
Vol.:(0123456789)

Experimental Economics (2023) 26:357–382
https://doi.org/10.1007/s10683-022-09773-8

1 3

ORIGINAL PAPER

Improving the statistical power of economic experiments 
using adaptive designs

Sebastian Jobjörnsson1  · Henning Schaak2  · Oliver Musshoff3  · 
Tim Friede1 

Received: 27 January 2021 / Revised: 31 August 2022 / Accepted: 1 September 2022 /  
Published online: 25 September 2022 
© The Author(s) 2022

Abstract
An important issue for many economic experiments is how the experimenter can 
ensure sufficient power in order to reject one or more hypotheses. The paper illus-
trates how methods for testing multiple hypotheses simultaneously in adaptive, two-
stage designs can be used to improve the power of economic experiments. We pro-
vide a concise overview of the relevant theory and illustrate the method in three 
different applications. These include a simulation study of a hypothetical experimen-
tal design, as well as illustrations using two data sets from previous experiments. 
The simulation results highlight the potential for sample size reductions, maintain-
ing the power to reject at least one hypothesis while ensuring strong control of the 
overall Type I error probability.

Keywords Adaptive design · Multiple testing · Simulation study · Family-wise error 
rate · Experimental design

JEL Classification C12 · C90

1 Introduction

Imagine an economist being involved in a research project that aims to improve an 
economic outcome, e.g the productivity of small businesses. Within the project, it 
is planned to carry out a field experiment to test how their productivity could be 
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improved. During the planning phase, a number of potential treatments, for example 
educational interventions, are identified through discussions with project partners, 
colleagues and stakeholders. Unfortunately, the research funds of the project are too 
limited to test all treatments with sufficient power. Conventionally, the economist 
would either have to discard some of the treatments (or even consider only one treat-
ment) or run an under-powered experiment. In practice, the researcher may not be 
confident enough in the prior beliefs about the treatments’ effects to make such a 
decision. It may also be the case that there are strategic reasons to not leave some 
treatments untested.

This paper discusses a third option for such cases, which might be considered 
a compromise between the extremes of selecting treatments prior to the trial and 
selecting treatments once data of full-sized trials are available, namely to use adap-
tive designs, which aim to use the available resources to maximize the probability 
of demonstrating at least one of the expected effects with sufficient power. This is 
achieved by modifying the experimental design after one or several interim analyses. 
While such adaptive designs have been applied in other fields (such as clinical trials) 
for decades (cf. Bauer et al., 2016), the concept has only recently become a topic of 
interest in the economic literature (Kasy & Sautmann, 2021)1. When investigating 
multiple hypotheses (potentially multiple times, in case of an adaptive design), an 
additional threat to the validity of the final conclusions stems from an inflation of 
the Type I error probability. This fundamental issue, also referred to as family-wise 
error rate (FWER) inflation, often arises in experimental research, where multiple 
treatments are frequently studied (List et al., 2019). Still, it has gained the interest of 
experimental economists only recently (List et al., 2019; Thompson & Webb, 2019).

The main goal of adaptive designs is to improve the power of the experiment to 
detect any potential (at least one) statistically significant effect. Ensuring sufficient 
statistical power has been acknowledged as an important issue in economic research 
for some time (De Long & Lang, 1992), and remains a challenge in empirical work 
(Ziliak & McCloskey, 2004; Ioannidis et al., 2017). In the aftermath of the replica-
tion crisis in psychology (see e.g. Pashler and Wagenmakers, 2012; Open Science 
Collaboration, 2015) the issue of insufficient power has gained additional interest, 
particularly in experimental economics where researchers have been encouraged 
to account for it (Canavari et  al., 2019; List et  al., 2011; Czibor et  al., 2019). In 
principle, higher levels of power can be achieved by simply increasing the sample 
sizes. However, these are often limited in practice. Researchers may face budget or 
time-related constraints, or have only a small available pool of potential experimen-
tal subjects, either due to a small target population or due to restricted access to the 
wider population. In experimental economics, methods to investigate the required 
sample sizes in order to detect hypothesised treatment effects predominantly assume 
an experiment which is of a fixed size in the planning phase (cf. Bellemare et al., 
2016).

1 Interestingly, methods to improve the design of discrete choice experiments are far more widespread 
and can be considered a standard practice (see e.g. Reed Johnson et al., 2013).
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In this contribution, we demonstrate how to use and evaluate adaptive designs 
in situations where one wishes to combine the selection of interventions with con-
firmation of their effects by hypothesis tests including data pre and post adaptation, 
while still controlling the Type I error probability at a specified level. Although the 
approach is not new from a methodological viewpoint, its application has mostly 
been in the area of medical statistics, in particular clinical trials. We wish to widen 
the scope of application by showing how it can be used to design and analyse eco-
nomic experiments.

As previously mentioned, the economic literature covering adaptive designs is 
currently limited. For a review of applications in other fields, see e.g. Bauer et al. 
(2016). Bhat et al. (2020) develop an approach to classical randomisation in experi-
ments with a single treatment for situations where the treatment effect is marred 
by the effects of covariates and where individual subjects arrive sequentially. Simi-
larly, for experiments where subjects in the sample are observed for multiple periods 
Xiong et al. (2022) develop an algorithm for staggered rollouts, which optimises the 
share of treated subjects at different time points. With respect to experiments with 
multiple treatments and a binary outcome, Kasy and Sautmann (2021) develop an 
algorithm for experiments with many data collection rounds.

These methods are tailored to specific settings. The framework to be used here 
can be applied under a broader set of conditions but imposes stronger changes on the 
experiment. While the aforementioned approaches adjust the treatment assignment 
probability continuously, treatments are potentially dropped from the experiment 
(i.e. reducing the assignment probability to zero) in the following. Still, the frame-
work is flexible with respect to the applied adaptation rules and allows for multiple 
interim analyses, which can be combined in different ways. Although it allows for an 
arbitrary number of interim analyses, we will restrict the illustrations to two-stage 
designs, containing only a single interim analysis. This simplifies our presentation, 
but is also a reasonable choice in many practical settings. We use available software 
(the R package asd) to illustrate the principal concepts and show how they can be 
applied to achieve a more efficient use of available resources in settings where other 
approaches are not feasible.

We want to highlight that the present illustration focuses on settings in which the 
goal of the analysis is to select and test hypotheses regarding the experimental treat-
ments. The improved power for the selected hypotheses comes at the cost of poten-
tial biases of the estimated treatment effects. Also, when hypotheses are tested that 
were not initially considered in the design, these biases can become more relevant 
(Hadad et al., 2021). Thus, it is important to note that effect estimates obtained from 
adaptive designs can require additional adjustments (cf. Sect. 4), which should be 
considered by investigators when applying an adaptive design.

Throughout the paper, the potential of the method is illustrated by three examples. 
The scenario from the first paragraph will be used to develop a hypothetical example 
to illustrate the principle considerations researchers have to consider when designing 
adaptive experiments. The second and third examples use real data from two experi-
mental studies in order to illustrate the potential of adaptive designs in real-data appli-
cations. The second application (Musshoff & Hirschauer, 2014) uses a framed field 
experiment, based on a business simulation game, to study the effectiveness of different 
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nitrogen extensification schemes in agricultural production. The experiment was car-
ried out with 190 university students and contained treatments varying in two dimen-
sions: whether nitrogen limits were voluntary or mandatory, and whether the corre-
sponding payments were deterministic or stochastic. The students were asked to act as 
if they were farmers in the experiment. Although the policy treatments do not differ in 
their impact on the profitability, the authors find that students respond differently to the 
treatments. Most importantly, the authors report that penalty-based incentives perform 
better than allowance-based ones.

