
Canad. Math. Bull. Vol. 34 (2), 1991 pp. 158-164 

COMPARING GRADED VERSIONS OF THE PRIME RADICAL 

M. A. BEATTIE, LIU S.X., AND P. N. STEWART 

ABSTRACT. Let G be a group with identity e, let A be a normal supernilpotent radical 
in the category of associative rings and let Aref be the reflected radical in the category 
of G-graded rings. Then for A a G-graded ring, Aref(A) is the largest graded ideal of A 
whose intersection with Ae is A (Ae). For A = B, the prime radical, we compare #ref(A) 
to BG(A) = B(A)G, the largest graded ideal in B{A). 

0. Introduction. Given a radical À in the category of associative rings and ring homo-
morphisms, one might seek a natural definition for a graded version of A in the category 
of G-graded rings and grade-preserving homomorphisms, G a given group. One way of 
defining a graded version of A would be to consider A (A)G, the largest graded ideal con
tained in A (A), A a G-graded ring. Another possibility would be to consider the largest 
graded ideal I of A such that in Ae = A (Ae), Ae the identity graded component of A. 

The first section of this note contains some necessary background material and defi
nitions. In the second section we note that if A is a normal radical, then Aref(A) n Ae — 
X(Ae), where Aref is the reflected graded radical of [2]. If, as well, A is supernilpotent 
(for example A the Jacobson, Levitzki or prime radical), then Aref(A) is the largest grad
ed ideal / of A such that ID Ae — A (Ae). 

In the third section we study graded versions of the prime radical, namely B(A)G, the 
largest graded ideal in B(A), and #ref(A), the reflected radical of [2] and the largest graded 
ideal of A whose intersection with Ae is B(Ae) by the results of the preceding section. For 
G finite, #ref = BQ\ therefore we focus our discussion on rings graded by an infinite 
group. An example shows that BKf(A) may properly contain BG(A) (in fact #ref(A) D Ae 

may properly contain B(A)G n Ae) even if G is locally finite and A is strongly G-graded. 
We apply the main theorem of the second section to obtain an analogue to a theorem 
of Cohen and Montgomery for infinite G, show by examples that the implications in 
our theorem cannot be strengthened, and discuss conditions which ensure that BKf(A) = 
BG(A). 

1. Preliminaries. Throughout, G will denote a group with identity e, and A a G-
graded ring, not necessarily with identity. Unless otherwise stated, ideal means two-sided 
ideal. 
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The G-grading on A is called nondegenerate if for any g G G and any 
0 * ag G Ag, agAg-\ * 0 and Ag-iag * 0. By [3, Lemma 2.8], if A has nondegener
ate G-grading, then, for any nonzero left ideal L of A, Le * 0, and for any nonzero right 
ideal/? of A, #<,*(). 

If A does not have an identity, then, as in [2], let A1 be the Dorroh extension of A and 
give A1 a G-grading by A\ — {(a, n) : a G Ae, n G Z} , Al

g = {(b, 0) : b G Ag} for 
g * e. Then A is a graded ideal in A1 and A1 / A ~Al

e/Ae~Z with trivial G-grading. 
In [1, Definition 2.1], A # G*, the generalized smash product of A and G, was defined to 

be the free left A-module (&geGApg with multiplication defined for elements apg and bph 
by (aPg)(bph) — abgh-iph, and extended to general elements of A#G* by linearity. For 
À a radical in the category of associative rings, the reflected radical Aref in the category 
of G-graded rings and grade preserving ring homomorphisms was defined in [2] to be 
A^(A) = { a G A:apg G A (A # G*) for all g G G}. It is shown in [2] that Aref (A) is a 
graded ideal of A and that Aref(A)# G* = A (A # G*). 

Recall that a radical A is called normal [7, Theorem 2] if the following hold. 
i) For any idempotent/ = f2 eS,\(JSf)=f\(S)f. 
ii) If / is an ideal of a ring S such that S/1 ~ Z, the ring of integers, then A (/) = 

A(S)fl/. 
Also a radical A is called supernilpotent if A (S) = S for all nilpotent rings S. 

LEMMA 1.1. X is normal iff(i) above holds along with 

(ii'). If I is an ideal of S such that S/1 is a direct sum of copies ofZ, then A(7) = 
A(5)Pl/. 
Also A normal implies 

(Hi). If J is a graded ideal of a graded ring A such that Aj J ~ Z, trivially graded, 
then ArefC/) = Aref(A) H J. 

