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The paper outlines several approaches for dealing with meta-analyses of count outcome data. These
counts are the accumulation of occurred events, and these events might be rare, so a special feature of
the meta-analysis is dealing with low counts including zero-count studies. Emphasis is put on approaches
which are state of the art for count data modelling including mixed log-linear (Poisson) and mixed logistic
(binomial) regression as well as nonparametric mixture models for count data of Poisson and binomial
type. A simulation study investigates the performance and capability of discrete mixture models in esti-
mating effect heterogeneity. The approaches are exemplified on a meta-analytic case study investigating
the acceptance of bibliotherapy.
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Meta-analyses are used to analyse and integrate the results of several studies investigating
the same research question, providing a less costly and more powerful alternative to a large new
single study. For a general introduction into meta-analysis, refer to Borenstein et al. (2009) or
Schulze et al. (2003), for example, and specifically for psychology see Bonett and Price (2014,
2015). The following meta-analytic setting, tailored for event data, was considered in Böhning
et al. (2015) and shall be the focus of this paper. In k independent studies, counts of events are
observed in an intervention and control group. This setting can be described by a random count
variable Yi j . The index i indicates the study i for i = 1, 2, . . . , k, where k denotes the number
of available studies. Also, j = 1 denotes the intervention group and j = 0 the control group. Yi j
represents the number of events in study i and group j , whereas ni j denotes the sample size in
study i and group j . The latter is considered as non-random and is also called the number at risk.

A conventional two-stage meta-analysis proceeds as follows. In the first stage, an estimate of
an effect size such as the relative risk̂RRi = Yi1/ni1

Yi0/ni0
or odds ratiôORi = Yi1/(ni1−Yi1)

Yi0/(ni0−Yi0)
is computed

for each study. Then, in a second stage, these estimates are further analysed, for example, by
providing a summary measure

∑
i wi θ̂i/

∑
wi where θ̂i is often taken on the log-scale for the risk

or odds ratio. Here, the wi are weights and often chosen proportional to the inverse variance of θ̂i ,
where the latter is the estimated risk ratio or odds ratio. In contrast, we focus here on a one-stage
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approach which directly models the observed counts. This approach has several benefits, as it
allows for the inclusion of zero-count studies which either need to be excluded in the two-stage
approach or zeros need to be replaced by a smoothing constant as their effect sizes and associated
variances are not defined. Also, it involves working with more appropriate distributions such as
the Poisson or binomial distribution and avoids normal approximations involved in the two-stage
approach.

The meta-analytic one-stage approach is closely connected to multilevel analysis and mod-
elling as studies introduce a natural hierarchical level in the data. As pointed out in Hox et al.
(2017), meta-analysis can be viewed as an example of multilevel analysis which is prominently
used in the social sciences. In particular, it is a two-level approach where the first level is the
sample of studies from the population of all possible studies and the second level is the sam-
ple of the study participants. Approaches differ depending on what study-specific information is
available. In the conventional approach, it is assumed that only a summary measure such as an
odds ratio, relative risk or correlation coefficient is available accompanied by some uncertainty
measure. If patient-level data are available, Skrondal and Rabe-Hesketh (2004, 299–307) suggest
to model these in a multilevel approach. Riley et al. (2010) point out the value and beneficiaries
of individual participant data meta-analysis. In practice, however, the problem remains to obtain
access to individual participant data of all retrieved relevant studies. To address the issue that only
summary information is available for some studies, whereas for others individual participant data
are available, Riley et al. (2008) suggest approaches to combine these different types of informa-
tion. In our setting, we are in between the two extreme scenarios of either having only summary
measures for all individual participant data as we have more than a summary measure—there are
four cell frequencies which allow various choices of the effect measure—but we are also clearly
not in the situation of an individual patient data meta-analysis.

In summary, we outline the major novel aspects of the paper in the following:

• Rare events meta-analysis experiences serious drawbacks if conducted following a con-
ventional pathway. Effect measures such as risk or odds ratio might be undefined, as
would be the associated approximate variance estimates, unless continuity corrections are
invoked with unclear bias potential. In addition, the within-study normality assumption for
the effect measure might be seriously in doubt. Here, it is suggested to use count model
approaches such as generalised linear and generalised mixed models, as they have been
developed and well-investigated for counts and found to perform considerably well.

• More importantly, finite mixture models are suggested to replace the parametric (normal)
random effects distribution. We see this as an important step towards creating a new
generation of two-level nonparametric meta-analytic approaches. Here we propose to
allow mixing on baseline and, potentially, on the effect parameter itself. In addition, we
demonstrate in simulation work that these methods can be used successfully in identifying
the underlying risk structure.

The paper is organised as follows. Section 1 contains a case studywhich introduces the setting
and its issues. Section 2 presents the conventional log-linear and logistic modelling adapted for
meta-analytic applications, followed by Sect. 3 which discusses how baseline heterogeneity can
be modelled. Section 4 introduces mixed log-linear and logistic regression modelling to cope
with effect heterogeneity. Finally, in Sect. 5, the parametric normal random effects distribution
is replaced by a nonparametric random effect which is estimated by means of a discrete mixture
model. All models and approaches are illustrated using the case study. Section 6 adds a simulation
studywhichmirrors the case study data in its design and illustrates the capability ofmixturemodels
in identifying heterogeneity. The paper ends in Sect. 7 with a short discussion.
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1. Case Study on Bibliotherapy vs. Control for Acceptability of the Intervention

We usemeta-analytic data on the acceptability of bibliotherapy comparedwith control groups
in the treatment of children and adolescents with depression and/or anxiety from eight studies
to illustrate the application of the risk ratio and odds ratio. These data were provided by Yuan
et al. (2018). Here, bibliotherapy or so-called book therapy is a treatment approach to mental
health. This method is often used to support several conditions via therapy, because of its ease
of use, low cost and greater privacy. The control condition comprises wait-list control, non-
treatment control, treatment as usual, and psychological placebo. However, the question arises
whether bibliotherapy is favourable for the acceptability of the treatment plan for a diagnosis
of depression and/or anxiety. According to Yuan et al. (2018), acceptability is defined as all-
cause discontinuation, i.e. the proportion of patients who discontinued treatment for any reason.
According to this definition, high proportions occur when acceptability is low.

Meta-analytic data of bibliotherapy and control conditions for acceptability used in this
example are given in Table 1.We can see that inmany studies, only a few participants discontinued
treatment, compared to the total number of participants. Moreover, the data contain studies with
zero events in both arms (double-zero studies). Thus, whenwe use the traditional inverse variance-
weighted average method in meta-analysis for combining the risk ratios and odds ratios, the two
double-zero studies will be excluded before the analysis, as is shown by the forest plot in Fig.
1. Under homogeneity of the effect size (the associated tests of homogeneity have a p-value of
0.14 for the risk ratio and 0.12 for the odds ratio), the estimated overall risk ratio and overall
odds ratio are given by 1.86 and 2.08, respectively. These are obtained with the Mantel–Haenszel
estimator which allows zero-containing studies, and of which details are given in the following
section. It can therefore be hypothesised that all-cause discontinuation is observed more often in
bibliotherapy than in control conditions, indicating lower acceptability of bibliotherapy in children
and adolescents with depression and/or anxiety. This question will now be further investigated in
the following sections.