The third example (Karlan & List, 2007) uses a natural field experiment to study the 
effects of different matching grants on charitable donations. The experiment targeted 
previous donors of a non-profit organisation, and considered treatments which varied in 
three different dimensions (the matching ratio, the maximum size of the matching grant 
and the suggested donation amount). The original study is based on a large sample, 
including 50,083 individuals. The authors find that matching grant offers increase the 
response rate and revenue of the solicitations, but that different ratios of the matching 
grant have no effect overall.

The two studies are chosen as they differ in several aspects relevant for economic 
experiments. First, they represent different experiment types, namely natural field 
experiment vs. framed field experiment (cf. Harrison and List, 2004). Although the 
experiment described by Musshoff and Hirschauer (2014) ensured incentive compat-
ibility, the experiment contained hypothetical decision making, whereas the donation 
decisions in Karlan and List (2007) were non-hypothetical. Moreover, the study of 
Musshoff and Hirschauer (2014) analyses data from a so-called convenience group. 
Second, the experiments differ with respect to their complexity (participants having 
only to decide upon whether to donate and the respective amount vs. participants hav-
ing to play a complex multi-period business simulation game). Finally, the studies vary 
with respect to the sample sizes as well as the reported effect sizes. This allows us to 
illustrate the general usefulness, and potential pitfalls, of adaptive designs for applica-
tions in experimental economics. In order to simplify the presentation and keep the 
focus on the illustration of the method, we only consider subsets of the original data in 
the applications.

The remaining content of this paper is structured as follows. Section 2 introduces 
the necessary concepts for the design and analysis of adaptive designs (with a single 
interim analysis). This includes the necessary theory for the multiple testing and the 
combined testing of experimental stages, as well as the general concept of the simula-
tions for the power analyses in the initial design phase. In Sect. 3, we apply and illus-
trate two-stage designs for the three examples and compare their performance to single-
stage designs. Section 4 concludes with a discussion of more advanced variations of 
adaptive designs further explored in other parts of the literature.

2  The theory of adaptive designs

In order to be able to appropriately consider multiple treatments and combine multiple 
stages in an adaptive design, there are two main concepts which need to be taken into 
account. The first one consists of procedures to control the Type I error probability, and 
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the second concept refers to testing principles for combining data from different stages. 
In the following two subsections, both concepts are introduced. Assuming that multiple 
hypothesis testing principles are widely known, their description is kept short while 
a more detailed description is given in the Appendix. These concepts are required to 
carry out and analyse experiments with an adaptive design. The general procedure, as 
well as the simulation principles which are used to carry out power analyses, are out-
lined in the third subsection.

2.1  Multiple hypotheses testing: Type I error probability control

As mentioned in the introduction, one way to increase the power to find a result of 
interest is simply to test more hypotheses in the same study. However, unless a proper 
multiple testing procedure is used, increasing the number of hypotheses tested typi-
cally leads to a larger Type I error probability. This is problematic since a goal of many 
designs is to keep this error under strict control at a certain prespecified level. The phe-
nomenon can be illustrated by the following simple example. Suppose that m different 
null hypotheses are tested based on independent test statistics, and assume that the tests 
used have been chosen so as to make the individual (i.e., the nominal) Type I error 
probabilities equal to � . This means that the marginal probability to not reject a specific 
null hypotheses equals 1 − � , given that it is true and there is no non-zero effect. By the 
independence assumption, if all null hypotheses are true, then it follows that the prob-
ability to reject at least one of them is 1 − (1 − �)m . Hence, as m increases, the prob-
ability to falsely reject at least one null hypotheses converges to certainty.

To what extent it is important to keep the Type I error probability under strict con-
trol, and, if so, which significance level to choose, varies across scientific disciplines 
and applications. In order to choose appropriate values of the Type I error probability 
and power, one must weigh the value of correctly finding a positive effect against the 
loss of falsely declaring an effect as positive when it is not.

Before proceeding to discuss multiple testing procedures, note that there have been 
several different suggestions of how to generalise the concept of a Type I error prob-
ability for a single hypothesis to the case of multiple hypotheses. These are referred to 
as different error rates (see, e.g., Chapter 2 of Bretz et al. (2011)). Most relevant for the 
present paper is the FWER. Let H1,… ,Hm denote a set of m null hypotheses of inter-
est, m0 of which are true. The FWER is then defined as the probability of making at 
least one Type I error. This probability depends on the specific combination of hypoth-
eses that are actually true, which of course is unknown when planning the experiment.

Multiple testing procedures for controlling the FWER are based on the concept of 
intersection hypotheses. Given the m individual hypotheses H1,… ,Hm and a non-
empty subset of indices I ⊆ {1,… ,m} , the intersection hypothesis HI is then defined 
as

(1)HI =
⋂

i∈I

Hi, I ⊆ {1,… ,m}.
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Local control of the FWER at level � for a specific intersection hypothesis HI holds 
when the conditional probability to reject at least one hypothesis given HI is at most 
� , i.e. when

Strong control of the FWER means that the inequality in Eq. (2) must hold for all 
possible non-empty subsets I. This more conservative requirement bounds the prob-
ability of making at least one Type I error regardless of which hypotheses are true. 
It is often deemed appropriate when the number of hypotheses is relatively small, 
while the consequences of making an error may be severe. There are a number of 
different multiple testing procedures available for local control of the FWER. One 
of the most widely applicable is the well-known Bonferroni procedure, which rejects 
Hi at level � if the corresponding nominal test would have rejected Hi at level �∕m.

If a test has been defined for the local control of a collection of intersection 
hypotheses, strong control of the FWER can be attained by employing the closed 
testing principle. This principle states that if we reject an individual hypothesis Hi 
if and only if all intersection hypotheses HI such that i ∈ I are rejected at local level 
� , then the FWER is strongly controlled at level � (Marcus et al., 1976). Since this 
principle is completely general with regards to the specific form of the tests for the 
intersection hypotheses HI , it follows that the choice of the local test will determine 
the properties of the overall procedure.

For many economic experiments, where multiple treatment groups are compared 
with one control group, a suitable test procedure for testing intersection hypotheses 
is the Dunnett test (Dunnett, 1955). Using the closed testing principle, the Dunnet 
test can be used to obtain strong control over the FWER. The test is described in 
more detail in the Appendix.

2.2  Combined testing in adaptive designs

If we can look at some of the data before spending all available resources, then we 
could allocate the remaining samples to the most promising treatments. The present 
section contains a short introduction to the general topic of such adaptive designs, 
sufficient for the latter applications. As mentioned in the introduction, for reasons of 
clarity, we will limit ourselves to the case of two-stage designs with a single interim 
analysis. There are two main approaches. One is referred to as the combination test 
approach and was introduced by Bauer (1989), and Bauer and Köhne (1994). The 
other, which makes use of conditional error functions, was introduced by Proschan 
and Hunsberger (1995) for sample size recalculation, while Müller and Schäfer 
(2004) widened the approach to allow for general design changes during any part of 
the trial.

