asymptotic cone’ is probably not a good one. Furthermore, if we have a
sequence (Mi, mi, dMi

) of metric spaces, we can define its (generalized) asymptotic cone by

Coneω,{Ri} (Mi, mi)i∈N = ω-lim (Mi, mi, dMi
/Ri).

3. A distance estimate for critical points

To prove Theorem 1.2, our first task will be to get a distance estimate for critical points, in the
spirit of [SS97, Lemma 2.1] (see also [LS00]). For manifolds with nonnegative Ricci curvature,
Sormani obtained such an estimate for some special critical points which she called ‘halfway
points’ (see [Sor00b] for the explanation of this terminology). Under the assumption of lower
quadratic curvature decay, we derive this estimate for all critical points, and not only halfway
points.

Lemma 3.1. Let M be a complete Riemannian manifold with basepoint m0. Assume that,
for some C > 0, M has lower C-quadratic curvature decay. Then there exists ε= ε(C)> 0
with the following property. If q is a critical point for d(m0, ·) and if m is a point with
d(m0, m)≥ (1 + ε)d(m0, q), then

d(m, q)> d(m0, m)− d(m0, q) +
ε

2
d(m0, q).

533

https://doi.org/10.1112/S0010437X09003947 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09003947


N. Yeganefar

Proof. We argue by contradiction and assume that the lemma is not true. Then for all ε > 0 we
find a critical point q at distance d(m0, q) =R and a point m at distance d(m0, m) = αR for
some α≥ 1 + ε, such that

d(m, q)≤ αR−R+
ε

2
R.

We can rewrite this as
3
2
εR≤R(α− 1 + 2ε)− d(m, q). (3.1)

Now let γ be a minimal geodesic from q to m. As q is critical for d(m0, ·), there exists a minimal
geodesic σ from q to m0 such that the angle between γ′(0) and σ′(0) is at most π/2. Consider
the points x= σ(εR) and y = γ(εR). By the triangle inequality, we have

d(m0, m)− d(m0, x)− d(m, y)≤ d(x, y).

Using the fact that d(m0, x) =R− εR and d(m, y) = d(m, q)− εR, it follows that

R(α− 1 + 2ε)− d(m, q)≤ d(x, y). (3.2)

Now inequality (3.1) implies that if ε is sufficiently small, any minimal geodesic joining x and y
is contained in M \B(m0, R/2). Namely, let c be such a geodesic. For each t, we have by the
triangle inequality

αR= d(m0, m)≤ d(m0, c(t)) + d(c(t), y) + d(y, m). (3.3)

Moreover, we have

d(c(t), y) ≤ d(x, y)
≤ d(x, q) + d(q, y)≤ 2εR.

Combining this with inequality (3.3), we obtain

αR≤ d(m0, c(t)) + 2εR+ d(m, q)− εR.

Using our assumption (3.1) on d(m, q), it follows finally that

d(m0, c(t))≥ (1− 3
2
ε)R,

hence d(m0, c(t)) is bigger than R/2 for small ε. Moreover, it is clear that γ|[0,εR] and σ|[0,εR]

are also contained in M \B(m0, R/2). Now we have K ≥−4C2/R2 on M \B(m0, R/2), so,
by the Toponogov comparison theorem applied to the hinge (γ|[0,εR], σ|[0,εR]), inequalities (3.2)
and (3.1), we get

cosh(2C 3
2
ε)≤ cosh2(2Cε).

This is impossible if ε is small enough. 2

Now we come to the proof of Theorem 1.2. We will use the arguments of [Sor00b, Theorem 11]
with some minor changes. The main technical difference is that Sormani deals with manifolds with
nonnegative Ricci curvature which form a precompact family in the pointed Gromov–Hausdorff
topology, whereas we work with families which are not necessarily precompact. We have then to
use ultralimits. Theorem 1.2 is a direct consequence of the following result.

Proposition 3.2. Let (Mi, mi) be a sequence of complete pointed Riemannian manifolds with
the same lower quadratic curvature decay. Assume that, for every i, there is a critical point qi for
dMi

(mi, ·) at distance Ri = dMi
(mi, qi)> 0. Then, for any nonprincipal ultrafilter ω, the space

Coneω,{Ri} (Mi, mi)i∈N does not have a pole at its basepoint.
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Proof. For simplicity, we set

Xi = (Mi, mi, dMi
/Ri),

(Mω, mω) = Coneω,{Ri} (Mi, mi)i∈N,

and qω = [{qi}]. First we note that, for all i, we have

dXi
(mi, qi) = dMi

(mi, qi)/Ri = 1.

As mω is by definition represented by {mi}, it follows that dMω
(mω, qω) = 1.

