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ON POSITTVTTY OF FOURIER TRANSFORMS

E.O. TUCK

This note concerns Fourier transforms on the real positive line. In particular, we
seek conditions on a real function u(x) in x > 0, that ensure that its Fourier-cosine
transform v(t) — JQ°° u(x) cos xt dx is positive. We prove first that this is so for
all t > 0, if u"(i) > 0 for all x > 0, that is, that everywhere-convex functions
have everywhere-positive Fourier-cosine transforms. We then obtain a complex-plane
criterion for some types of non-convex u(x). Finally we consider criteria on u(x) that
imply positivity of v(t) for t > t0, for some to > 0.

INTRODUCTION

Define for t > 0 the ordinary Fourier-cosine transform

/"OO

(1) v(t) = / u(x)cosxt dx

Jo

with inverse

2 f°°
(2) u(x) = - / v{t)cosxtdt,

ft Jo
with a similar definition for the Fourier-sine transform.

Generally we shall assume here that u(x) is real and smooth in x > 0 and that the
Fourier integral (1) converges. In particular, u(x) and all of its derivatives are bounded
everywhere in x > 0 and tend to zero as x ->• +oo. Meanwhile, u(x) could be bounded at
the origin, but more generally could have a weak singularity, with xu(x) -> 0 as x -> 0+,
that is, u(x) grows at a rate less than x~l. For Fourier-sine transforms, we can allow
a stronger singularity at x = 0+, with any growth rate less than x~2. We shall also
generalise the results later, to allow even stronger singularities at the origin.

One important class of functions u(x) is "convex", that is, such that u"{x) > 0 for

all x > 0, which implies (since u'(+oo) = 0) that u'(x) < 0 and (since u(+oo) = 0) that

u(x) > 0. That is, convex functions possessing Fourier transforms are also decreasing and

positive. Such convex functions need not be smooth at x = 0, indeed not even bounded so

long as they are integrable. In particular, they need not (indeed cannot) have all of their
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134 E.O. Tuck [2]

odd-order derivatives zero at x = 0+, and hence do not extend smoothly as even functions
into x < 0. We shall show that convex functions have everywhere-positive Fourier-cosine
transforms. An elementary convex example is u(x) = e~x with v(t) = 1/(1 + t2) > 0.

However, we are more interested here in non-convex functions u(x) which are
bounded, positive and decreasing in x > 0, which extend smoothly as an even func-
tion to the whole real line, that is, all odd-order derivatives vanish at x = 0+, and which
usually have a single inflexion point in x > 0. Let us call such functions "bell-shaped"
functions.

Some bell-shaped functions have positive Fourier transforms, and some don't. Thus
compare u{x) = 1/(1 -I- x2), which has transform v(t) = (ir/2)e~l, with u(x) = 1/(1
+x4/4), which has transform v(t) — (7r/2)e~'(cos£+sin£). One v(t) is positive, the other
oscillates between positive and negative values, but both u(x) are bell-shaped and have
quite similar graphs. A criterion for discriminating between such bell-shaped functions
would be of some value.

PROOF OF POSITIVITY FOR CONVEX FUNCTIONS

Positivity of Fourier-sine transforms is somewhat easier to prove than that of Fourier-
cosine transforms. But by integration by parts we have

1 f°°
(3) • v(t) = -~ u'(x)sinxtdx,

t Jo
given that the assumed convergence requirements (u -> 0 as x -> +oo and xu(x) -> 0 as
x —> 0+) eliminate the integrated part. That is, the Fourier-cosine transform of u(x) is
—1/t times the Fourier-sine transform of its derivative u'(x).

Now let us prove that the Fourier-sine transform of a decreasing function w(x) is
positive. That is,

/
Jo

oo oo /•:

w(x) sinxt dx = \^ I w(x) sinxt dx
0 j=0 J2vil

(4)

If w(x) is a decreasing function for all x, the quantity in square brackets is positive for all
t and all j , and so is sin0 in (O,TT); hence the Fourier-sine transform is positive. This is
essentially a simple geometrical result, each negative half-period loop of the sine function
contributing less to the sum than the positive half-period loop preceeding it.
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[3] Fourier transforms 135

Now define w(x) = — u'(x). Then u"(x) > 0 implies w'(x) < 0 so this w(x) is a
decreasing function. Therefore its Fourier-sine transform is positive, and hence so is the
Fourier-cosine transform of u(x). Thus we have proved that u"(x) > 0 for all x > 0
guarantees v(t) > 0 for all t > 0. That is, convex functions have everywhere-positive
Fourier-cosine transforms.