2. Log-Linear and Logistic Regression Models as an Extension of the Relative Risk and Odds
Ratio

In the following, we look at the relative risk and odds ratio, and how they generalise to
log-linear and logistic regression. Details can be found in Jewell (2004), for example.

Conditional upon study i , the relative risk is modelled using the log-linear model

log E(Yi j ) = log ni j + αi + βi × j, (1)

where j = 0 represents the control group and j = 1 the intervention group. Hence, exp(βi ) =
E(Yi1/ni1)
E(Yi0/ni0)

represents the risk ratio in study i , as can be seen by substituting in j = 0 and j = 1
into (1) and taking differences. The log-linear model (1) is often combined with a conditional
Poisson assumption, although alternatives and extensions such as the negative binomial model
are possible (Hilbe, 2012). If we replace the expected values by their observed counterparts, we
obtain the empirical risk ratio Yi1/ni1

Yi0/ni0
for study i , assuming that Yi0 is positive.

A second measure is the odds ratio. Here, conditional upon study i , the odds ratio is modelled
using the logistic model

log
E(Yi j )

ni j − E(Yi j )
= αi + βi × j, (2)
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Figure 1.
Forest plots of bibliotherapy and control conditions for acceptability, risk ratio (upper panel) and odds ratio (lower panel)
are reported.

where j = 0 represents the control group and j = 1 the intervention group. Hence, exp(βi ) =
E(Yi1)/(ni1−E(Yi1))
E(Yi0)/(ni0−E(Yi0))

represents the odds ratio in study i , as can be seen by substituting in j = 0
and j = 1 into (2) and taking differences. The logistic model (2) is often combined with a
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Table 1.
Meta-analytic data on bibliotherapy and control conditions for acceptability.

Study, year Bibliotherapy Control
Events Total Events Total

Ackerson et al. (1998) 3 15 5 15
Cobham (2012) 0 20 0 12
Jacob and De Guzman (2016) 0 15 0 15
Lyneham and Rapee (2006) 9 78 1 22
Rapee et al. (2006) 29 90 12 87
Rohde et al. (2015) 6 128 8 124
Stice et al. (2010) 4 80 1 84
Thirlwall et al. (2013) 29 125 6 69

conditional binomial assumption. Again, alternatives are possible including the beta-binomial
model as suggested in Kuss (2015).

Again, if we replace the expected values by their observed counterparts, we find the empirical
odds ratio Yi1/(ni1−Yi1)

Yi0/(ni0−Yi0)
for study i , assuming that 0 < Yi j < ni j holds for all i and j = 0, 1.

3. Baseline Heterogeneity as Fixed or Random Effects and Mantel–Haenszel Estimation

Here, we consider a specific case of models (1) and (2), namely the case of effect homo-
geneity. In other words, we consider that βi = β for all i . We would still like to keep a specific
intercept value αi , which is called the baseline heterogeneity as it refers to the risk or odds in
the control group, which represents the baseline population. Two approaches are possible. In the
first approach, a parameter estimate α̂i is fitted for each baseline parameter αi of study i . This is
sometimes called a contrast-based approach. In the second approach αi is assumed to arise from
a distribution, often a normal distribution αi ∼ N (α, σ 2

α ). This is called an arm-based approach.
We emphasise here the difference between a contrast-based approach and an arm-based

approach–which refers largely to the way the intercept is modelled. In an approach, where the
study factor is ignored, there is high potential for confounding. We illustrate this issue in the
discussion with a synthetic example. As there is agreement that the study factor should be adjusted
for, the question arises how this can be best accomplished. One opinion is that one should avoid
situations where interventions are compared across studies, which can be achieved by entering
study as a main effect. The concern here is not whether the main effect parameters of the study
factor (baseline parameters) are estimatedvalidly (aNeyman–Scott problemmayoccur referring to
the issue of consistently estimating infinitely many nuisance parameters), the question is whether
we can achieve an unconfounded estimate of the effect of interest. Another opinion is that an
unconfounded estimate of the effect can be achieved by treating the main effect of study as a
random effect (which is considered critically by proponents of the first opinion as interventions
are at risk of being compared across studies). We continue here with both approaches and will
see that they both lead to identical effect estimates.

We also mention here the Mantel–Haenszel approach (Mantel & Haenszel, 1959; Jewell,
2004; Greenland & Robbins, 1985) which provides effect estimates of θ without any need to
model the baseline heterogeneity. For the risk ratio, the Mantel–Haenszel estimator is defined as

R̂RMH =
∑

i Yi1ni0/ni∑
i Yi0ni1/ni
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Table 2.
Effect estimates under fixed and random baseline heterogeneity as well as Mantel–Haenszel estimation (MHE).

Model Log-linear model Logistic model

AIC BIC R̂R, 95% CI AIC BIC ̂OR, 95% CI

Fixed 69.22 76.18 1.84 [1.22, 2.77] 68.90 75.85 2.09 [1.33, 3.27]
Random 84.43 86.75 1.84 [1.23, 2.76] 84.77 87.08 2.08 [1.33, 3.23]
MHE 1.86 [1.26, 2.74] 2.08 [1.33, 3.25]

and for the odds ratio

̂ORMH =
∑

i Yi1(ni0 − Yi0)/ni
∑

i Yi0(ni1 − Yi1)/ni
,

where ni = ni0 + ni1. Note that these Mantel–Haenszel estimators are weighted estimators of
the study-specific risk ratios R̂Ri and odds ratioŝORi , respectively, as they can be written in
the form R̂RMH = ∑

i wi R̂Ri/
∑

i wi and̂ORMH = ∑
i wîORi /

∑
i wi using the Mantel–

Haenszel weightswi = Yi0ni1/ni for the risk ratio andwi = Yi0(ni1−Yi1)/ni for the odds ratio,
respectively, assuming that these weights exist, i.e. 0 < Yi j < ni j for all i and j = 0, 1 (Mantel
& Haenszel, 1959).

Table 2 shows the performance and model evaluations for the case study data. Note that we
have included the values of the Akaike information criterion (AIC) and Bayesian information
criterion (BIC) for each model considered here. The overall message here is that all approaches
perform similarly. Estimating log-linear and logistic models with fixed and random intercepts,
i.e. without and with baseline heterogeneity, we find that the risk of all-cause discontinuation is
significantly increased by a factor of 1.84 for bibliotherapy and that the odds for all-cause discon-
tinuation are significantly increased by a factor of 2.09 in bibliotherapy. In addition, confidence
intervals are fairly similar.