Following Wassmer and Brannath (2016), we assume for the moment that the pur-
pose of the study is to test a single null hypothesis H0 . We will see later how to com-
bine interim adaptations with the closed testing principle when several hypotheses are 
involved. When the interim analysis is performed, there are two possibilities. Either H0 
is rejected solely based on the interim data T1 from the first stage, or the study continues 

(2)ℙHI

(
Reject Hi for some i ∈ I

) ≤ �.
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to the second stage, yielding data that we assume can be summarised by means of a 
statistic T2 . In general, the null distribution of T2 may then depend on the interim data. 
For instance, the first stage could inform an adjustment of the sample size of the second 
stage. Nevertheless, it is often the case that T2 may be transformed so as to make the 
resulting distribution invariant with respect to the interim data and the adjustment pro-
cedure. In other words, the statistics used to evaluate the two stages will be independent 
given that H0 is true, regardless of the interim data and the adaptive procedure.

As an example, suppose that T2 is a normally distributed sample mean under H0 , 
with mean 0 and a known variance �2∕n2 , with �2 being the variance of a single obser-
vation and n2 a second stage sample size that depends on the interim data in some way. 
Then a one-sided p-value for the second stage can be obtained by standardising T2 
according to

Assuming that the data from the two different stages is independent, it follows that 
the joint distribution of the p-values p1 and p2 from the two stages is known and 
invariant with respect to the interim adjustment. This is the key property which 
allows for the flexibility when choosing the adaptive design procedure.

Based on the conditional invariance principle, the design of an adaptive trial con-
trolling the Type I error probability at a level � can be specified in terms of a rejection 
region for p1 and a corresponding region for p2 . This results in a sequential test of H0 
which is independent of the adaptation rule. The aforementioned main testing princi-
ples (combination tests and conditional error functions) only differ in the way the rejec-
tion region for the second stage is specified.

For the combination test approach, suppose that a one-sided null hypothesis 
H0 ∶ � ≤ 0 . � is some parameter of interest and is to be tested using a two-stage design 
with p-values p1 and p2 . The combination test procedure is specified in terms of three 
real-valued parameters, �0 , �1 and c, and a combination function C(p1, p2) . It proceeds 
as follows: 

1. After the interim analysis, stop the trial with rejection of H0 if p1 ≤ �1 and with 
acceptance of H0 if p1 > 𝛼0 . If 𝛼0 < p1 ≤ 𝛼1 , apply the adaptation rule and collect 
the data of the second stage.

2. After the second stage, reject H0 if C(p1, p2) ≤ c and accept H0 if C(p1, p2) > c.

By virtue of the conditional invariance principle, it is easily shown that the Type I error 
probability is controlled at level � by any choice of �0 , �1 , c, and C(p1, p2) satisfying

where �{⋅} denotes the indicator function. Naturally, �1 needs to be smaller than 
�0 . While specific values depend on the individual setting, Bauer and Köhne 
(1994, p.1031) argue that "a suitable value for �0 could be �0 = .5 ". This corresponds 

(3)p2 = 1 −�

�
T2

�∕
√
n2

�
.

(4)ℙH0

(
RejectH0

)
= �1 + �

�0

�1
�

1

0

�
{
C(p1, p2) ≤ c

}
dp2 dp1 ≤ �,
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to the situation that the effect goes in the right direction. If this value is chosen for 
�0 and the overall level of � is � = 0.05 , the remaining values are �1 = 0.0233 and 
c = 0.0087 (see Table 1 in Bauer and Köhne (1994) for other typical threshold val-
ues). As a special case, if the first stage parameters of Eq. (4) are set to �1 = 0 and 
�0 = 1 , then there will be no early stopping (neither for futility nor with early suc-
cess) and the null hypothesis will be rejected after the second stage if and only if 
C(p1, p2) ≤ �.

The other main approach, using conditional error functions, is very similar. 
The parameters �0 and �1 have the same role, but c and C(p1, p2) are replaced by a 
conditional error function A(p1) such that, after the second stage, H0 is rejected if 
p2 ≤ A(p1) and accepted if p2 > A(p1) . It is important to note that, as long as one of 
the procedures described above is followed, any type of rule can be used to update 
the sample size in an interim analysis. This means that not only can the information 
on efficacy collected so far be used in an arbitrary manner, but so can also any infor-
mation external to the trial. For a more comprehensive review of the history and 
current status of adaptive designs as applied to clinical trials, see Bauer et al. (2016).

In the following, we only consider the inverse normal combination function 
(Lehmacher & Wassmer, 1999) for combining the p-values from the two stages. 
Although alternative choices exist it is commonly used and is the default method in 
the used software implementation. The definition of this function is

where w1 and w2 are pre-specified weights that satisfy the requirement w2
1
+ w2

2
= 1.2 

With p1 and p2 independent and uniformly distributed, it follows from the definition 
that C(p1, p2) becomes a random variable of the form C(p1, p2) = 1 −�(Z) , where 
Z follows a standard normal distribution. Thus, C(p1, p2) can be treated as a p-value 
that combines the information from the two stages.

2.3  Two stage designs and power simulations

Having briefly introduced the necessary components, we are now ready to describe 
the step-by-step procedure characterising the class of adaptive designs of interest. 

1. Define a set of one-sided, individual null hypotheses H1,… ,Hm correspond-
ing to comparisons of treatment means �i against a common control �0  (i.e., 
Hi ∶ �i ≤ �0).

2. Given the first stage data, apply Dunnett’s test and compute a p-value pI
1
 for each 

non-empty intersection hypothesis HI such that I ⊆ {1,… ,m}.
3. Apply a treatment selection procedure to the first stage data, for example by select-

ing a fixed number of the best treatments. This results in a subset J ⊆ {1,… ,m} 
taken forward to the second stage.

(5)C(p1, p2) = 1 −�
(
w1�

−1(1 − p1) + w2�
−1(1 − p2)

)
,

2 Following Jenkins et al. (2011), the weights w
1
=
√
n
1
∕(n

1
+ n

2
) and w

2
=
√
n
2
∕(n

1
+ n

2
) , where n

1
 

and n
2
 are the group sizes for stage 1 and 2, are used in all applications in the following. Note that n

1
 for a 

two-stage design corresponds to n for a single-stage design, as used in Eq. (9) in the Appendix.
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4. Given the second stage data, apply Dunnett’s test and compute a p-value pI
2
 for 

each non-empty intersection hypothesis HI such that I ⊆ J.
5. Compute combined p-values pI

c
= C(pI

1
, pI

2
) using a normal combination function 

for each I ⊆ J . Reject each HI at local level � for which pI
c
≤ � . Finally, ensure 

strong control of the FWER at level � by applying the closed testing principle 
and rejecting the individual hypotheses Hi satisfying pI

c
≤ � for all I ⊆ J such that 

i ∈ I.

Note that this procedure assumes that those hypotheses dropped at the interim can-
not be rejected in the final analysis. This leads to a conservative procedure with 
an actual Type I error probability that may be lower than the pre-specified level � 
(Posch et al., 2005).

There are a number of selection rules, which can be applied in this procedure. 
For example a fixed number (s) of treatments can be taken forward from the first 
to the second stage, e.g. the single best ( s = 1 ) or the two best treatments ( s = 2 ). 
Alternatively, the number of treatments taken forward can be flexible, either taking 
all treatments within a given range from the best treatment forward ( �-rule), or all 
treatments with a effect estimate at the interim analysis larger than a given threshold. 
Assuming that in most applications, the total sample size will be fixed due to budget 
reasons or a limited sample pool, specifying the number of treatments taken forward 
will often be a sensible choice, as it allows to determine the second stage sample 
size in the design phase.

