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Abstract

Let F(x, 9) be a family of distribution functions indexed by 8 G U. If G(9) is a distribution function
on £2, H(x) = j a F(x, 6) dG(8) is a mixture with respect to G. If there is a unique G yielding H, the
mixture is said to be identifiable. This paper summarises some known results related to identifiability
of special types of mixtures and then discusses the general problem of identifiability in terms of
mappings. Some new results follow for mappings with special features.
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I. Introduction and review

The problem of identifiability of mixtures of distribution functions concerns the
transformation

H(x)= (F(x,0)dG(0)
Ja

where F(x, 6) is a distribution function for all 0 G B and G is a distribution
function defined on fi. Standard measurability conditions imposed on F(x, 6)
ensures the integral makes sense, Robbins (1948). It is easy to see that H(x) is a
distribution function and it is called a mixture. The family F(x, 6), 0 G $2, is
referred to as the kernel of the mixture and G as the mixing distribution function.
The mixture H is said to be identifiable if and only if there is a unique G yielding
H.
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In general x and 6 can be vector quantities but for notational simplicity the
results are often written for the scalar case.

Various approaches to constructing conditions which will guarantee identifia-
bility have been tried. These have invariably involved imposing conditions on
F(x, 0) and fi to simplify the problem to the stage of mathematical analysis. For
example, if F(x, 6) = F(x - 0), fl = ( - oo, oo) and <j>H(t) = / ? „ e"x dH(x) has
no intervals where it vanishes, then H is an identifiable mixture. Other results
using special kernels and transform theory are available; for example, Barndorff-
Nielsen (1965) discusses mixtures of exponential famihes and Maritz (1970) gives
a summary of practical results related to indentifiability.

The obvious first restriction to impose on fi is that it consists of a finite number
of elements, that is, fl = [dx, 02,... ,#„}. Then (1) becomes

(2) H(x) i

where, Ft(x) = F(x, 0,), /?, real, 2"y8, = 1. Identifiability of (2) revolves around
the linear independence of the set of functions %= {Fx(x),...,Fn(x)} in the
following way.

DEFINITION.
 <Sr

n is said to be linearly independent if for real constants c,,
2" c^ix) = 0 implies c, = 0, / = 1,2,...,«.

THEOREM 1. The mixture (2) is identifiable if and only if <Sn is linearly indepen-
dent.

Thus testing for identifiability is reduced to testing <5n for linear dependence. At
this stage we note that the sample space can always be transformed so that
Ft{-\) = 0 and /)(!) = 1 without altering identifiability. Thus, to test % for
dependence the Gram determinant § —\ /!_, Fi(x)FJ(x)dx \ can be evaluated,
non-vanishing § corresponding to independence. On the other hand, by the very
definition of linear dependence, if <5n is independent there must exist values xu

x2,-..,xn such that | Ft(xj) \ =£ 0. This is the condition of Teicher (1963), Theorem
1.

The next case is that of countably infinite mixtures defined by

(3)
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Again, H is identifiable if there exists a unique set {/?,} which satisfies (3). The
counterpart of linear independence in this situation is

DEFINITION 2. The set ^ = {F,(x), F2(x),...} is strongly independent if
2f c^ix) = 0 implies c, = 0, 2f | c,,\< oo.

THEOREM 2. The mixture (3) is identifiable if and only if ^ is strongly
independent.

Again, the proof is easy and the problem of identifiability reduces to testing ^
for strong independence. Set dtj = }]_, F^x)Fj{x) dx and D — [dtj], i,j = 1,2,...,
then we have

LEMMA 1. ̂  is strongly independent if and only if D~l exists.

PROOF. We show that 2™ c^F^x) = 0 if and only if Dc = 0. Suppose that
2f c^x) = 0, then 21° c , ^ = 0 for ally and hence Dc - 0.

On the other hand if Dc = 0, then c'Dc = 0 = l i m ^ ^ / L , (2" e,-/^*))2 <& =
/ I , (2f c,J=;(x))2 rfx and 2f c.-^x) = 0 almost everywhere.

Various related results, examples and tests for the existence of D~' are given in
Patil and Bildekar (1966) and Tallis (1969).

In the above two theorems it appears that a slightly more general question has
been formulated than is needed in that the condition /?, > 0 was not required, but
only 2f | /?, |< oo. However, Lemma 2 of the following section establishes that the
two different ways of formulating the identifiability problem are equivalent.