We will show that there is no ray emanating from mω which passes through qω. For this, we
argue by contradiction and assume that there is a ray γ : [0,∞)→Mω such that γ(0) =mω and
γ(1) = qω. For δ > 0, consider the point pω = γ(1 + δ), and choose a sequence pi ∈Mi such that
pω = [{pi}]. Let ε > 0 be as in Lemma 3.1 and choose η ∈ (0, ε/4). We have dMω

(mω, pω) = 1 + δ,
because γ is minimizing. Therefore, for a set J = {j} of indices of full ω-measure, we have

dXj
(mj, pj)> 1 + δ − η,

so
dMj

(mj, pj)> (1 + δ − η)Rj.
We may assume that δ and η are chosen such that δ − η ≥ ε. Then by Lemma 3.1 (with M =Mj,
m0 =mj, q = qj and m= pj in the notation of this lemma), we get

dMj
(pj, qj)> (δ − η + ε/2)Rj,

which is equivalent to
dXj

(pj, qj)> δ − η + ε/2. (3.4)
On the other hand, we have dMω

(pω, qω) = δ because pω = γ(1 + δ), qω = γ(1) and γ is
minimizing. From this we deduce the existence of a set K = {k} of indices of full ω-measure
such that

dXk
(pk, qk)≤ δ + η.

Finally, we note that the set J ∩K still has full ω-measure, so that the last inequality combined
with (3.4) gives

δ − η + ε/2< δ + η.

This contradicts our choice of η < ε/4 and finishes the proof of the lemma. 2

Remark. The proof actually shows a slightly more general result. Namely, any minimizing
geodesic emanating from mω which passes through qω stops being minimizing at a time t≤ 1 + ε,
where ε is as in Lemma 3.1.

4. Proof of Theorem 1.4

We argue by contradiction and assume that there exist an integer n, a constant v > 0, and a
sequence of pointed Riemannian n-dimensional manifolds (Mi, mi, gMi

) such that for all i:

(1) Mi has nonnegative Ricci curvature;
(2) Mi has 1/i-quadratic curvature decay;
(3) Mi has v-Euclidean volume growth, ∀m ∈Mi, ∀R> 0, vol (BMi

(m, R))≥ vRn;
(4) Mi is not diffeomorphic to Rn.
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As Mi is not diffeomorphic to Rn, it follows by critical point theory that there is at least one
critical point qi for dMi

(mi, ·) at some distance Ri = dMi
(mi, qi)> 0. We may assume that qi

is chosen so that there are no other critical points in the ball BMi
(mi, Ri) (other that mi).

Furthermore, the assumptions (1), (2) and (3) on Mi are invariant by rescalings of the metric
and the distance functions corresponding to proportional metrics have the same sets of critical
points. Therefore, we may, without loss of generality, assume that Ri = 1. By Proposition 3.2,
for any nonprincipal ultrafilter ω, the space

(Mω, mω) = Coneω,{1} (Mi, mi)i∈N

does not have a pole at its basepoint. We will show that this space is a Euclidean cone to
derive a contradiction. This will be done in two steps. First, the arguments of Lott [Lot03] and
Tian [Tia90] show that each unbounded connected component of Mω \ {mω} is a Euclidean
cone. Then we prove that Mω \ {mω} has only one connected component (which is necessarily
unbounded).

Because our situation is slightly different from those considered by Lott and Tian, and for
readers’ convenience, we outline here the reasoning of these authors. By [Lot03, Lemma 2],
Mω \ {mω} is a flat n-dimensional manifold. This is roughly seen as follows. Let p be a point in
Mω \ {mω} and set D = dMω

(mω, p). It can easily be checked that we may choose a representative
{pi} ∈ΠMi of p such that each distance dMi

(mi, pi) is almost equal to D. Then, using the
curvature decay assumption on Mi, there is a uniform bound on the sectional curvatures of
the balls BMi

(pi, D′) for 0<D′ <D. Moreover, the volume of these balls has a uniform lower
bound because each Mi has uniform v-Euclidean volume growth. Then Lott shows that the ball
BMω

(p, D′) is the limit of a subsequence of the balls BMi
(pi, D′) in the C1,β topology (for any

β ∈ (0, 1)). As a consequence, Mω \ {mω} is a flat manifold and the volume of the ball BMω
(p, D′)

satisfies

vol (BMω
(p, D′))≥ vD′n. (4.1)

Let C be an unbounded component of Mω \ {mω}. Using the Euclidean volume growth (4.1),
Tian shows that the fundamental group π1(C) of C is finite [Tia90, Claim 2, p. 123]. Consider
now the universal cover C̃ of C. It is a flat simply connected manifold, and may thus be seen as
an open subset of Rn. In this way, the fundamental group π1(C) may be identified with a finite
subgroup of the orthogonal group O(n). By [Tia90, Claim 3, p. 124], the manifold C̃ is equal to
Rn \ {0} and therefore C = (Rn \ {0})/π1(C) is a Euclidean cone.