PROOF. Suppose A is a normal radical, and S/1 is a direct sum of copies of Z. If 
A(Z) ^ 0, then by [6, Theorem 1.3], A is supernilpotent, and therefore hereditary by [5, 
Theorem 2]. (Recall that a radical A is called hereditary if A (I) = A (S) n / for any ideal 
/ of a ring S.) If A (Z) = 0, then A (5/1) = 0 and A (S) C /. Hence A (5) C A (/), so that 
X(S) = X(I). 

To see that A normal implies (iii), let A be a graded ring and J a graded ideal such that 
Aj J ^ Z with trivial grading. Then, 

Aref(i) # G* = X (J # G*) = (J # G*) H A (A # G*) by (H ') 

= (7#G*)H (Aref(A)#G*) = ( / n Aref(A))#G*, 

and the statement follows. • 

2. The reflected radical of a normal radical. Throughout this section, A will denote 
a normal radical. 
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PROPOSITION 2.1. For A a G-graded ring and A a normal radical Aref(A) Pi Ae = 
A (A,). 

PROOF. If A has an identity, then the proof follows as in [1, Corollary 3.3]. Other
wise, embed A as a G-graded ideal in A1. Then by Lemma 1.1, 

Aref(A) H Ae = (AreKA1) D A) D Ae, since A1/A ~ Z, trivially graded 

= \{A\)n Ae since A1 has a 1 

= A(Ae), since Al
e/Ae ~ Z. 

• 

COROLLARY 2.2. A (Ae) is G-invariant where G acts on the lattice of ideals of Ae by 
zi = AgIAg-i. m 

Note that Sands [12] has recently shown both Corollary 2.2 and the converse; a rad
ical A is normal if and only if X(Ae) is G-invariant for all groups G and G-graded A. 
Corollary 2.2 generalizes [10,1.3.32] to the class of normal radicals and to graded rings, 
not necessarily strongly graded, and possibly without identity. 

LEMMA 2.3. If A is a G-graded ring, and A#G* is semiprime, then the G-grading 
on A is nondegenerate. 

PROOF. Suppose ag is a nonzero element of Ag. Then 

L = {(nag + bag)pe : n G Z, b G A} 

is a nonzero left ideal of A # G* and therefore L2 ^ 0. Thus there exists a nonzero homo
geneous element b of A such that agpe(bagpe) ï 0. Then b G Ag-\, and agb and bag are 
nonzero. • 

THEOREM 2.4. IfX is a normal supernilpotent radical, A a G-graded ring, then the 
following are equivalent: 

i). A (A # G*) = 0 (or equivalently Aref(A) = 0). 

ii). A (Ae) = 0 and the G-grading on A is nonde generate. 

PROOF. The implication i) => ii) follows from Proposition 2.1 and Lemma 2.3. Con
versely, by Proposition 2.1, ii) implies that Aref(A)e = 0 and then nondegenerate grading 
implies that Aref(A) = 0. • 

COROLLARY 2.5. For A,A as in the theorem, the G-grading on A1 — A/ Aref(A) is 
nondegenerate. 

PROOF. A (A1 # G*) = Aref(A
/)# G* = 0. • 
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COROLLARY 2.6. For A, A as in the theorem, the reflected radical Aref(A), is the 
largest graded ideal I of A such that in Ae = X (Ae). 

PROOF. Let / be the largest graded ideal of A such that / D Ae = X (Ae). By Propo
sition 2.1, Aref(A) Ç /. Suppose the inclusion is proper. Let /' be the image of / in 
A' = A/ Aref(A). Then /' is a nonzero graded ideal of A7 but with VC\ A'e = 0; by Corollary 
2.5, this is a contradiction. • 

The results above yield a further characterization of Aref(A). 

PROPOSITION 2.7. Let X be a normal supernilpotent radical and A a G-graded ring. 
Then 

Aref(A) = {a G A : agAg-i Ç X(Ae) for all g G G} 

= {a G A : Ag-\ag Ç A (A*) for all g G G} . 