4. Effect Heterogeneity as Mixed Effects Model

To model effect heterogeneity of the effect measure βi in the mixed model approach, it is
assumed that βi ∼ N (β, τ 2). If there is no heterogeneity, i.e. τ 2 = 0, the overall effect can
be summarised as a single value. For this setting and the risk ratio with baseline heterogeneity
modelled as a fixed effect, the likelihood takes the form

∏

i

∫

βi

[Po(yi0| exp(log ni0 + αi )) × Po(yi1| exp(log ni1 + αi ) + βi ))]φ(βi |β, τ 2)dβi (3)

where Po(y|μ) = exp(−μ)μy/y! is the Poisson density. φ(βi |β, τ 2) is the normal density with
mean β and variance τ 2. Similarly, we obtain for the odds ratio

∏

i

∫

βi

[Bi(yi0|ni0, expit(αi )) × Bi(yi1|ni1, expit(αi + βi ))]φ(βi |β, τ 2)dβi (4)
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where expit(η) = exp(η)/(1 + exp(η)) and Bi(y|n, μ) = (n
y

)
μy(1 − μ)n−y is the binomial

density. Note that in these likelihoods, the baseline parameters αi are treated as unknown but
fixed quantities. If we model them as random quantities as well, we obtain the following nested
likelihood for the odds ratio in the binomial model

∏

i

∫

αi

{
∫

βi

[Bi(yi0|ni0, expit(αi )) ×Bi(yi1|ni1, expit(αi + βi ))]

×φ(βi |β, τ 2)dβi
}
φ(αi |α, σ 2

α )dαi . (5)

Likewise, the nested likelihood for the risk ratio in the log-linear model can be obtained as

∏

i

∫

αi

{
∫

βi

[Po(yi0| exp(log ni0 + αi )) ×Po(yi1| exp(log ni1 + αi ) + βi ))]

×φ(βi |β, τ 2)dβi
}
φ(αi |α, σ 2

α )dαi .

A key difference between the fixed and random baseline heterogeneity models is the number
of parameters. Whereas the former has k + 2 parameters, the latter has only 4. Note that in the
fixed baseline heterogeneity model the number of parameters grows with the number of studies,
whereas the number remains unchanged in the case of the random baseline heterogeneity model.

In Table 3, we see the results of themodel fitting for bothmodels.Whereas the effect estimates
differ only slightly across the two models, heterogeneity variance estimates show considerable
differences. In the fixed baseline heterogeneity model, the variance of the effect heterogeneity
estimate is zero.

For comparison, we included in Table 3 the estimates of the standard inverse variance model
along with the heterogeneity variance estimate of DerSimonian and Laird (1986), which is based
on the two-stage analysis. First, the χ2-statistic

Q =
k∑

i=1

wi (θ̂i − θ̄ )2

is computed, where wi = 1/σ 2
i and σ 2

i is the estimated variance of the effect measure of interest,
here the log-relative risk or log-odds ratio. Furthermore, θ̄ is the log Mantel–Haenszel summary
estimate of the respective measure of interest. Then, the DerSimonian–Laird estimator for τ 2 is
given as

τ̂ 2 = Q − (k − 1)
∑

i wi − (
∑

i w
2
i )/

∑
i wi

with the understanding that the estimator is truncated to 0 if it becomes negative. The
DerSimonian–Laird estimate in Table 3 is also positive, but larger than the heterogeneity variance
estimate under random baseline heterogeneity.
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Table 3.
Effect estimates under fixed and randombaseline heterogeneitywith effect heterogeneitymodelled by a normal distribution
βi ∼ N (β, τ2) as well as the Inverse Variance model (IV); DL stands for the DerSimonian–Laird estimate of the
heterogeneity variance.

Model Log-linear model Logistic model

AIC BIC R̂R, 95% CI τ̂2, 95% CI AIC BIC ̂OR, 95% CI τ̂2, 95% CI

Fixed 71.22 78.95 1.84 [1.22, 2.77] 0.00 [0, 0.43] 70.90 78.63 2.09 [1.33, 3.27] 0.00 [0, 0.59]
Random 86.29 89.38 1.73 [1.00, 3.00] 0.07 [0, 1.10] 86.06 89.15 1.83 [0.97, 3.45] 0.17 [0, 1.33]
IV DL 1.66 [0.93, 2.95] 0.19 [0, 3.16] 1.86 [0.94, 3.86] 0.29 [0, 4.19]

5. Nonparametric Heterogeneity Modelling for the Log-Linear and Logistic Model

5.1. The Log-Linear Model with Heterogeneity

In the following, we lay out how a nonparametric random effects approach can be developed
using nonparametric mixture models. Key theoretical results can be found in Lindsay (1995),
whereas computational validity of maximum likelihood estimation is provided in Böhning (1982,
1989). An introduction into mixture models is given in Böhning (2000) and applications in psy-
chology are provided in Doebler and Holling (2015), Holling et al. (2012) and Malzahn et al.
(2000).

The modelling approach that we are presenting for heterogeneity estimation is detailed as
follows. Recall that model (1) is given by:

log E(Yi j ) = αi + βi × j + log ni j .

Also recall that the log-risk ratio of this model in the i th study is given by βi and corresponds to
exp(βi ) = RRi . In addition, heterogeneity can now be separated into baseline heterogeneity—the
variability in the interceptαi—andheterogeneity in the effectmeasure—the variability in the slope
βi . The presence of effect homogeneity is characterised byβi = β for all studies i = 1, 2, . . . , k. In
the previous section, wemodelled heterogeneity using a generalised linear mixed model approach
which takes αi ∼ N (α, σ 2

α ) and βi ∼ N (β, σ 2
β ). Now, instead of assuming a normal (or other

parametric) distribution, we leave the distribution of (αi , βi ) unspecified. From the foundations of
nonparametric maximum likelihood estimation, the maximum likelihood estimator maximising
the mixture log-likelihood with mixing distribution Q


(Q) =
∑

i, j

log

[∫

p(yi j ; exp(αi + βi × j + log ni j ))Q(dαi , dβi )

]

(6)

is always discrete (Lindsay, 1983, 1995). Here, p(y; λ) = exp(−λ)λy/y! is the Poisson discrete
mass function for y = 0, 1, . . . and λ > 0. Hence, there is no limitation of generality if we replace
(6) by


(Q) =
∑

i, j

log

[
S∑

s=1

p(yi j ; exp(αs + βs × j + log ni j ))qs

]

. (7)

Downloaded from https://www.cambridge.org/core. 12 Mar 2025 at 20:43:10, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


HEINZ HOLLING ET AL. 1089

The log-likelihood (7) is evidently a discrete mixture log-likelihood with weights q1, q2, . . . , qS
being positive and summing up to 1. Unfortunately, it is not known which value for S should
be chosen. This is known as the number of components problem. A typical solution is to start
with S = 1 and then sequentially increase the number of components by one until no further
increase in the log-likelihood is detected. Specifically, for a given value of S, the log-likelihood
(7) is maximised using the EM algorithm (Dempster et al., 1977; McLachlan & Krishnan, 2007).
More details on computational and algorithmic approaches for mixture likelihood problems can
be found in Böhning (2000).

We will denote the maximum likelihood estimate of the parameters αs, βs and qs for s =
1, 2, . . . , S as

Q̂ =
⎛

⎝
α̂1 · · · α̂S

β̂1 · · · β̂S

q̂1 · · · q̂S

⎞

⎠ .