Before an experiment is carried out, researchers usually want to investigate its 
statistical power. For adaptive approaches like the ones outlined above, these analy-
ses build on simulations. All simulations presented in the remainder of the paper 
were carried out using the open source R package asd3. This simulation pack-
age was originally developed for evaluating two-stage adaptive treatment selection 
designs using Dunnett’s test (Parsons et al., 2012), and was later extended to also 
support adaptive subgroup selection (Friede et al., 2020).

After the treatments have been chosen for consideration in the experiment, the 
power simulations, as all power analyses, require prior beliefs about the expected 
effect sizes of the treatments. Further, the researcher needs to specify the number of 
observations in the different stages of the experiment and the selection rule (i.e. the 
numbers of groups which transfer to the second stage). The core idea for the simula-
tion is to directly simulate the test statistics for the following hypothesis test, rather 
than individual observations (see Parsons et al., 2012; Friede et al.,2011 for details). 
Using a large number of drawn test statistics then allows to assess the expected 
power. The asd package, designed for these purposes, handles the issue of strong 
control of the FWER. A practical example of the simulation procedure is given in 
the following section. Additionally, a more principled discussion of the simulation 
procedure can be found in the supplementary material.

3 There are commercially available alternatives (e.g., ADDPLAN and EAST). Another R package called 
rpact implements the methods described in the monograph by Wassmer and Brannath (2016) and 
might be of interest to readers looking to apply the methodology, but is not used here. In addition, Rich-
ter et al. (2022) describe another software package that might be of interest.
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3  Applications of adaptive designs in experimental economics

As discussed in the introduction, adaptive designs can be applied in many different 
settings. In order to illustrate the potential, we consider three examples in this sec-
tion. The first one is the hypothetical setting outlined in Sect. 1 and is used to illus-
trate the simulation procedure for the planning of an adaptive design. The second 
and third examples are based on prior research. Based on the data and the results of 
the original studies, results of simulations for adaptive designs are presented. More 
detailed descriptions of the experimental designs of the original studies can be found 
in the supplementary material.

3.1  Application 1: Design of a field experiment

For the scenario outlined in the introduction, imagine that after consultations with 
stakeholders and colleagues, four potential treatments (+ one control) have been 
selected for consideration. Further, expected costs for data collection will allow 
for a total sample size of 300. For the present case, the project group may agree 
that standardized (Cohen’s d) effect sizes of 0.2, 0.2, 0.4 and 0.5 could reasonably 
be expected for the four treatments, implying that the group thinks that it is realis-
tic that two of the treatments have small sized effects, and that the other two have 
medium sized effects (noted as "basic" scenario in the following).

One straightforward adaptive design would be that an interim analysis is carried 
out after 50% of the sample is collected and only the two best treatments are taken 
forward (implying a group size of 30 observations in the first stage, and 50 in the 
second stage). In a standard, non-adaptive experiment, the results of an interim anal-
ysis would not have any effect on the subsequent data collection, meaning that all 
four treatments are to be included in the second stage of the data collection. Thus, 
the power of both such experiments can be simulated with the asd-package4. Using 
10,000 simulations shows that, for the standard design, the power of the experiment 
to reject at least one of the four Null hypotheses would be 62.27 % (Table 1). Such a 
design would conventionally be considered to be under-powered.

4 For the code see the replication material.

Table 1  Power simulation for 
the single stage design

Power to reject H1 and/or H2 and/or H3 and/or H4 = 62.27%

Treatment Assumed 
effect size

Selection of the treat-
ment at stage 1 (%)

Hypothesis rejec-
tion at endpoint 
(%)

T1 0.2 100 12.87
T2 0.2 100 12.64
T3 0.4 100 37.72
T4 0.5 100 55.33
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In contrast, when only the two most promising treatments are carried over to 
the second stage after the interim analysis, the expected power to reject at least one 
of the Null hypotheses increases up to close to the conventional 80 % threshold  
(79.21 %, Table 2).

This serves as a first illustration of one of the potential benefits of the adaptive 
designs: given a fixed sample size, the power to reject at least one of the Nulls is 
substantially increased. Of course, this represents only one potential design. For 
example, it may be possible to find a design which also achieves an acceptable level 
of power, but requires a smaller total sample size, by changing the group size in the 
first stage. The left side of Fig. 1 shows the relationship between the first stage group 
size and the total sample size required to achieve 80 % power for rejecting at last one 
hypothesis. The right side shows the required sample size if the goal would be the 
rejection of the treatment with the largest assumed effect size (T4)5.

Table 2  Power simulation for 
the two stage design

Power to reject H1 and/or H2 and/or H3 and/or H4 = 79.21 %

Treatment Assumed 
effect size

Selection of the treat-
ment at stage 1 (%)

Hypothesis rejec-
tion at endpoint 
(%)

T1 0.2 23.02 6.85
T2 0.2 22.02 6.24
T3 0.4 69.65 45.05
T4 0.5 85.31 67.79
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Fig. 1  Total sample sizes to achieve 80% power in the basic scenario, for different first stage group sizes; 
Note: The dashed line indicates the sample size when no treatment selection is carried out

5 The depicted sample sizes are the ones which minimize the absolute deviation of the expected power 
from 80 %.
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Figure 1 shows that, compared to a single stage design, the required sample size 
can be decreased in both cases. The required sample size to reject at least one null 
hypothesis can be reduced to 67 % of the original sample size. When the interest 
would be solely on rejecting the Null for the largest expected effect, the required 
minimum sample size is higher, but there is a 16 % reduction in comparison to the 
non-adaptive sample size. It is noteworthy that when the interest is only to reject 
the null hypothesis for the largest effect (T4), the group size of the first stage almost 
doubles, compared to when only aiming to reject one of the null hypotheses (around 
40 in the former and around 20 in the latter case; compare the positions of the min-
ima for the total sample sizes in Fig. 1).

As in other power analyses, the outcomes crucially depend on the assump-
tions about the expected effect sizes. To illustrate this, assume that there are two 
alternative sets of assumptions about the expected effect sizes held by different 
groups of researchers (“Alternative I” and “Alternative II”), depicted in Table 3. 
One group may believe that the “small” effect sizes are actually smaller and the 
medium effect sizes are more “distinct” than in the basic scenario (“Alternative 
1”), while another group may argue that the two treatments will only have small 
effects, one a medium and the last one a large effect. The required sample sizes of 
these sets can be simulated for the basic scenario and are depicted in Figs. 2 and 
3.

Table 3  Effect size assumptions 
used in the power simulations

Scenario T1 T2 T3 T4

Basic 0.2 0.2 0.4 0.5
Alternative I 0.1 0.1 0.2 0.5
Alternative II 0.1 0.1 0.5 0.8
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Fig. 2  Total sample sizes to achieve 80% power in scenario “Alternative I”, for different first stage group 
sizes; Note: The dashed line indicates the sample size when no treatment selection is carried out
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The difference between the expected effect sizes of T3 and T4 in scenario 
Alternative I is larger than in the basic scenario. At the same time, the expected 
effect sizes for T1, T2 and T3 are smaller than in the basic scenario (cf. Table 3). 
This leads to overall larger required sample sizes for Alternative 1, both for single 
stage designs and two-stage designs (for most of the considered first stage group 
sizes, compare Figs. 1 and 2). Still, the expected savings in sample size are 33% 
and 31%, and both optimal group sizes in the first stage around 20–25 observa-
tions (cf. the minimum of the solid line in Fig. 2). The assumptions for Alterna-
tive II, which include one large expected effect, lead to substantially smaller sam-
ple sizes than the basic scenario, for all considered designs (compare Figs. 1 and 
3). Still, using an adaptive design allows saving a substantial share of the required 
total sample size (respectively 35% and 32%).