However, bell-shaped functions are not convex, and it is doubtful if there is any
criterion based solely on behaviour of u(x) for positive real x, for positivity of the Fourier-
cosine transform of bell-shaped functions. Somewhat reluctantly, we must move into the
complex plane.

C O M P L E X DETOURS

Suppose we can continue the function u(z) into the upper half complex z plane, and
that it is an even analytic function of z, real on the real axis, satisfying u(z) = u(z).
Then we can write

(5) v{t) = \ r u{z)eizt dz .

Now suppose that \u(z)\ —y 0 as Ste —• ±oo for some range of positive values of the
imaginary part of z, say for 3z < p. Then we can shift the path of integration upward,
writing z = x + ip and giving

(6) v{t) = \e-pt r u(x + ip)eixtdx
2 7-00

/•OO

(7) = e~pt I [R u(x + ip) cos xt - 9 u(x + ip) sin xt] dx .
Jo

Equation (7) expresses v(t) as the sum of a Fourier cosine and a Fourier sine trans-
form, each multiplied by an exponential decay factor. Hence if 3? u(x + ip) is convex (and
decreasing and positive) and also —3f u(x + ip) is decreasing (and positive), then v(t) is
positive for all t > 0.

An example is u(z) = l / \ / l + z2 where we can take p = 1. Then Uu(x+i) = RcosO
and - 9 u(x + i) = Rs\n9, where R = x~1/2(x2 + 4)"1'4 and tan29 = 2/x. These
functions have the required properties, which proves that v(t) is positive for all £ > 0. In
fact, v(t) = Ko(t) is a modified Bessel function [1], which is indeed positive and decays
exponentially for large t.

NON-INTEGRABLE SINGULARITIES

The above analysis is valid as it stands if u(z) is integrable along the whole line
z = x + ip, including the case of bounded u(z). However, it is of no use for the present
purpose if u(z) is bounded as z -^ ip, because then evenness of u(z) necessarily implies
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that $>u(ip) = 0, so — 5Su(x+ip) cannot be decreasing and positive for x > 0. Thus we are
only interested in choices of p such that u(z) has a singularity at z = ip on the imaginary
axis, and no other singularity closer to the origin. The above example u(z) = l / \ / l + z2

has an (integrable) inverse square root branch point at z = i.
But what if the nearest singularity is stronger than that? For example, u(z)

= 1/(1 + z2) is not integrable through the simple pole at z = i, nor is u(z) = (1 + z2)~Q

for any a ^ 1. Nevertheless these happen to be functions with positive Fourier-cosine
transforms. We would like to be able to prove that statement using methods like those
in the previous section. For the present, we shall only discuss the simple-pole case a = 1;
although a similar analysis can be performed for stronger singularities, it requires gener-
alisation of the concept of a Fourier transform to non-integrable functions.

Thus we now assume that as z —• ip we have

(8) «(*) -)• U0[i(z - ip)]~l

for some real constant UQ. The example u(z) = 1/(1 + z2) has f/o = 1/2. Note that when
(8) holds, only the imaginary part of u is singular as x -¥ 0+ on the line z = x + ip, with
—a:3 u(x + ip) -» UQ, but xSR u(x + ip) -» 0. Hence both Fourier integrals in (7) converge
in spite of the non-integrable character of the singularity in u(z). Nevertheless we must
modify (7) to take account of the pole.

The necessary modification is simply to allow the path of integration to pass below
the pole, on a semicircle of vanishingly small radius. The net effect is to add a term
proportional to the residue at the pole, so (7) becomes

f f00 r _ -I
(9) v(t) = e~pt \ 3? u(x + ip) cosxt - 3 u{x + ip)sinxtdx\+ Uo- .

