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Plant foods are the major staples of diets in developing countries, in which the consumption of
animal-source foods is often low because of economic and/or religious concerns. However,
such plant-based diets are often associated with micronutrient deficits, exacerbated in part by
poor micronutrient bioavailability. Diet-related factors in plant foods that affect bioavailability
include: the chemical form of the nutrient in food and/or nature of the food matrix; interactions
between nutrients and other organic components (e.g. phytate, polyphenols, dietary fibre, oxalic
acid, protein, fat, ascorbic acid); pretreatment of food as a result of processing and/or prep-
aration practices. Consequently, household strategies that reduce the content or counteract
the inhibiting effects of these factors on micronutrient bioavailability are urgently needed in
developing-country settings. Examples of such strategies include: germination, microbial
fermentation or soaking to reduce the phytate and polyphenol content of unrefined cereal
porridges used for young child feeding; addition of ascorbic acid-containing fruits to enhance
non-haem-Fe absorption; heating to destroy heat-labile anti-nutritional factors (e.g. goitrogens,
thiaminases) or disrupt carotenoid–protein complexes. Such strategies have been employed in
both experimental isotope-absorption and community-based studies. Increases in Fe, Zn and Ca
absorption have been reported in adults fed dephytinized cereals compared with cereals con-
taining their native phytate. In community-based studies in rural Malawi improvements in
dietary quality and arm-muscle area and reductions in the incidence of anaemia and common
infections in young children have been observed.
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In developing countries plant foods are the major staples
of the diet and consumption of animal-source foods is
often low because of economic and/or religious concerns.
Such plant-based diets are, however, often associated with
deficits in Ca, Fe, Zn and some vitamins. A major factor
contributing to these deficits, particularly for diets based on
unrefined cereals and legumes, is that bioavailability,
which can be defined as the proportion of an ingested trace
element in food that is absorbed and utilized for normal
metabolic and physiological functions or storage (Jackson,
1997), is poor. Bioavailability is influenced by both dietary
and host-related factors (Fairweather-Tait & Hurrell,
1996). The present review addresses the dietary factors
and summarizes food preparation and processing practices
that can be used in the household to enhance nutrient

bioavailability. Examples of efficacy studies employing
these strategies in developing countries are also given.

Diet-related factors in plant foods that affect
bioavailability

Several dietary factors may affect the nutrient bioavail-
ability of plant foods when they are consumed, including:
(1) the chemical form of the nutrient in the food and the
nature of the food matrix; (2) interactions occurring
between nutrients and other organic components within the
plant food; (3) pretreatment of the food during processing
and/or preparation.
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In general, diet-related factors have a greater influ-
ence on the bioavailability of the micronutrients in plant
foods, particularly Ca, Fe and Zn, than on the macro-
nutrients. The absorption of Ca, Fe and Zn is particularly
affected. The net effect on the nutrient bioavailability
depends on the balance between factors that either inhibit
or enhance nutrient absorption and/or utilization in the
whole diet (Sandström, 2001). Increasingly, the influence
of both synthetic micronutrient fortificants and intrinsic
micronutrients on micronutrient bioavailability must be
considered.

Chemical form of the nutrient and nature of the
dietary matrix

The absorption and/or utilization of the trace elements
Fe, Se and Zn, and of the vitamins niacin, provitamin A
carotenoids and folate are most affected by their chemical
form. Of these micronutrients, the bioavailability of the
two forms of Fe in food (haem- and non-haem-Fe;
Hallberg, 1981), certain isomeric forms of carotenoids
(Yeum & Russell, 2002) and folate polyglutamates relative
to monoglutamates (McNulty & Pentieva, 2004) have been
reviewed in detail elsewhere.

The food matrix probably has the greatest effect on the
absorption of provitamin A carotenoids and folate, both of
which can be entrapped in the insoluble plant matrix, thus
reducing their bioavailability. For example, b-carotene in

raw carrots or lycopene in fresh tomato juice are poorly
absorbed compared with pure b-carotene dissolved in oil
(Yeum & Russell, 2002), whereas the bioavailability of
folate from chopped spinach (Spinacia oleracea) is higher
than that from whole spinach leaves (Castenmiller et al.
2000).

Interactions between nutrients themselves and with other
organic components in the plant food

Direct competitive interactions between two (or more)
inorganic nutrients with similar physico-chemical proper-
ties that share the same absorptive pathways are unlikely
in plant foods because the intrinsic micronutrient levels
are low. Even when plant staples serve as vehicles for
fortification the risk of such interactions is small because
of the presence of dietary ligands in food (Sandström et al.
1985).