These simulation results show that the required sample size for a two-stage 
design could be reduced by about 30% compared to a single-stage design. Still, 
the sample size savings vary for the different assumptions regarding the effect 
sizes. It has also be noted that this requires that the group size in the first stage is 
appropriately chosen; see discussion below.

3.2  Application 2: A business management game for regulatory impact analysis

To further illustrate the application of the adaptive designs, we apply a two-stage 
design to the experiment of Musshoff and Hirschauer (2014). Here, rather than 
simulating the experiment, a subset of the actual data from the experiment is used. 
In their experiment, the impact of four different nitrogen reduction policies on the 
decision-making of the participants is investigated and compared to a base case. 
The participants play a multi-period, single-player business simulation game. The 
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Fig. 3  Total sample sizes to achieve 80% power in scenario “Alternative II”, for different first stage group 
sizes; Note: The dashed line indicates the sample size when no treatment selection is carried out
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sample consists of data from 190 agricultural university students, taking on the role 
of farmers deciding on a production plan for a hypothetical crop farm. Each individ-
ual plan specifies the land usage shares for the different crops, as well as the amount 
of nitrogen fertiliser to be used. The objective of each player is to maximise his or 
her bank deposit at the end of the 20 production periods that make up the total game 
time.

In the first 10 production periods, all players receive an unconditional, govern-
mental deterministic agricultural payment. After these initial periods, the players are 
randomly assigned to one of five different policy scenarios. The first scenario can 
be interpreted as “business as usual”, in which the deterministic payments are con-
tinued. The other four are actual interventions, designed to foster more environmen-
tally friendly production. They differ with respect to whether payments are granted 
(scenario 2 and 3), or whether penalties are charged (scenario 4 and 5) when the 
fertiliser usage is respectively above or below a given threshold (voluntary vs. pre-
scriptive). Further, they vary in terms of whether the payments or penalties are made 
without exception (scenario 2 and 4), or whether there is only a certain probability 
that a player’s action is discovered and payments or penalties are applied (scenario 3 
and 5; deterministic vs. stochastic). The scenario designs ensure the same expected 
monetary gain for the players (see Sect. 3 of Musshoff and Hirschauer, 2014 for a 
detailed description of the experiment).

The main outcome variable of interest is the share of arable land where the play-
ers kept the fertiliser levels below a pre-specified threshold referred to as “extensive 
use”, defined to be 75 kg per hectare. In the first ten periods the group mean shares 
were similar, all between 11.6% and 17.4%. For periods 11 to 20 the shares were, 
for scenario 1 to 5 in order, 13.6%, 67.5%, 80.7%, 80.9% and 49.4% (see Table 4 of 
Musshoff and Hirschauer, 2014). Thus, scenarios 2-5 yield much higher share val-
ues compared to the reference scenario, and moreover these seem to lead to different 
outcome means although they all give the same expected profit.

Here, we focus on the subset of data corresponding to scenarios 2, 3 and 4. For 
each of these groups, there is data for 38 players. As the total sample size increases 
in the examples below, more and more players are used from each group, in the 
order they are included in the original data file.6 We use scenario 2 as the control 
(rather than scenario 1) and treat 3 and 4 as two different active treatments (treat-
ment 1 and 2). We may interpret this as a smaller study in which a deterministic 
penalty (scenario 3) and a stochastic penalty (scenario 4) are compared against a 
deterministic reward (scenario 2). The subset is chosen for illustrative purposes, but 
is also in close correspondence with one of the original hypotheses of Musshoff and 
Hirschauer (2014). The null hypothesis for the comparison of scenario 3 vs. 2 is 
denoted by H1 , while the one corresponding to 4 vs. 2 is denoted by H2 . While sce-
nario 2 (as a policy intervention) would be preferable based on equality arguments, 
high monitoring costs may make it impractical and warrant alternative interven-
tions. Such are provided by scenarios 3 and 4, but which of them works best when 

6 Table 4 of Musshoff and Hirschauer (2014) can be reconstructed by taking the mean group values of 
the data used here (for maximum group sizes) and dividing by 400.
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taking into account the multiple goals (e.g. income and environment concerns) and 
bounded rationality of an economic decision maker?

Tables  4a and b provide a comparison showing which hypotheses are rejected 
for different subsets of the data. As in the previous subsection, groups within the 
same stage are always of equal size. The subset of the data used consists of one 
control and two treatment groups (treatment 1 and 2). Thus, the selection rule at 
the interim analysis study takes only the better active treatment forward. As in the 
basic scenario in Application 1, approximately half the total sample size is used in 
the first stage. This design was chosen since it was found to be close to optimal in 
the simulations performed. It can be observed that the two-stage design is able to 
reject at least one hypothesis (namely, H1 ) once the total sample size N becomes 
large enough (row 6 and 7 in Table 4b), while the single-stage design never rejects 
any hypothesis. Hence, the adaptive design increases the power of detecting at least 
one effect by dropping one scenario at the interim analysis and focusing on the one 
that seems to have the largest effect.

Table 4  Hypotheses rejected in Dunnett tests for single- and two-stage designs of increasing sizes, 
together with mean difference estimates of effect sizes.

Note that the total sample sizes for the corresponding rows of Tables 4a and b have been selected to be as 
close as possible. Type I error probability � = 0.025 . n

1
 = first stage group size, n

2
= second stage group 

size. N
1
= total first stage sample size, N

2
= total second stage sample size

(a) Single-stage design

Row n
1
(N

1
) H

1
∩ H

2 Treatment 1 Treatment 2

H
1
(x̄

1
− x̄

0
) H

2
(x̄

2
− x̄

0
)

1 10 (30) No No (8.00) No (39.30)
2 13 (39) No No (35.38) No (32.54)
3 16 (48) No No (32.31) No (25.63)
4 20 (60) No No (36.65) No (55.75)
5 23 (69) No No (39.04) No (50.22)
6 26 (78) No No (41.38) No (53.19)
7 30 (90) No No (55.03) No (52.60)

(b) Two-stage design

Row n
1
(N

1
) n

2
(N

2
) H

1
∩ H

2 Treatment 1 Treatment 2

H
1
(x̄

1
− x̄

0
) H

2
(x̄

2
− x̄

0
)

1 5 (15) 7 (14) No No (12.83) No (64.42)
2 7 (21) 9 (18) No No (24.28) No (25.63)
3 9 (27) 11 (22) No No (30.77) No (55.75)
4 10 (30) 15 (30) No No (39.00) No (53.72)
5 12 (36) 17 (34) No No (22.24) No (49.07)
6 14 (42) 19 (38) Yes Yes (60.67) No (29.51)
7 15 (45) 22 (44) Yes Yes (58.57) No (36.00)
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3.3  Application 3: A field experiment in charitable giving behaviour

Last, we consider the study of Karlan and List (2007), which is concerned with 
the effect of a matching grant on charitable giving. A matching grant represents an 
additional donation made by a central donor backing the study, the size of which 
depends on the amount donated by the regular donors. The sample consists of data 
from 50,083 individuals, who were identified as previous donors to a non-profit 
organisation and were contacted by mail.