PROOF. Let Tx = {a G A : agAg-i Ç X(Ae) for all g G G}, T2 = {a e A : 

Ag~\ag Ç X(Ae) for all g G G}. First we show that T\ = T2. Since A is supernilpotent, 
Aej X(Ae) is semiprime. But for a G T\,Ag-\ag is a left ideal of Ae whose square lies 
in X(Ae) by Corollary 2.2. Thus Ag-\ag Ç X{Ae) and a G T2. Similarly T2 Ç T\ ; let T 
denote T\ = T2. 

Tis a graded ideal of A since if a G Tg, b G A ,̂ then abA{gh)-\ Ç aA^-i Ç A(Ae), so 
that «Z? G T. Similarly ba G T. 

Leta G rriA^ and let /be the right ideal of Ae,7 = {na+ab : « G Z, & G A^}.Then 
/2 Ç A(Ae) by the definition of T. Since Ae/ A(Ae) has no nilpotent ideals, / Ç X(Ae)\ 
therefore TC\ Ae Ç A (Ae). The reverse inclusion is clear. Thus T Ç Aref(A) by Corollary 
2.6. Conversely, if a G (Aref(A))g, then oAg-i Ç (Aref(A))^ = A(A )̂ by Proposition 2.1. 

• 
Finally we remark that it is certainly not true for all A that Aref(A) is the largest graded 

ideal with intersection with Ae equal to A (Ae). For example, consider A the infinite cyclic 
group ring k[t, t~l], k a field, Z-graded in the usual way, and A either the strongly prime 
radical s or the Brown-McCoy radical G. (Here G(A) is graded by [8, Theorem 6] and 
s(A) is graded by [11, Corollary 2].) In both cases, it was shown in [2] that 0 = A (A) — 
A (A)G = X (Ae) but that Aref(A) = A. 

3. Graded versions of the prime radical for rings graded by an infinite group. 
The purpose of this section is to investigate the reflected prime radical #ref of [2] and 
graded prime radical BG of [3] for G infinite. 

A graded ideal P of a graded ring A is called graded prime if for /, J graded ideals of 
A, IJ Ç P implies / Ç P or / Ç P. In [9] a graded left A-module M is called gr-prime 
if for every nonzero graded submodule N of M and every graded ideal I of A, IN = 0 
implies / Ç annA(M). 

DEFINITION 3.1. The graded prime radical of A, BG(A), may be defined equivalently 
as 
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i). [3] the intersection of the graded prime ideals of A, 
or ii). [9] the intersection of the annihilators of the gr-prime A-modules. 

It is straightforward to check that (i) and (ii) above are equivalent. For if M is a gr-
prime A-module, then ann^fM) is a graded prime ideal, and if P is a graded prime ideal 
of A, then A/ P is gr-prime. 

Recall that BG{A) = B(A)G, the largest graded ideal contained in B(A) [3, Lemma 
5.1]. 

We call a G-graded ring A graded prime if (0) is a graded prime ideal of A, and graded 
semiprime if BG(A) = 0. 

Recall that for G finite, BG — J9ref [2], but that in general the inclusion BG(A) Ç #ref (A) 
may be proper as illustrated by the following example from [2]. (Note that [9, 3.7] is in 
error.) 

EXAMPLE 3.2. [2, Example 2.4] Let A = k[t], the polynomial ring in an indetermi
nate t over a field fc, Z-graded in the usual way. Then A is prime and so graded prime. 
However, by Corollary 2.6,2W(A) = tA. • 

We note that proper inclusion is possible even for G a locally finite group and A a 
strongly graded ring; this is illustrated by Example 3.3 below. 

EXAMPLE 3.3. Let k be a field, and R = k[X\, X2,...], the polynomial ring in count-
ably many commuting indeterminates. Let / be the ideal of R generated by the Xf, let 
S = R/1, and let xt be the image of Xt in S. Let G be the permutations of { 1,2,3,...} 
which leave all but finitely many elements fixed. Then G is a locally finite group acting 
as a group of automorphisms on S. Note that each of the xt generates a nilpotent ideal so 
that B(S) is the ideal generated by the *,-,/= 1,2,... . Now let A be the skew group ring 
S * G. If / is a graded ideal of A, then for arbitrarily large N e Z, I contains elements 
s * g where s is a polynomial in the JC,-, / > N. Hence A is graded prime, so BG(A) = 0. 
However, by Proposition 2.7, #ref(A) = B(S) * G. • 

Note that Example 3.3 also shows that we may have BG(A) P\ Ae properly contained 
in £ref (A) n A e . 