In contrast, there are several organic components in
plant foods that may form insoluble or soluble complexes
with certain micronutrients in the acid pH of the stomach
and gastrointestinal tract, thus inhibiting or facilitating
their absorption. Re-absorption of endogenously-excreted
Ca, Zn and Cu may also be affected (Sandström, 2001;
Manary et al. 2002a). Examples of these non-competitive
interactions are summarized in Tables 1 and 2; both inhi-
biting and enhancing factors are listed.

Table 1. Effects of non-competitive interactions involving organic substances on nutrient bioavailability in plant foods: inhibiting factors

Dietary component Food sources Main technical influences Nutritional consequences

Phytate (myo-inositol

hexaphosphate) plus

magnesium, calcium

or potassium phytate

Unrefined cereals, legumes,

nuts, oil seeds

Binds certain cations to form

insoluble complexes in gut

Zn, Fe, Ca and probably Mg are poorly

absorbed (Heaney et al. 1991;

Sandberg et al. 1999)

Soyabean protein Some varieties of soyabeans,

unfermented tofu,

textured vegetable protein

Effect not explicable on basis of

phytate content but instead depends

on variety and processing method

Inhibits Fe and Zn absorption in some

varieties. Some contain Fe as

phytoferrin, which may be highly

bioavailable (Murray-Kolb et al. 2003)

Polyphenols Certain cereals (red sorghum),

legumes (red kidney beans,

black beans, black grams),

spinach, betel leaves, oregano

Form insoluble complexes with Fe Inhibit non-haem-Fe absorption

Some polyphenols inactivate thiamin Reduce thiamin absorption

Bind certain salivary and digestive

enzymes

Reduce digestibility of starch, protein

and lipids

Beverages: tea, coffee, cocoa,

red wine

Enhance excretion of endogenous

protein

Interfere with protein digestibility

(Bravo, 1998)

Oxalic acid Amaranth, spinach, rhubarb, yam,

taro, sweet potato, sorrel,

sesame seeds, black tea

Oxalates form insoluble complexes

with Ca and possibly Fe

Reduce absorption of Ca and

possibly Fe; increase urinary

Ca (Savage, 2002)

Dietary fibre Unrefined cereals, legumes, nuts,

oil seeds, fruits and vegetables

Lignin and pectin bind bile acids Reduces absorption of fats, fat-soluble

vitamins and carotenoids; effects on

folate bioavailability inconsistent

Pectins, psyllium and gums retain

water and form viscous solutions

in gastrointestinal tract

Slows gastric emptying and digestion

and absorption of nutrients (Gallagher

& Schneeman, 2001)

Dietary fibres are fermented in large

intestine by microflora

SCFA produced that enhance Ca

solubility (Demigne et al. 1995)

Sorghum, Sorghum bicolor (L.) Moench; red kidney beans, Phaseolus vulgaris; black beans, Glycine max; black gram, Phaseolus mungo; spinach, Spinacia
oleracea; betel, Piper betel; oregano, Origanum vulgare; amaranth, Amaranthus edulis; rhubarb, Rheum rhaponticum; yam, Dioscorea spp.; taro, Colocasia
esculenta var. antiquorum; sweet potato, Ipomoea batatas; sesame, Sesamum orietale.
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Pretreatment of food in the household as a result of
processing and/or preparation practices

The adverse effects of some of the organic components
in plant foods on nutrient bioavailability can be reduced
by household food processing and preparation practices;
these practices are summarized in Table 3 and will be
discussed.
Thermal processing. This treatment generally enhances

the digestibility of proteins and carbohydrates, although if
Maillard browning occurs in baked foods protein quality
and digestibility may be reduced (Table 3). Thermal
processing may also improve the bioavailability of certain
vitamins and I, in some cases because of the destruction
of heat-labile anti-nutritional factors (Erdman & Pneros-
Schneier, 1994). For example, thiaminases in Brussels
sprouts and red cabbage, which catalyse the cleavage of
thiamin, are destroyed by cooking (Hilker & Somogyi,
1982). Cooking also destroys the goitrogens present
in cabbage, Brussels sprouts, turnips, sweet potatoes
(Ipomoea batatas), millet (hnatherum hymenoides), cas-
sava (Manihot esculenta Crantz) and beans. Such goitro-
gens block the absorption or utilization of I and thus its
uptake into the thyroid gland (Gaitan, 1990).