We prove now that Mω \ {mω} has only one connected component. For this, it is enough to
show that if p and q are two points in Mω with

dMω
(mω, p) = dMω

(mω, q) =:D > 0,

for some small D > 0, then there is a continuous curve joining them in Mω \ {mω}. If p and q are
such points, and if ε is any fixed small number, then we can find representatives {pi}, {qi} ∈ΠMi

of p and q respectively, with dMi
(mi, pi) and dMi

(mi, qi) in (D − ε, D + ε) for all i. In other words,
pi and qi lie in the annulus A(mi, D − ε, D + ε). We may further assume that D and ε are such
that

0<D/2<D − ε and D + ε < 1.

In particular, the ball BMi
(mi, D + ε) does not contain any critical points of dMi

(mi, ·) other
than mi, so that the annulus A(mi, D − ε, D + ε) is connected. Let di denote the diameter of
this annulus with respect to the intrinsic metric of Mi \BMi

(mi, D/2). As Mi has nonnegative
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Ricci curvature, a proof similar to the one of Abresch and Gromoll [AG90, Lemma 1.4], based
on the Bishop–Gromov volume comparison theorem, shows that

di ≤ CD,

where C > 0 is a constant depending only on the dimension n. Consequently, there exists a curve

γi : [0, 1]→Mi \BMi
(mi, D/2)

with γi(0) = pi, γi(1) = qi and
length(γi)≤ 2di ≤ 2CD.

Here we assume that γi has a constant length tangent vector, this length being necessarily less
than or equal to 2CD. Define the curve

γω : [0, 1]→Mω

by
γω(t) = [{γi(t)}].

Obviously, γω joins p to q. Moreover, for all i and all t we have

dMi
(mi, γi(t))≥D/2

by construction, which implies that

dMω
(mω, γω(t))≥D/2.

Therefore, γω does not meet the point mω. It remains to prove that γω is continuous. For this,
we note that the assumptions on γi imply that for t, t′ ∈ [0, 1] we have

dMi
(γi(t), γi(t′))≤ 2CD|t− t′|.

This easily implies the (Lipschitz) continuity of γω. Henceforth, Mω \ {mω} is connected and it
is in fact a Euclidean cone. This completes the proof of the theorem.

5. Estimates of the criticality radius

In this section, we prove Theorem 1.5. The first part of this theorem (i.e. the existence of R) is a
direct consequence of the following more general result, whose proof is related to some arguments
of [Lot03].

Proposition 5.1. Given constants n ∈ N, C, Λ, v > 0, there exists R=R(n, C, Λ, v)> 0 with
the following property: if (M,m0) is a pointed n-dimensional Riemannian manifold such that

(1) M has lower C-quadratic curvature decay,

(2) M has bounded sectional curvature |KM | ≤ Λ2,

(3) M is volume noncollapsing (i.e. ∀m ∈M, vol (B(m, 1))≥ v),

then the criticality radius at m0 is greater than or equal to R.

Proof. Assume on the contrary that the proposition is not true. Then there exist constants
n, C, Λ, v and there exists a sequence of pointed Riemannian n-dimensional manifolds
(Mi, mi, gMi

) such that for all i:

(1) Mi has lower C-quadratic curvature decay;
(2) Mi has bounded sectional curvature |KMi

| ≤ Λ2;
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(3) Mi is volume noncollapsing infm∈Mi
vol (B(m, 1))≥ v;

(4) there exists a critical point qi for dMi
(mi, ·) at some distance Ri = dMi

(mi, qi)> 0, with
Ri→ 0.

Setting

Xi = (Mi, mi, gMi
/R2

i ),

it follows from Proposition 3.2 that for any nonprincipal ultrafilter ω the space
Coneω,{Ri} (Mi, mi)i∈N does not have a pole at its basepoint. We are going to show that this
space is in fact isometric to Rn to get a contradiction. First, due to the rescaling to define Xi,
we have

|KXi
|=R2

i |KMi
| ≤R2

iΛ
2. (5.1)

In particular, the sequence {Xi} has uniformly bounded sectional curvature because Ri goes
to zero. By the Gromov compactness theorem and Proposition 2.1 a subsequence of (Xi, mi)
converges in the pointed Gromov–Hausdorff topology to Coneω,{Ri} (Mi, mi)i∈N.

Moreover, for fixed R> 0 and p ∈Xi

vol (BXi
(p, R)) =

vol (BMi
(p, RRi))
Rn
i

.