Two thirds of the study participants were assigned to some active treatment 
group, while the rest were assigned to a control group. The active treatments varied 
along three dimensions: (1) the price ratio of the match ($1:$1, $2:$1 or $3:$1)7; (2) 
the maximum size of the matching gift based on all donations ($25,000, $50,000, 
$100,000 or unstated) and (3) the donation amount suggested in the letter (1.00, 
1.25 or 1.50 times the individual’s highest previous contribution). Each of these 
treatment combinations was assigned with equal probability. The authors study both 
the effects on the response rate as well as the donation amount. However, we will 
only focus on how the matching ratio affects the response rate. The reason for this 
simplification is that we want to be able to connect the simulation results in the pre-
vious section to the available real-world data without increasing the complexity of 
the presentation by introducing too many treatment groups.

For illustrative purposes, we will only consider a portion of the data analysed by 
Karlan and List (2007). Specifically, we will restrict ourselves to the subset consist-
ing of those individuals residing in red states (i.e., states with a republican major-
ity, see Panel C of Table 2A of Karlan and List, 2007). The reason for this is that, 
as noted by Karlan and List (2007), it is only for this subgroup that the original 
analysis shows a statistically significant difference between the groups defined by 
the different matching ratios. Naturally, a real analysis would not ignore data just 
because it is not statistically significant. However, since our purpose here is to com-
pare methods of data analysis rather than to answer specific research questions, we 
choose to restrict ourselves to a subset in order to be able to more clearly highlight 
the difference between the single-stage and two-stage designs. Thus, there are three 
active treatments, corresponding to the different matching ratios. Again, the sample 
size is divided equally among the groups in each stage, but we employ a rule that 
selects the two best treatments at the interim analysis, in contrast to the previous 
application.

Comparing Table 5a with b, it can be seen that the single-stage design rejects no 
hypothesis up until a total sample size of N1 = 7000 (row 6 in Table  5a). In con-
trast, the two-stage design starts to reject a hypothesis, namely H1 (treatment 1), from 
N1 + N2 = 6000 (row 5 in Table 5b), indicating the potential reduction to sample size 
by 1000 observations.

7 The ratio $X:$1 indicates that for every dollar the individual donates, the matching donor additionally 
contributes $X.
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4  Discussion and conclusions

In this paper, we have introduced the basic theory of adaptive designs for multiple 
hypothesis testing and illustrated it by means of hypothetical use-case scenario and 
two real-world data sets. Although the basic theory required for the applications is 
covered by Sect. 2, the general approach of using combination tests and the closed 
testing principle provides a starting point for more advanced designs. Using the R 

Table 5  Hypotheses rejected in Dunnett tests for single- and two-stage designs of increasing sizes, 
together with mean difference estimates of effect sizes

Note that the total sample sizes for the corresponding rows of Tables 5a and 5b have been selected to 
be as close as possible. Type I error probability � = 0.025 . n

1
 = first stage group size, n

2
= second stage 

group size. N
1
= total first stage sample size, N

2
= total second stage sample size

(a) Single-stage design

Row n
1
(N

1
) H

1
∩ H

2
∩ H

3
Treatment 1
H

1
(x̄

1
− x̄

0
)

Treatment 2 Treatment 3

H
2
(x̄

2
− x̄

0
) H

3
(x̄

3
− x̄

0
)

1 500 (2000) No No (0.004) No (-0.006) No (0.002)
2 750 (3000) No No (0.008) No (-0.005) No (0.000)
3 1,000 (4000) No No (0.009) No (0.000) No (0.006)
4 1,250 (5000) No No (0.010) No (0.002) No (0.005)
5 1,500 (6000) No No (0.011) No (0.006) No (0.007)
6 1,750 (7000) Yes Yes (0.014) No (0.008) No (0.010)
7 2,000 (8000) Yes Yes (0.012) No (0.008) Yes (0.010)
8 2,250 (9000) Yes Yes (0.010) No (0.008) Yes (0.012)
9 2,500 (10,000) Yes Yes (0.012) Yes (0.009) Yes (0.014)
10 2,750 (11,000) Yes Yes (0.013) Yes (0.009) Yes (0.014)

(b) Two-stage design

Row n
1
(N

1
) n

2
(N

2
) H

1
∩ H

2
∩ H

3 Treatment 1 Treatment 2 Treatment 3

H
1
(x̄

1
− x̄

0
) H

2
(x̄

2
− x̄

0
) H

3
(x̄

3
− x̄

0
)

1 250 (1000) 333 (999) No No (0.003) No (-0.007) No (0.002)
2 375 (1500) 500 (1500) No No (0.010) No (0.003) No (0.002)
3 500 (2000) 666 (1988) No No (0.009) No (0.003) No (0.004)
4 625 (2500) 833 (2499) No No (0.009) No (0.002) No (0.005)
5 750 (3000) 1000 (3000) Yes Yes (0.014) No (0.005) No (0.010)
6 875 (3500) 1166 (3498) Yes Yes (0.011) No (0.006) Yes (0.010)
7 1,000 (4000) 1333 (3999) Yes Yes (0.010) No (0.004) Yes (0.013)
8 1,125 (4500) 1500 (4500) Yes Yes (0.012) No (0.004) Yes (0.013)
9 1,250 (5000) 1666 (4998) Yes Yes (0.011) No (0.003) Yes (0.013)
10 1,375 (5500) 1833 (5499) Yes Yes (0.010) Yes (0.008) No (0.005)
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package asd for our simulation study reflects our aim to introduce and illustrate the 
methodology, since it is well suited for many applications.

The results presented in Sect. 3.1 illustrate the potential of moving from single-
stage to two-stage designs. Clearly, the results on the potential for saving costs by 
collecting less data, while maintaining a fixed level of power, are specific to the con-
sidered scenario. However, they still serve as an indication of what can be gained 
when moving from a single-stage to a two-stage design. The simulations for the 
hypothetical examples indicate that the required sample size could be reduced by 
around 30% by using a two-stage design. While these results show the potential of 
applying such designs, the decision to apply them require additional practical con-
siderations. Most importantly, the costs associated with the administration and data 
analysis of the more complex two-stage design compared with a single-stage design 
have to be taken into account. For example, when field experiments are carried out 
in the paper-and-pencil-format, digitising and analysing the interim data may sig-
nificantly increase the study’s costs (or even be infeasible due to time constraints). 
Still, when the data is collected in digital form (e.g. in an economic laboratory), a 
two-stage design may not impose any additional costs at all.

The relatively simple models considered in the present paper can be extended 
in a number of different ways. One option would be to adjust the effects for base-
line covariates in suitable regression models; the combination test approach illus-
trated here can still be applied. Another option would be to consider designs with 
more than two stages. Whether or not this is worthwhile from a practical perspec-
tive depends to a high degree on the specific application considered. Again, if 
experimental data are sequentially collected in multiple sessions and in a form 
which can be analysed without technical difficulties, multi-stage designs could 
be a viable option. Here, it is important to emphasise that this will not pose any 
issues from a theoretical perspective, since the general method of using combina-
tion tests and the closed testing principle would still be applicable. Nevertheless, 
the simulations would require using other (mainly commercial) software pack-
ages or additional programming since the asd is specifically designed for two 
stage designs. Also, the main argument for a reduction of the sample size is a 
reduction in costs (apart from a potentially limited sample pool). This rests on the 
implicit assumption that all treatments have identical costs per treated observa-
tion. In cases where this assumption does not hold, further considerations may be 
required. In simple cases, treatment effects may be expressed per monetary unit 
spent, but in more complex cases, specific algorithms may have to be developed. 
As the goal here was to illustrate a general approach, these considerations are 
beyond the scope of the present paper.