Note that Q̂ is a mixing distribution jointly on the intercept α and the slope (log-risk ratio) β,
in other words it is a discrete distribution giving weights q̂s to intercept and slope combina-
tions (α̂s, β̂s). Having the maximum likelihood estimate available, we are then able to give a
nonparametric estimate of the heterogeneity variance of the log-risk ratio as

τ̂ 2 =
S∑

s=1

(β̂s − β̄)2q̂s,

where β̄ = ∑S
s=1 q̂s β̂s . This variance is of particular interest in meta-analysis as its size indicates

the amount of heterogeneity in effect size across studies. Of course, other variances such as the
baseline heterogeneity variance in the αs can also be considered.

5.2. The Logistic Model with Heterogeneity

The basic logistic model takes the form

log
E(Yi j )

ni j − E(Yi j )
= αi + βi × j, (8)

where j = 0 represents the control group and j = 1 the intervention group and βi is the log-odds
ratio in the i th study. The discrete mixture likelihood now becomes


(Q) =
∑

i, j

log

[
S∑

s=1

p(yi j ; ni j , expit(αs + βs × j))qs

]

, (9)

where p(y; n, μ) = (n
y

)
μy(1 − μ)n−y and expit(x) = exp(x)/[1 + exp(x)] for any real x .

Table 4 presents the results of the mixture model analysis for the log-linear and the logistic
model.We see that the best model (lowest AIC and BIC) is provided by the two-component model
with a homogeneous relative risk estimate of exp(0.61) = 1.84 for the log-linear mixture model,
which is not far off the estimate we have for the log-linear model with baseline heterogeneity and
a homogeneous effect given in Table 2. For the logistic mixture model, the preferred model is also
a two-component model with a homogeneous odds ratio estimate of exp(0.72) = 2.05. Detailed
results of the two-component mixture models are given in Table 5.
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Table 4.
Likelihoods, AIC and BIC, mean and variance of the mixing distribution for the fitted mixture models in the example.

Model S Log-likelihood AIC BIC ˆ̄β τ̂2

Log-linear with effect heterogeneity 1 −57.70 119.30 120.90 0.63 0.00
2 −37.30 84.50 88.40 0.51 0.02
3 −36.50 88.90 95.10 0.73 0.22

Log−linear without effect heterogeneity 1 −57.70 119.30 120.90 0.63 0.00
2 −37.40 82.80 85.90 0.61 0.00
3 −37.10 86.20 90.90 0.60 0.00

Logistic with effect heterogeneity 1 −61.70 127.50 129.00 0.71 0.00
2 −37.50 84.90 88.80 0.59 0.04
3 −36.60 89.10 95.30 0.81 0.23

Logistic without effect heterogeneity 1 −61.70 127.50 129.00 0.71 0.00
2 −37.80 83.60 86.70 0.72 0.00
3 −37.40 86.90 91.50 0.71 0.00

Table 5.
Parameter estimates of weights, intercepts and slopes in the two classes mixture model.

Model Class s q̂s α̂s β̂s

Log-linear with effect heterogeneity 1 0.62 −3.24 0.41
2 0.38 −2.01 0.68

Log-linear without effect heterogeneity 1 0.62 −3.37 0.61
2 0.38 −1.96 0.61

Logistic with effect heterogeneity 1 0.62 −3.21 0.44
2 0.38 −1.86 0.84

Logistic without effect heterogeneity 1 0.62 −3.40 0.72
2 0.38 −1.78 0.72

5.3. Model Estimation

All model fitting and analysis were conducted using R (R Core Team, 2020). Mixed models
were fitted using the lme4 package (Bates et al., 2015). For models with both baseline and effect
heterogeneity, a warning indicated that convergence could not be obtainedwith the default settings
of the glmer-function, and thus, the argument control=glmerControl(optimizer=
"bobyqa",optCtrl=list(maxfun=2e5))was addedwhenfitting thesemodels.Mixture
models were fitted using the flexmix package (Grün& Leisch, 2007, 2008), which uses the EM
algorithm to fit finite mixtures of generalised linear regressions. Specifically, we used the function
stepFlexmix, which fits the model repeatedly for different numbers of classes and returns the
maximum likelihood solution for each. For starting values, observations were allocated randomly
to the initial classes for each run of the algorithm. This was repeated a number of times to achieve
independence of estimates from starting values. The number of repetitions for this process was set
tonrep = 10, sincemodel estimation did not improve further for higher numbers of repetitions.
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6. Simulation Study

To assess the performance of nonparametric mixture models for meta-analysis with and
without effect heterogeneity, we conducted two simulation studies: one simulation study for
which the selection of simulation parameters was inspired by the example which is described in
Sect. 1 and an additional simulation study with a larger number of conditions for which parameter
values were varied systematically. In the following, we give a detailed description of the first of
these two simulation studies. We will then conclude this section with a short summary of the
second simulation study. A detailed description the second simulation study is available in the
supplementary material of this article. Both simulation studies were implemented in R (R Core
Team, 2020) and run on the computing cluster PALMA II (https://www.uni-muenster.de/ZIV/
Technik/Server/HPC.html) at the University of Münster. Computations were parallelised using
the doParallel package (Microsoft Corporation & Steve Weston, 2020).

6.1. Data Generation

The simulation conditions under which the data for our first simulation study were generated
based on the results from the analysis of the example in Sect. 1: specifically, we designed a
baseline condition in which observations from k = 8 studies with an average sample size of 60
per study and group were generated from two classes (i.e. S = 2). We decided to include further
simulation conditions with either a larger number of studies (k = 50) or a larger average sample
size per group (n̄i j = 600), or both. Each of these four simulation conditions was implemented
with heterogeneous effects (i.e. β1 �= β2, conditions 1–4) and with homogeneous effects (i.e.
β1 = β2, conditions 5–8). All conditions are summarised in Table 6. The parameter values for qs ,
αs and βs , s = 1, 2, that we used in our simulation were chosen to mirror the estimates obtained
from the mixture models estimated for the example (compared to Table 5). For each condition,
5500 replications were generated. The data for each replication were simulated as follows. First,
the class s of each study was sampled from a Bi(1, q1) distribution, with q1 = 0.62. Second, the
sample size ni j for each group within a study was sampled from a Po(n̄i j ) distribution. Then, two
separate data sets were generated: for the first data set, the parameter estimates α̂s and β̂s of the
log-linearmixturemodelwere used to generate the observations for each study. For the second data
set, observations were generated using the estimates α̂s and β̂s of the logistic mixture model. This
was necessary since strict effect homogeneity (β1 = β2) could not be obtained simultaneously for
the log relative risk and the log odds ratio. By generating separate data sets, we ensured that for the
first data set, effect heterogeneity was present for conditions 1–4 and effects were homogeneous
for conditions 5–8 in terms of the log relative risk, while for the second data set, this was the
case in terms of the log odds ratio. Thus, for conditions 1–4, the values for αs and βs used in the
simulation were obtained from their respective estimates from the log-linear mixture model with
heterogeneous effects for the first data set and from the logistic mixture model with heterogeneous
effects for the second data set. For conditions 5–8, αs and βs were obtained from their respective
estimates from the log-linear mixture model with homogeneous effects for the first data set and
from the logistic mixture model with homogeneous effects for the second data set. Finally, for
each data set, the observations for each group within each study were drawn from a Bi(ni j , p j,s)

distribution, where p j,s was determined from αs and βs .