We may assume that for i sufficiently large we have RRi ≤ 1. If we denote by V (r) the volume
of a ball of radius r in the n-dimensional hyperbolic space of constant sectional curvature −Λ2,
the lower bound on the sectional curvature of Mi and the Bishop–Gromov volume comparison
theorem imply that

vol (BXi
(p, R)) ≥ vol (BMi

(m, 1))
V (1)

V (RRi)
(RRi)n

Rn

≥ kRn, (5.2)

where k > 0 is a constant depending only on n, Λ and v. Thus we are in the
noncollapsing case of Gromov–Hausdorff convergence and a subsequence of (Xi, mi) converges
to Coneω,{Ri} (Mi, mi)i∈N in the pointed C1,β topology (for any β ∈ (0, 1)). By [Pet97], the
bounds (5.1) on the sectional curvatures and the fact that Ri goes to zero, Coneω,{Ri} (Mi, mi)i∈N
is a flat Riemannian manifold. The volume estimate (5.2) and the C1,β convergence imply that
Coneω,{Ri} (Mi, mi)i∈N also has Euclidean volume growth and is therefore isometric to Rn. This
finishes the proof. 2

Proof of Theorem 1.5. The existence of R is an immediate consequence of Proposition 5.1. For
the last assertion of the theorem, we argue by contradiction as in the proof of Proposition 5.1.
Then there exist constants n, Λ, v, R0 > 0 and a sequence of pointed Riemannian n-dimensional
manifolds (Mi, mi, gMi

) such that for all i:

(1) Mi has 1/i-quadratic curvature decay;

(2) Mi has bounded sectional curvature |KMi
| ≤ Λ2;

(3) Mi has Euclidean volume growth, ∀m ∈Mi, ∀t ∈ R, vol (BMi
(m, t))≥ vtn;

(4) there exists a critical point qi for dMi
(mi, ·) at some distance Ri = dMi

(mi, qi)> 0, with
Ri ≤R0.

We set

Xi = (Mi, mi, gMi
/R2

i ),
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so that by Proposition 3.2 we know that for any nonprincipal ultrafilter ω the space
Coneω,{Ri} (Mi, mi)i∈N does not have a pole at its basepoint. To derive a contradiction, we
will show as in the proof of Proposition 5.1 that this space is isometric to Rn. First, using the
fact that the Mi have uniformly bounded sectional curvature and the upper bound Ri ≤R0,
we deduce that the Xi also have uniformly bounded sectional curvature. Moreover, it is clear
that the Xi have also uniformly Euclidean volume growth. It follows that a subsequence of
(Xi, mi) converges to Coneω,{Ri} (Mi, mi)i∈N in the pointed C1,β topology (for any β ∈ (0, 1)).
As each Mi has 1/i-quadratic curvature decay, so also does each Xi. Then it is easy to see
that Coneω,{Ri} (Mi, mi)i∈N is a flat n-dimensional manifold (see also [Lot03, Lemma 2]).
Furthermore, Coneω,{Ri} (Mi, mi)i∈N also has Euclidean volume growth by C1,β convergence.
Hence it is isometric to Rn. 2
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Sci. École Norm. Sup. (4) 33 (2000), 275–290.

Men00a X. Menguy, Noncollapsing examples with positive Ricci curvature and infinite topological type,
Geom. Funct. Anal. 10 (2000), 600–627.

Men00b X. Menguy, Examples of nonpolar limit spaces, Amer. J. Math. 122 (2000), 927–937.
Pet97 P. Petersen, Convergence theorems in Riemannian geometry, in Comparison geometry, Berkeley,

CA, 1993–94, Mathematical Sciences Research Institute Publications, vol. 30 (Cambridge
University Press, Cambridge, 1997), 167–202.

PT01 A. Petrunin and W. Tuschmann, Asymptotical flatness and cone structure at infinity, Math.
Ann. 321 (2001), 775–788.

SS97 J. Sha and Z. Shen, Complete manifolds with nonnegative Ricci curvature and quadratically
nonnegatively curved infinity, Amer. J. Math. 119 (1997), 1399–1404.

She96 Z. Shen, Complete manifolds with nonnegative Ricci curvature and large volume growth, Invent.
Math. 125 (1996), 393–404.

Sor00a C. Sormani, The almost rigidity of manifolds with lower bounds on Ricci curvature and minimal
volume growth, Comm. Anal. Geom. 8 (2000), 159–212.

Sor00b C. Sormani, Nonnegative Ricci curvature, small linear diameter growth and finite generation of
fundamental groups, J. Differential Geom. 54 (2000), 547–559.

Tia90 G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent.
Math. 101 (1990), 101–172.

Xia99 C. Xia, Open manifolds with nonnegative Ricci curvature and large volume growth, Comment.
Math. Helv. 74 (1999), 456–466.

Yau76 S.-T. Yau, Some function-theoretic properties of complete Riemannian manifold and their
applications to geometry, Indiana Univ. Math. J. 25 (1976), 659–670.

Nader Yeganefar yeganefa@cmi.univ-mrs.fr
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