When F(x, 0) is continuous in 6 a different approach is called for. Without loss
of generality we assume S = [— 1,1], then if T{x, 0) = dF{x, 8)/d6 is continuous
in 6 and square integrable over [ — 1,1] X [— 1,1], (1) can be put in the form

(4) L(x) = C T(x,O)G(O)d0
J-\

where L(x) = F(x, 1) — H(x). Thus (1) is said to be identifiable if there is a
unique square integrable solution to (4). Defining K(x, y) =
/ ! , T(x, z)T(y, z) dz, then we have

THEOREM 3. The mixture (1) is identifiable if and only if the set of eigenfunctions
for nonzero eigenvalues of K is complete.

The result follows from the Hilbert-Schmidt theorem for symmetric kernels.
The purpose of this paper is to provide more general settings for the solution of

various classes of identifiability problems. Section II formulates the problem in

https://doi.org/10.1017/S1446788700024897 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024897


342 G. M. Tallis and P. Chesson [41

the context of probability measures on spaces of probability measures and
establishes some basic results. Section III looks at the situaton where the event
space is finite and obtains a complete solution to the identifiability problem. In
Section IV we use the structure of II to give a general treatment of identifiability
when there is a bounded inverse. Theorem 2 is a special case of this treatment.
Finally in Section V we look at some general problems involving unbounded
inverses and relate them to the results of Theorem 3.

II. General formulation and basic results

Let (X, &) be a measurable space and {Pe,0 &Q,} a family of probability
measures on i2. Let 9> be a a-field of subsets of $2 such that Pg(A) is <$ measurable
for every A G &. In the case where Pe is defined in terms of a distribution
function, as in the introduction, measurability of F(x, 6) as a function of 0, for
each x, is necessary and sufficient for measurability of Pe(A) for all A G &. A
mixture of Pg is a measure Q(A) — fu Pg(A) dfi(0), A G &, for some probability
measure ju on (fi, <$). We shall simply use the notation Q = JaPedfi(O) to denote
a mixture of Pt. The problem of identifiability of mixtures can now be stated in
general parametric form: Mixtures of P$ are said to be identifiable if the mapping
M •""* la P» d\i{0), for probability measures ju on (fi, <$), is 1-1.

There is a degree of arbitrariness in defining the parameters of a probability
distribution, but identifiability should not depend on the particular parameterisa-
tion chosen; therefore, for a general discussion of the mixture problem, we seek a
standard parameterisation. The most general parameterisation is parameterisation
of P9 by itself. For this the parameter space is some set S of probability measures
on (X,&) and a mixture is defined as an integral jsPd{i{P) where ft is a
probability measure on some a-field S of subsets of 5. We shall say that mixtures
of 5 are identifiable if and only if the mapping ja i-» fsPdn(P) is 1-1 for
probability measures jn on (S, S).

The above formulations of the mixture problem in terms of 6 and in terms of 5
appear equivalent when 5 = {Pe\0 G $2} and indeed are equivalent whenever $
and S are respectively the smallest o-fields for which the mappings 0 i-» Pe(A) and
P h+ P(A) are measurable for all A G &. To see this define f(0) = Pe then, for all
real numbers r and all A G &

Since S is generated by the sets of the form {P G S\P(A) < r) and % is
generated by the sets {0 G fi | Pe(A) < r) it follows that / ^ ' (S ) = <3. Since 5 is
the range of / i t follows from Breiman (1968, Proposition 2.12) that the relation
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establishes a 1-1 correspondence between probability measures v on (fl, %) and
probability measures p. on (S, S). For measures related in this way Ja Pe dv(0) =
jsPd\i(P) and it is clear that the mixtures of Pe are identifiable if and only if
mixtures of S are identifiable.

In the above discussion ju has always been a probability measure. However
sometimes (Teicher (1963), Tallis (1969) and the introducton to this paper) the
measure p. defining the mixture is allowed to be any signed measure with
H(S) = 1. In this formulation a necessary and sufficient condition that mixtures
of S are identifiable is that there exists no non zero signed measure /x with the
property

(5) fPdii(P)=0.

Clearly this condition is also sufficient for identifiability as formulated here.
Lemma 2 below shows that it is also a necessary condition. It follows that the two
different formulations of the mixture problem are equivalent.

LEMMA 2. If n is a non zero measure on (S, S) such that (5) holds then there are
probability measures /x, and/x2 on (S, §>)such that

(6) ]f
and hence mixtures of S are not identifiable.

PROOF. Since n is a signed measure /! = /*, — /t2 with ju, and n2 non negative
measures. Also one of fi, and fi2 must be finite. Now P(X) = 1 for all P G S so
(5) entails fsdn(P) — 0, that is, /x,(5) — n2(S), so that both /x, and \i2 are finite
with the same maximum. Rescaling the ft, if necessary so that /x,(S) = /^(S) = 1
we see that (6) is satisfied.