The following theorem is a restatement of Theorem 2.4 with À = B, and provides an 
analogue to [3, Theorem 2.9] for infinite groups G. (An analogue to [3, Theorem 2.10] 
for infinite groups has been proved by the second author and will appear elsewhere.) 

THEOREM 3.4. Consider the following conditions: 

i) A#G* is semiprime. 
ii) Ae is semiprime, and the grading on A is nondegenerate. 
Hi) A is graded semiprime. 
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Then (i) is equivalent to (ii), either implies (Hi) hut the reverse implication does not hold. 

PROOF. The implications follow from Theorem 2.4 and the fact that BG(A) Ç Z?ref 

(A). Example 3.3 shows that (iii) does not imply the other conditions even if A is strongly 
graded and graded prime. • 

Example 3.2 shows that if the grading is degenerate, Ae may be prime but A # G* not 
semiprime. The next example shows that if the grading is degenerate, Ae may be prime 
but A not graded semiprime, i.e. (iii) may fail. 

EXAMPLE 3.5. Let R — k[Y]/1 be the polynomial ring in one indeterminate over 
a field k mod /, the ideal generated by Y2. Let y be the image of Y in R; the ideal N 
of R generated by y is nilpotent. Let A Ç R[X] be the subring of polynomials of R[X] 
whose constant coefficient is in k and whose remaining coefficients are from N. Grade 
A by G = Z in the usual way. Then AQ = k is prime, but B(A) = BG(A) is the set of all 
polynomials in A with 0 constant term. 

REMARK 3.6. Although, in general, (iii) of Theorem 3.4 does not imply the equiv
alent conditions (i) and (ii), if for every ideal / of Ae, IA is an ideal of A, then A graded 
semiprime implies Ae semiprime. For let A be graded semiprime and let / be a nilpotent 
ideal of Ae. If IA ï 0, then IA is a nonzero graded nilpotent ideal of A. Thus IA = 0. But 
then AI + / is a nonzero graded nilpotent ideal of A. Thus 1 = 0, and Ae is semiprime. If, 
as well, the grading is nondegenerate, then BG(A) = 0 implies BTCf(A) = 0 by Theorem 
3.4. 

However, Example 3.7 shows that even if IA is an ideal of A for every ideal / of Ae 

and the grading is nondegenerate, BG(A) may be properly contained in #ref(A). (This is 
because the G-grading on A/ BG(A) may be degenerate.) 

EXAMPLE 3.7. Let S be the commutative ring defined by S = k[Xa : a G (0,1)]/ /, 
where k is a field, the Xa are commuting indeterminates, and / is the ideal generated 
by {XaXp - Xa+f3 : a + (3 < 1} U {XaX^ : a + f3 ^ 1}. Let xa be the image 
of Xa in S. B(S) is the union of the nilpotent ideals generated by the xa, ex G (0,1). 
This is the nil non-nilpotent Zassenhaus ring of [4, Example 3 p. 19]; note that for 
any 0 * y e B(S), yB(S) * 0. Now let A C S[t,t~l], the infinite cyclic group ring, 
A = { E a{t : at G B(S) for i < 0} . For G = Z, A has a G-grading induced by the 
grading on the group ring, and this is a nondegenerate (but not strong) grading. 
Clearly K = { £ aj : at G B(S) for all i} Ç BG(A), and since A/ K is isomorphic 
to the prime ring k[t]9 BG(A) — K. From Corollary 2.6 or Proposition 2.7, Bref(A) = 
{ E a^ : ai G B(S) for i ^ 0} . • 

However, we have the following proposition. 

PROPOSITION 3.8. Suppose A is strongly graded and IA is an ideal of A for every 
ideal I ofAe. Then BG(A) = BTQf(A). 

PROOF. Since A is strongly graded, so is A/ / for any graded ideal / of A. In particular, 
A! = Aj BG(A) has a strong, and therefore nondegenerate, grading. Now it follows from 
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Remark 3.6, replacing A by A', that Bref(A') = 0. Thus Bref(A) Ç BG(A), and therefore 
5ref(A) = BG(A). 
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