It is further important to note that alternative selection rules could have been con-
sidered in the previous sections. As mentioned earlier, selection rules that take a 
fixed number of treatments forward to the next stage will often be natural choices, in 
particular selecting the best treatment only. The specific number of treatments taken 
further has to be determined based on the number of initial treatments, the expected 
available total sample size and the relative differences in the expected effect sizes, 
and it must also be chosen as such that it leads to an acceptable expected power.
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The general framework of adaptive designs also allows for essentially any type 
of treatment selection rule. For example, in settings with a larger number of poten-
tial treatments and/or less informative beliefs about relative differences between 
the effect sizes, research could employ the �-rule and select all the treatments with 
effect estimates within a certain range of the best one. This mimics decisions by 
experts who would likely select only a single treatment which is better than others, 
but might take other treatments further in addition to the best if they come close to 
the best treatment. Therefore, the �-rule can be used to mimic expert groups in simu-
lations while the decision in the real study might not follow a strict rule but might be 
made by a group of (independent) experts. Nevertheless, Friede and Stallard (2008) 
find that in settings where the �-rule is considered, selecting only most promising 
treatment will often be (close to) optimal. Note that the Type I error rate is still con-
trolled independent of the selection rule. Under the alternative, however, the power 
will be dependent on the selection rule. Furthermore, researchers may rely on other 
rules such as a threshold-based selection rule, e.g. only taking to the second stage 
treatments for which interim results indicate effect sizes of practical relevance.

Related to the choice of the selection rule is the selection of the sample size of 
the first stage of the experiment. The final decision will depend on the number of 
planned treatments in the first stage and on the assumptions regarding potential 
effect sizes as well as differences between treatments. Still, in medical trial settings, 
research indicates that it will often be optimal to allocate around 50% of the total 
sample size to the first stage (see e.g. Chataway et al.,2011, Friede et al., 2020, Plac-
zek and Friede 2022). This is within the range of optimal allocations found for the 
hypothetical example in Sect. 3.1. Here, the simulations suggest to allocate between 
25% and 60% of the total sample size to the first stage. This highlights the need for 
simulations in the planning of the experiments. While these simulations can become 
time-consuming, recent developments in optimization methods can help to reduce 
their computational burden (Richter et al., 2022).

The use of Dunnett’s test for many-to-one comparisons is suitable for the appli-
cations considered here, but it is only one of several possible choices to use for the 
intersection test when applying the closed testing principle. Hence, alternative appli-
cations may require other types of tests. Furthermore, when a researcher wants to 
carry out large-scale experiments with a very large number of hypotheses tested 
simultaneously, strong control of the FWER may not be an appropriate criterion. 
A possible alternative that has been suggested for such cases is the per-comparison 
error rate (see the Appendix and Bretz et al. (2011)).

In our analysis we focused exclusively on hypothesis testing as the main goal 
of the experiment. However, formulating and testing null hypotheses is often only 
partly the goal of similar studies. In addition, the experimenter often seeks to per-
form some kind of model or parameter estimation. This could consist of reporting 
estimates and confidence intervals for the different treatments considered. When 
constructing estimates from the data obtained in an adaptive experiment, it is impor-
tant to note that these may be biased, as adaptive designs can affect the statistical 
distribution of the treatment effects (Jennison & Turnbull, 2000).

Although we recognise the importance of estimation problems, the goal here has 
been to focus on the basic concepts of adaptive designs, particularly the issue of a 
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strong FWER control in the presence of interim analyses. For a general discussion of 
bias in adaptive designs and bias-correcting procedures, see Pallmann et al. (2018) 
and the references therein. More recently, Hadad et al. (2021) discussed approaches 
specifically in the context of policy evaluation settings. To connect this general issue 
to one of our applications, consider the analysis by Musshoff and Hirschauer (2014). 
There, the objective is not only to determine whether a specific set of hypotheses can 
be rejected or not. The data are also used to fit a regression model, which adjusts 
for baseline covariates. While the confidence intervals obtained for the estimated 
parameters are used to test the hypotheses, the value of such a model goes beyond 
testing since it can also be used for more general predictive statements.

Another issue is potential temporal differences, i.e. changes during the course of 
the experiment. When the treatment effects change between the different stages of 
the experiment (e.g. due to seasonal effects in a field experiment), the conclusions 
drawn from the interim analysis may become biased or unreliable. If systematic 
heterogeneity between the experimental stages is suspected, researchers may also 
address these issues by formal testing procedures; see e.g. Friede and Henderson 
(2009).

There is also a number of other related design approaches, which could be con-
sidered for economic experiments. Instead of the many-to-one comparisons that 
have been our focus here, similar methods can also be applied to the closely related 
topic of subgroup selection, in which one or more subgroups of treatment units are 
taken forward to the next stage in a sequential study while the treatment stays the 
same. These are referred to as adaptive enrichment designs (see, e.g. Chapter  11 
of Wassmer and Brannath, 2016). Simulations for a special case of such designs, 
involving co-primary analyses in a pre-defined subgroup and the full population, are 
supported by the R-package asd.

Another approach, which could be of interest when researchers are interested in 
(ideally) persistent treatment effects, is adaptive designs which make use of early 
outcomes. This means that the decision concerning which treatment to take forward 
to the second stage is based on a measure that need not be identical but only cor-
related to the one actually used in the final analysis. For example, when a study is 
interested in the effects of educational interventions, a suitable early outcome could 
be the result of a test taken (relatively) shortly after the intervention. While such 
designs are supported by the asd package, they require more prior knowledge 
(respectively assumptions), most importantly about the correlation between the early 
and final outcomes of the treatments.

An approach that is closely connected to general adaptive designs is that of 
group-sequential designs. For these, a maximum number of groups is first pre-spec-
ified. Subjects are then recruited sequentially and an interim analysis is performed 
once the results for a full group have been obtained. The value of a summary statis-
tic that includes the information from all groups seen so far is computed and used to 
decide whether to stop or continue the trial. The main body of the theory is built on 
the often reasonable assumption of a normally distributed summary statistic, which 
allows us to use methods to compute the characteristics in a numerically efficient 
manner (recursive integration formula, Armitage et  al. (1969)). A number of dif-
ferent group-sequential designs have been suggested in the literature (e.g. Pocock, 
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1977, O’Brien and Fleming 1979). These classical designs can be seen as spe-
cial cases of the more general adaptive approach that we have used in this paper. 
Whereas the group-sequential approach may lead to a certain degree of flexibility 
in the total sample size of the trial by allowing for early termination at an interim 
analysis, it does not allow for things such as sample size reassessment or the drop-
ping of one or several treatment arms. For a comprehensive treatment of the group-
sequential approach, see for example Jennison and Turnbull (2000).

In principle, adaptive designs could also be applied for replication studies. Still, 
some conceptual aspects have to be considered. Like in regular replications, one 
would first have to consider whether the original study can be considered adequately 
powered. If the conclusion is positive and there are limited resources, the researcher 
may maximize the probability of replicating an effect by simply focusing on the 
treatment with the largest effect (using regular power analysis methods). Similarly, 
a finding of an adaptive experiment will also typically be confirmed using a regular 
experiment (e.g. for clinical trials). In relation to this, one may wonder whether the 
approach outlined in the paper could be used to engage with questionable practices, 
such as p-hacking, e.g. by omitting the first stage from the presented paper. While 
outright fraud can never be ruled out, we believe it is not of practical concern. The 
main reason is that there is not much to gain from hiding the first stage. If data of 
the first stage would be omitted (which would make it easier to present a consist-
ent description of the data collection), the loss of observations, and thus the loss 
of power, respectively the increased variability of the estimate, would even weaken 
the results. Additionally, authors will likely have to preregister their research, which 
would make this type of behaviour more difficult.