6.2. Model Fitting

For each simulated meta-analysis, log-linear mixture models with and without effect hetero-
geneity as well as logistic mixture models with and without effect heterogeneity were fitted with
S = 1, S = 2 and S = 3 classes, resulting in 2 (log-linear/logistic)×2 (effect heterogeneity/effect
homogeneity) ×3 (1/2/3 classes) = 12 models. Note, however, that the models with S = 1 with
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and without effect heterogeneity are identical, thus reducing the number of models to be evaluated
to 10. The first data set (see above) was used to estimate the log-linear mixture models, while the
second data set was used to fit the logistic mixture models. Just like for the example, the mixture
models were fitted with the flexmix package using the stepFlexmix function with nrep
= 10.

6.3. Performance Evaluation

Model performance was evaluated in terms of model selection and parameter estimation.
Log-linear and logistic mixture models were evaluated separately. Regarding model selection,
the Akaike Information criterion (AIC) and Bayesian Information Criterion (BIC) were used to
determine the preferred model, thereby taking into account both model fit and model complexity.
The AIC and BIC are widely used criteria for model selection (Burnham & Anderson, 2002;
Konishi & Kitagawa, 2008). Vrieze (2012) compares AIC and BIC in latent variable models and
points out that the BIC consistently chooses the true model if it is among the candidate models
considered.

Here, we first evaluated how often the model which was specified correctly in terms of effect
heterogeneity and number of classes was preferred byAIC and BIC, respectively. Then, parameter

estimation was evaluated in terms of mean, median and standard deviation of ˆ̄β and τ̂ 2.

6.4. Simulation Results

Before the simulation results were calculated, we excluded trials in which one of the follow-
ing warnings had occurred: “glm.fit: fitted probabilities numerically 0 or 1 occurred”, “glm.fit:
algorithm did not converge”. A total of 82 simulation trials belonging to the first condition were
excluded from the analysis, one trialwas excluded in the second condition, 120 trialswere excluded
in the fifth condition, and two trials were excluded in the sixth condition. In the other conditions,
no trials were excluded.

Table 7 summarises the results with regard to model selection. In the second column, the
numbers of simulation trials which remained after exclusion are given for each condition. In the
third and fourth columns, the relative number of simulation trials is displayed in which the log-
linear mixture model which was correctly specified in terms of both the number of classes and
effect size heterogeneity (yes/no)was preferred by theAICandBIC, respectively. The samefigures
are given for the logistic mixture models in columns five and six. Model selection performance
was quite variable for conditions where the true effect was heterogeneous (condition 1–4): for the
first and second simulation conditions, the correctly specified model was favoured by the AIC and
BIC in an unsatisfactorily low number of simulation trials for both the log-linear and the logistic
mixture model. In the third condition, selection performance seems entirely satisfactory only for
the logistic model, while in the fourth condition, the correct model was almost always favoured
by both fit indices and for both types of mixture models.

Tables 8 and 9 provide information on the relative frequencies of each model being favoured
by the AIC and BIC, respectively, per condition and separately for log-linear and logistic mix-
ture models. From these figures, it becomes apparent that both AIC and BIC performed well in
selecting the correct number of classes (i.e. S = 2), but often mistakenly favoured a model with
homogeneous effects instead of a model with heterogeneous effects. For conditions where the
true effect was homogeneous (i.e. β1 = β2, conditions 5–8), Table 7 reveals that both AIC and
BIC performed satisfactorily. However, the BIC clearly outperformed the AIC, achieving almost
perfect selection performance in conditions with a larger number of studies (i.e. conditions 6 and
8).

Results with respect to the estimation of β̄ are given in Table 10 for the log-linear mixture
models and Table 11 for the logistic mixture models: For each simulation condition, the tables
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Table 6.
Conditions used in the design of the simulation.

Condition Homogeneous (β1 = β2) k n̄i j Data set α1 α2 β1 β2

1 No 8 60 1 −3.24 −2.01 0.41 0.68
2 No 50 60 1 −3.24 −2.01 0.41 0.68
3 No 8 600 1 −3.24 −2.01 0.41 0.68
4 No 50 600 1 −3.24 −2.01 0.41 0.68
5 Yes 8 60 1 −3.37 −1.96 0.61 0.61
6 Yes 50 60 1 −3.37 −1.96 0.61 0.61
7 Yes 8 600 1 −3.37 −1.96 0.61 0.61
8 Yes 50 600 1 −3.37 −1.96 0.61 0.61
1 No 8 60 2 −3.21 −1.86 0.44 0.84
2 No 50 60 2 −3.21 −1.86 0.44 0.84
3 No 8 600 2 −3.21 −1.86 0.44 0.84
4 No 50 600 2 −3.21 −1.86 0.44 0.84
5 Yes 8 60 2 −3.40 −1.78 0.72 0.72
6 Yes 50 60 2 −3.40 −1.78 0.72 0.72
7 Yes 8 600 2 −3.40 −1.78 0.72 0.72
8 Yes 50 600 2 −3.40 −1.78 0.72 0.72

Table 7.
Proportions of correct model selection.

Condition No. trials Log-linear Logistic
AIC BIC AIC BIC

1 5418 0.21 0.14 0.26 0.19
2 5499 0.50 0.24 0.66 0.46
3 5500 0.63 0.54 0.81 0.77
4 5500 0.97 0.99 0.94 1.00
5 5380 0.81 0.87 0.79 0.87
6 5498 0.83 0.97 0.77 0.97
7 5500 0.83 0.89 0.80 0.88
8 5500 0.84 0.98 0.79 0.97

contain the true value of β̄ along with the mean, median and standard deviation of ˆ̄β across
simulation trials. Please note that for conditions 1–4, a model with a heterogeneous effect and
S = 2 would be correctly specified, while for conditions 5–8, a model with a homogeneous
effect and S = 2 would be correctly specified. Hence, the sixth column contains the results of the
correctly specified model for conditions 1–4, while the fourth column contains the results of the
correctly specified model for conditions 5–8.

Since the results were similar for the log-linear and logistic mixture models, we will describe
them simultaneously. In general, β̄ was estimatedwith a lowmean andmedian bias, in particular by
the model which was correctly specified, for all but the first condition. In the first condition, there
was a slight positive bias in the estimation of β̄, even for the correctly specified model. However,
it should be noted that this condition was particularly challenging since it was characterised
by both a low number of studies and a small sample size along with the presence of effect
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Table 8.
Relative frequencies of models being favoured by AIC or BIC for log-linear mixture models.