L/o L J 2J

For example, suppose u(z) = 1/(1 + z2) and p = 1. Then

(10) v{t) = e~t\ ——-cosxtdx+ —r-z—-rsinxtdx + - \.
[Jo x2 + i Jo x{x2 + A) 4j

Since the coefficient of sinxt is positive and decreasing, the Fourier-sine integral in (10) is
positive. Although the coefficient of cos xt is not convex, we no longer need the Fourier-
cosine integral to be positive (though it is!), so long as it is overwhelmed by the positive
correction term TT/4. This is clearly so, since (replacing cosxt by -1) , the Fourier-cosine
integral can be seen to be greater than -TT/4. Hence v(t) > 0. Of course, given that
we can actually evaluate this v(t) = (7r/2)e~4 and the other Fourier integrals in (10),
this appears a clumsy way to prove something obvious, but is important in principle, in
that it does not depend on a knowledge of the exact integrals, so generalises to more
complicated functions.
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POSITIVITY ONLY FOR t > t0

In fact, in some applications it is neither necessary nor desirable to insist that
v(t) > 0 for all t > 0, and it may be enough to show that there is a finite t0 > 0 such
that v(t) > 0 for all t > to- Can we find criteria on u(x) for this to be true, and if so,
can we estimate t0? Only preliminary discussions of this generalised task are given here.

Assuming validity of (7), that is, ruling out for the time being non-integrable singu-
larities, on integration of the first term of (7) by parts, v(t) can be expressed as a single
Fourier-sine integral

/•oo

(11) v(t) = e-pt / F{x; t)sinxt dx
Jo

where

(12) F(x; t) = -3u(x + ip) - -—Ru(x + ip)
t dx

(13) = U \iu{x + ip) - -u'(x + ip)] .

Now if (in any range of t values) the function F(x; t) is a decreasing (and positive)

function of x for all x > 0, then v(t) is positive for that range of t. This is true for all

t when the two terms of (12) are both decreasing and positive for all x > 0, as in the

examples already given.

However, suppose it is not true for all t, but only for t > to, for some to > 0. Then in
particular it must be true for large t, when the second term of (12) tends to zero, so the
first term F(x; oo) = - 9 u ( x -I- ip) of (12) must be decreasing and positive for all x > 0.
If the second term was also decreasing and positive for all x > 0, we would have t0 = 0 as
above, so let us assume that this is not so for some x values. Then there is still a chance
of finding a finite to such that the sum of the two terms of (12) is decreasing and positive
for all x > 0. This will be possible if the second term of (12) is bounded (together with
its derivative) in x > 0, and does not become asymptotically large relative to the first
term, either as x —> 0+ or as x -> oo.

For example, consider

, f°° sin xt -x cos xt
(14)

where Ei is the exponential integral ([1, p. 230]). Now

, l t . f°° sin xt -x cos xt . f°° _, .. . . ,
(15) / r—— dx= I F(x;t) sin xt dx

Jo L + X Jo
where

1 1 1 2

(16) ^ f e ^ T T l + Th 7 2̂2
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is positive and decreasing for all i if t > to = 1. This is a conservative estimate of to,

since in fact Ei(t) > 0 for all t > 0.37253.

There is a potential application to the celebrated Riemann hypothesis [2]. This

hypothesis might well be true if v(t) = V'(t)2 — V(t)V"(t) could be proved positive for

all t > t0, where V(t) = n~'l2 F(s/2) (,{s) is a real-valued scaling of the Riemann zeta

function ([1, p. 807]) on its critical line s = 1/2 + it. Numerical evidence [4] is that this

is so with to « 5.9009, but a proof is elusive. The inverse Fourier transform of this v(t)

is the bell-shaped function

(17) . u(x) =

where

oo

(18) U(x) = -2e-x/2 + 4ex/2 ^ e"1*™"
n=l

is the (also bell-shaped) inverse Fourier transform of the (sign-oscillatory) Riemann func-

tion V(t) [3]. The nearest singularity of u(z) is at z = in/2, so we could try p = n/2

in the above. However, there also appear to be many other singularities along the line

z = x + in/2, which may or may not be integrable. Further study of u{z) near that line

would seem to be of value.
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