Summarising, the general framework outlined in the present paper is a valuable 
extension of the methodological toolkit in experimental economic research. It can be 
applied in many experimental settings using existing, open-source software and has 
the potential to foster the efficient usage of the resources available to the researcher.

Appendix: Multiple hypotheses testing

In the following, we present an extended, more detailed version of Section 2.1. As 
mentioned in the introduction, one way to increase the power to find some result 
of interest is simply to test more hypotheses in the same study. However, unless 
a proper multiple testing procedure is used, increasing the number of hypotheses 
tested typically leads to a larger Type I error probability. This is problematic since 
a goal of many designs is to keep this error under strict control at a certain pre-
specified level. The phenomenon can be illustrated by the following simple example. 
Suppose that m different null hypotheses are tested based on independent test statis-
tics, and assume that the tests used have been chosen so as to make the individual 
(i.e., the nominal) Type I error probabilities equal to � . This means that the marginal 
probability to not reject a specific null hypotheses equals 1 − � , given that it is true 
and there is no non-zero effect. By the independence assumption, if all null hypoth-
eses are true, then it follows that the probability to reject at least one of them is 
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1 − (1 − �)m . Hence, as m increases, the probability to falsely reject at least one null 
hypotheses converges to certainty.

To what extent it is important to keep the Type I error probability under strict 
control, and, if so, which significance level to choose, varies across scientific dis-
ciplines and applications. In order to choose appropriate values of the Type I error 
probability and power, one must weigh the value of correctly finding a positive 
effect against the loss of falsely declaring an effect as positive when it is not. For 
example, in the regulated area of confirmatory clinical trials for licensing new medi-
cal treatments, a Type I error probability of 0.025 or 0.05 is typically required by 
the authorities (for one-sided and two-sided hypotheses, respectively). In fact, since 
typically two independent studies would be required to successfully demonstrate an 
effect, this means that the Type I error probability would actually be much smaller 
across the studies. If the effect is assumed to be small, this can lead to large and 
costly studies. Nevertheless, it is often easy to motivate the importance of keeping 
the Type I error probability this small, since incorrectly allowing non-working medi-
cines on the market could potentially lead to severe negative health effects. Here, our 
interest does not lie in specifying certain Type I error probabilities as appropriate, 
or even arguing that they should always be controlled. We assume that this has been 
deemed appropriate, and aim to demonstrate the methods that, to a large extent, have 
been developed within the field of medical statistics.

Let H1,… ,Hm denote a set of m null hypotheses of interest, m0 of which are true. 
Before proceeding to discuss multiple testing procedures, note that there have been 
several different suggestions of how to generalise the concept of a Type I error prob-
ability for a single hypothesis to the case of multiple hypotheses. These are referred 
to as different error rates (see, e.g., Chapter 2 of Bretz et al., 2011). For example, 
the per comparison error rate is the expected proportion of falsely rejected hypoth-
eses, and equals m0�∕m if each hypothesis is tested individually at level � . Here, 
we will only focus on controlling the family-wise error rate (FWER), defined as the 
probability of making at least one Type I error. This probability depends on the spe-
cific combination of hypotheses that are actually true, which of course is unknown 
when planning the experiment.

In order to give a detailed account of multiple testing procedures for controlling 
the FWER, we first need to consider the concept of intersection hypotheses. Given m 
individual hypotheses H1,… ,Hm and a non-empty subset of indices I ⊆ {1,… ,m} , 
the intersection hypothesis HI is defined as

Local control of the FWER at level � for a specific intersection hypothesis HI holds 
when the conditional probability to reject at least one hypothesis given HI is at most 
� , i.e. when

Strong control of the FWER means that the inequality in Eq. (7) must hold for 
all possible non-empty subsets I. This more conservative requirement bounds the 

(6)HI =
⋂

i∈I

Hi, I ⊆ {1,… ,m}.

(7)ℙHI

(
Reject Hi for some i ∈ I

) ≤ �.
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probability of making at least one Type I error regardless of which hypotheses are 
true. It is often deemed appropriate when the number of hypotheses is relatively 
small, while the consequences of making an error may be severe.

Now, given that tests have been defined for the local control of a collection of 
intersection hypotheses, how can this be used to attain strong control of the FWER? 
One option is to employ the widely used closed testing principle. This principle states 
that if we reject an individual hypothesis Hi if and only if all intersection hypotheses 
HI such that i ∈ I are rejected at local level � , then the FWER is strongly controlled at 
level � (Marcus et al., 1976). Since this principle is completely general with regards 
to the specific form of the tests for the intersection hypotheses HI , it follows that the 
choice of local tests will determine the properties of the overall procedure.

There are a number of different multiple testing procedures available for local 
control of the FWER. One of the most widely applicable is the well-known Bonfer-
roni procedure, due to the fact that no distributional assumptions are required for 
the statistical model. In this procedure, it is first assumed that m individual nominal 
tests have been defined for the hypotheses H1,… ,Hm , based on ordinary t-tests. The 
Bonferroni procedure then rejects Hi at level � if the corresponding nominal test 
would have rejected Hi at level �∕m . That this procedure locally controls the FWER 
for an intersection hypothesis HI follows immediately from the Bonferroni inequal-
ity, since

Here, |I| denotes the set of true null hypotheses.
In the following, we will use the Dunnett procedure (Dunnett, 1955) for testing 

intersection hypotheses. This test is tailored to our specific situation, in which sev-
eral different active treatments are compared to a common control. Specifically, it 
is assumed that each individual observation belongs to one of m + 1 different treat-
ment groups. The group with index i = 0 is the control group, against which the 
other groups are compared. The individual observations in each group are used to 
form group means X̄i . Due to the central limit theorem, we assume these to be nor-
mally distributed, with true means �i , i = 0,… ,m and variances �2∕n , where �2 is 
assumed to be known and n is the group size (all assumed equal). We thus have

After the experiment, these observations yield the estimates X̄i − X̄0 of the treatment 
mean differences relative to control. The actual testing is based on the standardised 
mean differences,

These assumptions lead to a certain covariance structure for the joint distribution of 
the statistics Z1,… , Zm which is exploited by the Dunnett test. The individual null 

(8)ℙHI

(
Reject Hi for some i ∈ I

) ≤ ∑

i∈I

ℙHI

(
Reject Hi

) ≤ |I|�
m

≤ �.

(9)X̄i ∼ N
(
𝜇i, 𝜎

2∕n
)
, i = 0, 1,… ,m.

(10)Zi =
X̄i − X̄0√
2𝜎2∕n

∼ N

�
𝜇i − 𝜇0√
2𝜎2∕n

, 1

�
, i = 1,… ,m.
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hypotheses are Hi ∶ �i − �0 = 0 . For a given intersection hypothesis HI , the test sta-
tistic is defined as

Given that a specific value Zmax
I

= z has been observed, a corresponding p-value 
may be computed as pI = 1 − Fmax

I
(z) (Friede & Stallard, 2008), where

is the cumulative distribution function of Zmax
I

 , � the standard normal density and � 
the standard normal distribution function. The intersection hypothesis HI is rejected 
at level � if pI ≤ � . Due to the closed testing principle, the individual hypothesis Hi 
may be rejected while strongly controlling the FWER if pI ≤ � for all index sets I 
such that i ∈ I.
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