Effect Homogeneous Heterogeneous
Conditions Criterion S = 1 S = 2 S = 3 S = 2 S = 3

1 AIC 0.03 0.74 0.01 0.21 0.01
BIC 0.03 0.82 0.01 0.14 0.00

2 AIC 0.00 0.46 0.01 0.50 0.02
BIC 0.00 0.76 0.00 0.24 0.00

3 AIC 0.02 0.33 0.01 0.63 0.02
BIC 0.02 0.43 0.00 0.54 0.01

4 AIC 0.00 0.00 0.00 0.97 0.03
BIC 0.00 0.01 0.00 0.99 0.00

5 AIC 0.03 0.81 0.01 0.14 0.01
BIC 0.03 0.87 0.01 0.09 0.00

6 AIC 0.00 0.83 0.01 0.14 0.02
BIC 0.00 0.97 0.00 0.03 0.00

7 AIC 0.02 0.83 0.01 0.13 0.01
BIC 0.02 0.89 0.01 0.08 0.00

8 AIC 0.00 0.84 0.01 0.14 0.01
BIC 0.00 0.98 0.00 0.02 0.00

Table 9.
Relative frequencies of models being favoured by AIC or BIC for logistic mixture models.

Effect Homogeneous Heterogeneous
Conditions Criterion S = 1 S = 2 S = 3 S = 2 S = 3

1 AIC 0.02 0.67 0.02 0.26 0.03
BIC 0.02 0.77 0.01 0.19 0.01

2 AIC 0.00 0.24 0.02 0.66 0.08
BIC 0.00 0.53 0.00 0.46 0.00

3 AIC 0.02 0.14 0.00 0.81 0.03
BIC 0.02 0.20 0.00 0.77 0.01

4 AIC 0.00 0.00 0.00 0.94 0.06
BIC 0.00 0.00 0.00 1.00 0.00

5 AIC 0.02 0.79 0.03 0.14 0.02
BIC 0.02 0.87 0.01 0.09 0.01

6 AIC 0.00 0.77 0.04 0.15 0.04
BIC 0.00 0.97 0.00 0.03 0.00

7 AIC 0.02 0.80 0.02 0.14 0.02
BIC 0.02 0.88 0.01 0.09 0.01

8 AIC 0.00 0.79 0.03 0.14 0.03
BIC 0.00 0.97 0.00 0.03 0.00

heterogeneity. In conditions where the true effect was heterogeneous, models in which the effect
was specified as homogeneous overestimated the true β̄ on average. However, in conditions with a
truly homogeneous effect, bias in the estimation of β̄ was low even if a model with heterogeneous
treatment effects was specified. The only exception of this can be found in condition 5, where a
model with S = 3 classes and heterogeneous effects on average overestimated β̄. With regard to
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Table 10.
Log-linear mixture model: estimation of β̄.

Effect Homogeneous Heterogeneous
Condition Value S = 1 S = 2 S = 3 S = 2 S = 3

1 (True β̄ = 0.51) Mean ˆ̄β 0.60 0.60 0.60 0.53 0.72

Median ˆ̄β 0.60 0.60 0.60 0.53 0.56

SD ˆ̄β 0.21 0.21 0.21 0.40 1.39

2 (True β̄ = 0.51) Mean ˆ̄β 0.60 0.60 0.60 0.51 0.53

Median ˆ̄β 0.60 0.60 0.60 0.51 0.52

SD ˆ̄β 0.08 0.08 0.08 0.10 0.16

3 (True β̄ = 0.51) Mean ˆ̄β 0.59 0.59 0.59 0.51 0.51

Median ˆ̄β 0.60 0.60 0.60 0.52 0.52

SD ˆ̄β 0.08 0.08 0.08 0.09 0.09

4 (True β̄ = 0.51) Mean ˆ̄β 0.60 0.60 0.60 0.51 0.51

Median ˆ̄β 0.60 0.60 0.60 0.51 0.51

SD ˆ̄β 0.03 0.03 0.03 0.04 0.04

5 (True β̄ = 0.61) Mean ˆ̄β 0.62 0.62 0.62 0.65 0.91

Median ˆ̄β 0.61 0.61 0.61 0.62 0.66

SD ˆ̄β 0.21 0.20 0.20 0.46 1.54

6 (True β̄ = 0.61) Mean ˆ̄β 0.61 0.61 0.61 0.61 0.64

Median ˆ̄β 0.61 0.61 0.61 0.61 0.62

SD ˆ̄β 0.08 0.08 0.08 0.10 0.18

7 (True β̄ = 0.61) Mean ˆ̄β 0.61 0.61 0.61 0.61 0.61

Median ˆ̄β 0.61 0.61 0.61 0.61 0.61

SD ˆ̄β 0.07 0.06 0.06 0.08 0.08

8 (True β̄ = 0.61) Mean ˆ̄β 0.61 0.61 0.61 0.61 0.61

Median ˆ̄β 0.61 0.61 0.61 0.61 0.61

SD ˆ̄β 0.03 0.02 0.02 0.03 0.03

the standard deviation of ˆ̄β, reasonably small standard deviations were obtained in conditions with
large numbers of studies and large sample sizes (i.e. conditions 4 and 8) for all models considered.
In conditions in which either the sample size or the number of studies was small (i.e. conditions
2, 3, 6 and 7), standard deviations were notably larger, but still acceptable for all models. Large
standard deviations were obtained in conditions in which both the number of studies and the
sample sizes were small (i.e. conditions 1 and 5), in particular for the models with heterogeneous
effects.

Finally, Table 12 displays the results with regard to the estimation of τ 2. For each condition,
the true value of τ 2 is given along with the mean and median value of τ̂ 2 across simulation trials.
When the correct number of classes was specified (i.e. S = 2), τ 2 was estimated with a low mean
and median bias for conditions with a relatively large number of studies (k = 50) or a relatively
large sample size (n̄i j = 600), both when true heterogeneity was present (conditions 2, 3 and 4)
and when it was absent (conditions 6, 7 and 8). When S = 3 classes were specified, heterogeneity
was on average overestimated in the second and sixth conditions despite a large number of studies.
In conditions where a low number of studies were combined with a small sample size (conditions
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1 and 5), mean bias of τ̂ 2 was particularly large and indicates an overestimation of heterogeneity.
The fact that the median bias was smaller suggests that the large mean values of τ̂ 2 were caused by
a few outliers. In the respective conditions, we also obtained extremely large standard deviations of
τ̂ 2. In order to examine whether these issues were caused by few extreme outliers or whether they
mirrored general problems in the estimation of τ 2, we computed several quantiles of the empirical
distribution of τ̂ 2. The results of these computations can be found in the online supplement. In
short, we found that for log-linear and logistic models with three components, as many as 10%
of all simulation replications yielded unrealistically large values of τ̂ 2 in conditions with small
numbers of studies and small sample sizes. In the same conditions, such estimation problems
were less pronounced, but still evident for log-linear and logistic models with two components.
For conditions with small sample sizes, these problems were restricted to models with three
components, and for all other conditions, they were less evident. However, it should be noted that
by unrealistically large values, we refer to values between about 8 and about 2904. Even more
conditions tended to be affected by large numbers of simulation replications in which τ̂ 2 was
large compared to the true value of τ 2.