It is often convenient to make the assumption that the a-field S contains all
singletons {/*}, P G 5 for then the set of mixtures of S contains the convex hull
of 5, that is, S contains the set

This assumption is made in the introduction and in later sections. The assumption
is not very restrictive as it is satisfied whenever A' is a separable metric space with
Borel sets &. To see this we note that P G S is determined by its values on the
open sets. There are open sets [/,, U2,... such that every open set is a union of
members of this class. Writing F, = Uu Vn — Un — U " '{^ we see that every
open set is a union of members of the disjoint class VX,V2, It follows that any
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P G S is determined by its values on the countable collection Vt, V2, Clearly
{P £ 5 | P(V,) = P0(V,)} £ S for any Po E S and n ^ { P G S | P{V,) =
P0(Vi)} = {Po}- Hence S does contain all singletons.

III. The mixture problem for finite a-fields

If the a-field & is finite the mixture problem can be reduced to a problem of
linear dependence of vectors in R" (Theorem 4). In general & is generated by a
unique partition A,,... ,An of non empty subsets of X. The case of a finite a-field
is equivalent to the situation where X is finite and & is the power set of X or the
case where 5 is a set of distribution functions having a common finite set of
points of increase. The mixture problem for finite a-fields is closely related to the
finite mixture problem (Theorem 5).

THEOREM 4. Mixtures of S are identifiable if and only if

(6) {{P{A,),...,P{An))\PES}

is a linearly independent subset of R".

Note that the vector (P(A\),...,P(An)) uniquely determines an element of S
and furthermore the mixture can only be identifiable if S has no more than n
elements.

PROOF. Suppose (6) is not linearly independent. There are numbers X,,.. . ,\n,
not all zero, and members of S, Pt,... ,Pn, such that 2\,-/>

/(y4y) = Ofory = \,...,n.
The equation fi({/",}) = A, defines a signed measure fi such that

and from Lemma 2 we see that the mixture is not identifiable.
If (6) is linearly independent then S — {Pt,... ,Pr) for r < n and furthermore

there are no Xt,...,Xr, not all zero, such that ^XjP^Aj) = 0 fory = 1,...,«.
Hence the mixture is identifiable.

Now suppose that we have a finite mixture problem, that is 5 has just n < oo
elements.

THEOREM 5. Mixtures of S are identifiable if and only if there is a finite a-subfield
S* of & such that the mixtures of S* are identifiable where S* is the set of
restrictions of members of S to &*.

https://doi.org/10.1017/S1446788700024897 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024897


[7] Identifiability of mixtures 345

PROOF. If such an 6B* can be found the mixture is clearly identifiable. Suppose
now that mixtures of S — {/*,,... ,Pn) are identifiable. We shall prove by induc-
tion that there exist Bu...,BnE& such that the matrix (P,-(5,-)), / = l, . . . ,w,
j = l,...,n, has rank n. Letr < n and 5 , , . . . ,Brbe such that (/",.(£,•)),' = I,-..,/",
y = l , . . . , r , has rank r. There are unique real numbers a , , . . . , a , such that
Pr+i(Bj) = 1,ri=laiPi(Bj). However, since mixtures are identifiable there is a
Br+X £ & such that Pr+i(Br+]) i= 2;=, <*,.?,•(£,+ ,) a n d t h e matrix, (/>(#,)), i =
\,...,r+ I, j — 1,...,/• + 1, has rank r+ 1. Thus the required set B],...,Bn

exist. Let (£* be the a-field generated by 5 , , . . . ,Bn and since (P^Bj)) has full rank
it is clear that mixtures of S1* are identifiable.

IV. Mixtures with bounded inverses

Some simplifications of the mixture problem are achieved by imposing restric-
tions on the kind of acceptable 1-1 relationships between the mixture and the
mixing distribution. This leads us to consider bounded inverses.

Let 911, and 91t2 be sets with functions p, defined on <9H,. X 91t;, / = 1,2, such
that

(1) p,: 911,. X 911,. -> £, (Euclidean 1-space),

I f / i s a mapping/: 911, -» 91L2 with domain "D C 91L, and range 6A C 9H2, we
define the norm of/by

Ml = inf {P2(f(x), f(y)) < aPl(x, y), Vx, y G ^ }

and if y ! exists

THEOREM 6 . /^ ' exists and \\f~x\\<ao if and only if p2( f(x), f(y))> ap^x, y)
VJC, y 6 D̂ a/7<i 5owe a > 0.