6.5. Summary of the Second Simulation Study

In the second of our simulation studies, we simulated conditions with two and three com-
ponents and varied (i) the number of studies, (ii) the size of samples within studies, (iii) the
component weights qs , (iv) the component baseline probabilities p0,s , and (v) the value of τ 2.
The values which were chosen for these parameters are given in Table 13.

Just like for the first simulation study, the results of the second simulation studywere evaluated
in terms of model selection performance using the AIC and BIC, as well as performance with
regard to the estimation of β̄ and τ 2. Furthermore, we evaluated the estimation of β̂s for the
correctly specified model. We found that both log-linear and logistic mixture models almost
always performed well in terms of model selection and parameter estimation when sample sizes
within studies were large. In these situations, the BIC yielded better results in terms of model
selection than the AIC. For smaller sample sizes, model selection performance depended on the
number of studies and on how well the components were separated in terms of the difference
between the baseline probabilities p0,s or in terms of the component effects βs . Almost unbiased
parameter estimates with small variances could be achieved in conditions with small sample sizes
when either effects were truly homogeneous, or when the correctly specifiedmodelwas selected in
conditions with heterogeneous effects and the number of studies was large. In the supplementary
material, we give detailed descriptions of the design and the results of this simulation study.

7. Discussion and Conclusions

In this paper, we presented alternatives to conventional two-stage approaches for meta-
analysis from the family of generalised linear mixed models and nonparametric mixture models.
These alternatives overcome the shortcomings of conventional inverse variance-weighted two-
stage models, where studies with zero-counts cannot be included when adding a smoothing con-
stant. In addition, they allow separatemodelling of baseline heterogeneity and effect heterogeneity,
while the Mantel–Haenszel approach rests on the assumption of homogeneity. In contrast with
the log-linear and logistic mixed models presented, nonparametric mixture models do not require
specification of the random effects distribution. In particular, these models avoid the assumption
of a normal random effects distribution, as this assumption cannot be easily investigated. This is
also correct for alternative random effect distributions such as the Gamma or the Beta distribu-
tion, as these are mainly chosen for mathematical convenience as they allow closed form solutions
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Table 11.
Logistic mixture model: estimation of β̄.

Effect Homogeneous Heterogeneous
Condition Value S = 1 S = 2 S = 3 S = 2 S = 3

1 (True β̄ = 0.59) Mean ˆ̄β 0.66 0.70 0.70 0.60 0.72

Median ˆ̄β 0.67 0.71 0.71 0.60 0.63

SD ˆ̄β 0.24 0.25 0.25 0.29 1.21

2 (True β̄ = 0.59) Mean ˆ̄β 0.67 0.71 0.71 0.59 0.62

Median ˆ̄β 0.67 0.71 0.71 0.59 0.60

SD ˆ̄β 0.09 0.09 0.09 0.11 0.18

3 (True β̄ = 0.59) Mean ˆ̄β 0.66 0.69 0.69 0.59 0.59

Median ˆ̄β 0.67 0.70 0.70 0.59 0.60

SD ˆ̄β 0.10 0.10 0.10 0.11 0.11

4 (True β̄ = 0.59) Mean ˆ̄β 0.67 0.71 0.71 0.59 0.59

Median ˆ̄β 0.67 0.71 0.71 0.59 0.59

SD ˆ̄β 0.04 0.04 0.04 0.04 0.04

5 (True β̄ = 0.72) Mean ˆ̄β 0.69 0.72 0.73 0.74 0.96

Median ˆ̄β 0.69 0.72 0.72 0.73 0.77

SD ˆ̄β 0.23 0.23 0.23 0.34 1.30

6 (True β̄ = 0.72) Mean ˆ̄β 0.68 0.72 0.72 0.72 0.76

Median ˆ̄β 0.68 0.72 0.72 0.72 0.74

SD ˆ̄β 0.09 0.09 0.09 0.11 0.21

7 (True β̄ = 0.72) Mean ˆ̄β 0.68 0.72 0.72 0.72 0.72

Median ˆ̄β 0.68 0.72 0.72 0.72 0.72

SD ˆ̄β 0.07 0.07 0.07 0.08 0.09

8 (True β̄ = 0.72) Mean ˆ̄β 0.68 0.72 0.72 0.72 0.72

Median ˆ̄β 0.68 0.72 0.72 0.72 0.72

SD ˆ̄β 0.03 0.03 0.03 0.03 0.03

for the marginal integrals (which is not the case for the normal random effect distribution). The
nonparametric approach circumvents this issue entirely.

We return to the issue that consideration of the study level variation can be crucial, and simply
pooling the data across studies would have considerable confounding potential. Let us consider
the following synthetic example. We generate two types of studies. In study type A, we have a
baseline risk of 0.5 with 100 persons at risk in the control group. Ten persons are at risk in the
treatment group where the risk is also 0.5, so that the risk ratio is 1. In study type B, we have a
baseline risk of 0.1 with 10 persons at risk in the control group. One hundred persons are at risk
in the treatment group for which the risk is also 0.1. In both studies, the risk ratio is 1; in other
words, there is no effect present. We generate 20 studies of type A and 20 of type B, to keep the
scenario realistic. Common sense would tell us, independent of whether you favour the arm-based
or contrast-based approach, that any decent analysis would come to the conclusion of no effect.
The pooled analysis provides a risk ratio of 0.28 with 95% confidence interval (0.25, 0.32), so a
clear and significant effect. Including the baseline parameter as a fixed main effect in the Poisson
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Table 12.
Mixture models estimated with heterogeneous effect: estimation of τ2.

Condition Value Log-linear Logistic
s = 2 s = 3 s = 2 s = 3

1 True τ2 0.02 0.02 0.04 0.04
Mean τ̂2 0.43 9.44 0.14 7.57
Median τ̂2 0.03 0.14 0.05 0.19
SD τ̂2 5.37 38.61 1.12 21.32

2 True τ2 0.02 0.02 0.04 0.04
Mean τ̂2 0.02 0.28 0.05 0.37
Median τ̂2 0.02 0.04 0.04 0.08
SD τ̂2 0.03 1.46 0.04 1.61

3 True τ2 0.02 0.02 0.04 0.04
Mean τ̂2 0.02 0.03 0.04 0.05
Median τ̂2 0.02 0.02 0.03 0.04
SD τ̂2 0.02 0.03 0.03 0.04

4 True τ2 0.02 0.02 0.04 0.04
Mean τ̂2 0.02 0.02 0.04 0.04
Median τ̂2 0.02 0.02 0.04 0.04
SD τ̂2 0.01 0.01 0.01 0.01

5 True τ2 0.00 0.00 0.00 0.00
Mean τ̂2 0.50 10.33 0.16 7.78
Median τ̂2 0.02 0.12 0.03 0.15
SD τ̂2 6.37 59.29 2.37 21.99

6 True τ2 0.00 0.00 0.00 0.00
Mean τ̂2 0.01 0.33 0.01 0.42
Median τ̂2 0.00 0.02 0.00 0.04
SD τ̂2 0.01 1.58 0.01 1.77

7 True τ2 0.00 0.00 0.00 0.00
Mean τ̂2 0.01 0.02 0.01 0.02
Median τ̂2 0.00 0.01 0.00 0.01
SD τ̂2 0.01 0.02 0.01 0.03

8 True τ2 0.00 0.00 0.00 0.00
Mean τ̂2 0.00 0.00 0.00 0.01
Median τ̂2 0.00 0.00 0.00 0.00
SD τ̂2 0.00 0.01 0.00 0.01

model yields a risk ratio (CI) of 1.01 (0.83, 1.22) and the Mantel–Haenszel estimate is 1.01 (0.83,
1.22), identical to the former up to two decimal places. Including the baseline parameter as a
random effect yields a risk ratio of 0.83 (0.67,1.02), also avoiding the strong confounding effect
of the unadjusted effect. Of course, the case study was constructed to make this point, by choosing
strong baseline risk variation and highly unbalanced intervention and control groups in the studies,
which are typical conditions for the occurrence of confounding. Another possibility would be to
eliminate the baseline nuisance parameter prior to any further modelling. This approach is laid
out in detail in Böhning et al. (2008) for the profile likelihood.

We consider the risk ratio (or odds ratio) in our setting. Although the risk difference has
considerable benefits and is indeed statistically easier to treat, it is not without reason that the
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Table 13.
Simulation parameters of the second simulation study.

Parameter Values (conditions with S = 2) Values (conditions with S = 3)

k 15, 25, 40 15, 25, 40
n0 50, 500 50, 500
τ2 0, 0.36 0, 0.36
qs q1 ∈ {0.3, 0.5, 0.7} q1 = q2 = q3 = 1/3
p0,s (p0,1, p0,2) ∈

{(0.05, 0.1), (0.1, 0.05),
(0.05, 0.2), (0.2, 0.05)}

(p0,1, p0,2, p0,3) ∈
{(0.05, 0.1, 0.2), (0.05, 0.2, 0.1),
(0.1, 0.05, 0.2), (0.1, 0.2, 0.05),
(0.2, 0.05, 0.1), (0.2, 0.1, 0.05)}

statistical (and primarily the clinical) community often favours the risk (odds) ratio. One of
the major reasons is that the latter is invariant towards study duration (making the reasonable
assumption that duration is identical in intervention and control groups), whereas this is not the
case for the risk difference. In other words, the risk (odds) ratio is a relative effect measure,
whereas the risk difference is an absolute one. Alternative meta-analytic approaches for the risk
and odds ratio were laid out by Bonett and Price (2014, 2015). They do this, at least in the way
they measure effect, in a similar way as the conventional meta-analytic approaches presented
here. This means that for each study the effect measure is calculated before it is further analysed.
Here we do not follow this scheme but rather work directly with the accrued counts of cases
among those under risk, in the groups to be compared; in other words, we are working with four
cell counts per study. We find this the most appropriate approach in situations experiencing high
sparsity including the occurrence of zero studies. We quote from the much appreciated work of
Agresti (2013: 507):

A challenging situation for meta-analysis is when the outcome of interest has very
low probability. Some tables may have empty cells for one or both treatments.

Bonett and Price (2015) develop their approach with the help of smoothing constants (1/4 in the
case of the RR, 1/2 in the case of the OR); otherwise, the effect measures would not be defined for
some studies. Now, there is considerable concern on the use of smoothing constants as they might
add bias of considerable size.We refer to thework of Sweeting et al. (2004), Bradburn et al. (2007),
Kuss (2015), or Chang and Hoaglin (2017). Indeed, the Mantel–Haenszel estimate for the RR is
1.86 (close to the Poisson regressionmodel including study as factor), which is quite different from
1.38 reached with the help of smoothing constants, underlining the concerns of adding smoothing
values. We think that Poisson and Binomial models with their generalisations are the appropriate
approach to deal with these situations as the occurrence of zero counts are part of their natural
domain, whereas effect estimates per study are not permissible and need special attentions (such
as adding pseudo-values). It is of course a cause of concern that standard errors might be too
small when using weighted or unweighted mean marginal estimates. For example, the variance
of the Mantel–Haenszel estimate is constructed using the formula developed in Greenland and
Robbins (1985), which is done under the assumption of homogeneity of effect. This is precisely
why we think it is more appropriate to incorporate heterogeneity into the modelling which can
be done using mixed Poisson (or Binomial) regression or using nonparametric mixture models as
suggested here.

Potential applications of the models presented could be meta-analyses of randomised con-
trolled trials (RCTs) comparing a psychological intervention with control conditions with out-
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comes such as complete recovery, remission, response, dropout rates, acceptability or adverse
events. For such meta-analyses, it can be beneficial to separately model baseline heterogeneity
and effect heterogeneity: RCTs differ in their types of control conditions (see, for example, the
case study presented above), which makes it reasonable to expect heterogeneity in the baseline
population. Also, although inclusion criteria for the treatment condition are often more narrowly
defined, there are still various methodological aspects which can differ across studies, such as
treatment duration and intensity, treatment material, andwhether patients with comorbidities were
included or not, which potentially introduces effect heterogeneity. Both generalised linear mixed
models and nonparametric mixture models allow for such heterogeneity to be accounted for.

Furthermore, thesemodels can easily be fitted using common statistical software such as R (R
Core Team, 2020). While software packages for generalised linear mixed models are commonly
used in psychology (e.g. lme4), software packages for nonparametric mixture models (such as the
flexmix package) do not enjoy a similar degree of popularity. Also, there is a lack of simulation
studies comparing nonparametric mixture models to generalised linear mixed models. The latter
were found to perform well in various simulation studies and for different meta-analytic settings
(Beisemann et al., 2020; Jackson et al., 2017). The results from our simulation studies reveal that
when the assumptions of the nonparametric mixture model are fulfilled and enough studies with
reasonably large sample sizes are available, nonparametricmixturemodels provide good estimates
of both the pooled effect and heterogeneity. Furthermore,we found that established criteria, such as
the AIC and the BIC, can be applied for model selection. When the aforementioned requirements
with regard to sample sizes and numbers of studies are met, these criteria perform well both
in selecting the correct number of components and in selecting the model which is correctly
specified in terms of effect heterogeneity. Of course, our simulation studies were not without
limitations: First, the data-generating model which we used in our simulation study requires the
specification of a large number of parameters, which translates to an extremely large number of
simulation conditions for which these models can and potentially should be investigated. In fact,
the nonparametric nature of these models makes it harder to establish a simulation design which
allows for a comprehensive, yet efficient investigation. Furthermore, a simulation study is not
suited to determine the conditions under which nonparametric mixture models are useful, since in
practical applications, their usefulness critically depends on the interpretability of the component
results. In this respect, nonparametric mixture models might serve as a complement to generalised
linearmixedmodelswhen either the assumptionof a normal random-effects distribution is unlikely
to be fulfilled or when the components are of theoretical interest.

In conclusion, we encourage utilising the flexibility of generalised linear mixed models and
nonparametricmixturemodels in rare eventsmeta-analyses bothwhen conducting ameta-analysis
and in future research on meta-analytical models.
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