The lemma asserts essentially that / has a bounded inverse provided / separates
points sufficiently.

PROOF. If f(x) = f(y) then 0 = p2(f(x), f(y)) > ap^x, y) which implies that
p,(x, y) = 0, that x—y and that/^1 exists. Moreover,
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or

and hence | |/^'II < a " ' < oo.
On the other hand if/"' exists and 11 f~' 11 < oo, then

p.(*, >) = P,(r'(/(^)), r'(/(^))) -=11/-' IMA*), f(y))
and hence p2(f(x), f(y)) 3= ap,(x, >>) for a~' = || .f1 II and all x,y E 6D.

A standard result is retrieved by letting 911, = 91t2 = 911 be a linear space with
inner product p(x, y). Then p} — p2 = p is the metric induced by the norm
[p(x, x ) ] 1 / 2 = Hxll that is p(x, y) — \\x — y\\ and we assume that T is a linear
transformation of 911 on to 91 = 911. Theorem 6 shows that T~' exists and
II7" Ml < oo if and only if ||7x|| 3=a||x|| Vx G 9L, a > 0 .

We apply these results to the mixture problem. As in Section II we consider the
event space {X,&} and the probability space {S, S}. Now if 911, is the set of all
P-measures defined on {X, &} then S C 911, and, since X is a separable metric
space, by Parthasarathy (1967) Theorem 6.2, page 43, there exists a metric pf such
that 9H, can be metrized as a separable metric space.

Consider now the set 91L2 of all measures defined on (5, S}. Since S C 911,, S
is also a separable metric space with metric p*. Thus, applying the above result
again, there exists a metric p£ such that 9H2 is metrized as a separable metric
space.

Define the function/: 91L2 -» 911, by

then we have the following corollary to Theorem 6.

COROLLARY. The mixture m is identifiable with bounded inverse if and only if

P,K,m2) =

for some a > 0 and all ju,, fi2 G 91t2, w/iere p, a«d p2 are metrics on 9H, ant/ 91t

It is convenient to illustrate the corollary in the countably infinite case. Choose

p](F,G)=f [F{x) - G(x)f dx
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and

then the condition becomes

- ,

2

V F(x)yI dx
I

t h a t is y ' D y > a \ \ y \ \ 2 , dtJ = / I , ^ ( x ) / • ( * ) <£c. B u t | y ' D y \ < \ \ D y \ \ \ \ y \ \ , a n d
hence the above implies HD.yll > a | | y | | , the condition that D have a bounded
inverse. In practice, sometimes this test is easily applied and may save the check
as to whether or not zero is a regular point of the linear operator D.

V. Mixtures with unbounded inverses

In the notation of the previous section, we consider here briefly the more
general situation of p2(ju,, /t2) > 0 =» p,(w,, m2) > 0. As first example we re-
examine Theorem 3.

We have

L(x) = C T(x,e)G(0)d0

and choose px — p2 = p defined on [— 1,1] by

p(F,G)=f [F(x)-G(x)]2dx.
1

The above condition becomes

[Gx(0)-G2(B)]2d0

0 = > / ' ( / ' r(JC'<9)[(?'^) ~ G2{e)]de\ dx>o.

Defining K(x, y) as in Theorem 3 we get, putting x(#) = G,(#) - G2{0\

/"' X
2(0)d6>0=>C C X(6)K(0,<l>)x(<t>)ded6>OJ-\ J-\J-\

or || x II > 0 => || Kx II > 0 which is true if and only if K has an inverse.
For the final example let (12, F, A) be a measure space and suppose that

P(x, 0) « X for all 6 G fi. Put p(x, 0) - dP(x, 9)/d\ and assume that
fxfap

2(x,8)dfi(8)dii(x)<K.
Consider the class 6 of all probability measures JU on (fi, §) such that ju « \ and

fa(dfi/d\)2 dX < oo. We wish to know when mixtures of P(x, 0) with respect to
elements of Q are identifiable.
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If n G 6 let m = dfi/dX then the mixture is

Q(A)=[P(A,,

and

= j f f Jf

Now Q is identifiable if and only if

C f 2

Expandp(x, 0) as

o
where {</>„} and {̂ /n} are bi-orthonormal series and pn > 0. We now have

Jx[qi(x)-q2(x)]2dX(x)>0

<=> So'p^a2 > 0, <xn = / s i ^ ) ( / ' i ( ^ ) — p2^)) d\(0) and the last inequality holds
if and only if {\pn} is complete.
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