Thermal processing can also enhance the bioavailability
of vitamins such as thiamin, vitamin B6, niacin and caro-
tenoids by releasing them from entrapment in the plant
matrix. For example, greater increases in total serum

b-carotene and serum lycopene have been reported after
eating cooked carrots and spinach (Rock et al. 1998) and
cooked tomatoes (van het Hof et al. 2000) compared with
levels when they are consumed raw. This effect is attrib-
uted to softening or disruption of plant cell walls and
the disruption of carotenoid–protein complexes so that the
carotenoids are more available in the intestinal lumen for
absorption (Yeum & Russell, 2002).

Reports on the effects of thermal processing on phytate
degradation are inconsistent and depend on the plant
species, temperature and/or pH. Hurrell et al. (2002) have
reported that home thermal processing does not degrade
phytate sufficiently to improve Fe absorption from home-
prepared pancakes or chapattis. Other investigators
(Kataria et al. 1989; Marfo et al. 1990; Khan et al. 1991)
have suggested that conventional heat treatments such as
boiling may induce moderate losses (i.e. 5–15%) of phytic
acid in tubers (Marfo et al. 1990) and some legumes
(Kataria et al. 1989) and cereals (Khan et al. 1991). Much
higher losses have been reported after boiling white rice
(i.e. 70%; Perlas & Gibson, 2002), attributed mainly to
leaching of water-soluble sodium, potassium or magnesium
phytate into the discarded cooking water.

Germination. This process, also termed malting, leads
to an increase in phytase activity in certain cereals (e.g.
maize, millet and sorghum (Sorghum bicolor (L.)
Moench)), in most legumes and in oil seeds through de
novo synthesis and/or activation of intrinsic phytase.

Table 2. Effects of non-competitive interactions involving organic substances on nutrient bioavailability in plant foods: enhancing factors

Dietary component Food sources Main technical influences Nutritional consequences

Organic acids (citric, lactic,

acetic, butyric, propionic

and formic acids)

Fermented milk products

(e.g. yoghurts), vegetables,

sauerkraut, soya sauces,

fermented cereals

(e.g. Tobwa)

May form soluble ligands with

some trace minerals in the

gastrointestinal tract

Enhance absorption of Zn and

possibly Fe (Sandström, 1997;

Teucher et al. 2004)

Ascorbic acid Citrus fruits and juices Reduces Fe3+ to more soluble

Fe2+ ; forms Fe–ascorbate

chelate

Enhances non-haem-Fe absorption

(Teucher et al. 2004)Other fruits: guavas, mango,

papayas, kiwi, strawberries

May increase stability of folate

during food processing and

digestion

Counteracts inhibitory effect

of phytateVegetables: tomato, asparagus,

Brussels sprouts, spinach etc. May enhance folate bioavailability

(McNulty & Pentieva, 2004)

May enhance or inhibit Se absorption,

depending on the chemical form

(Mutanen & Mykkanen, 1985;

Levander, 1987).

Ascorbic acid may also enhance

Cr absorption (Offenbacher, 1994)

Protein Amount and type (e.g. animal

protein) form soluble ligands

with Zn, Fe and Cu

Enhance absorption of Zn, Fe and

Cu (Bjorn-Rasmussen & Hallberg,

1979; Turnlund et al.1983;

Lönnerdal, 2000)

Increase urinary Ca excretion

(Heaney, 2000)

Fat Oil seeds, nuts Products of fat digestion + bile salts

solubilize fat-soluble vitamins

and carotenoids in intestinal milieu

Enhance absorption of fat-soluble

vitamins and provitamin A

carotenoids (Yeum & Russell, 2002)

Guava, Psidium guajava L.; mango, Mangifera indica L.; papaya, Carica papaya; kiwi, Actinidia deliciosa; strawberry, Fragaria X ananassa; asparagus, Asparagus
officinalis; spinach, Spinacia oleracea.
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Tropical cereals such as maize and sorghum have a lower
endogenous phytase activity than do rye, wheat, triticale
(X Triticosecale Wittmack), buckwheat (Fagopyrum escu-
lentum) or barley (Egli et al. 2002). Phytases (myo-inositol
hexakisphosphate 3-phosphohydrolase) hydrolyse phytic
acid (myo-inositol hexaphosphate) as well as the salts,
magnesium, calcium or potassium phytate, to yield in-
organic orthophosphate and myo-inositol via intermediate
myo-inositol phosphates (pentaphosphates to monophos-
phates). The rate of phytate hydrolysis varies with the
species and variety, as well as the stage of germination,
pH, moisture content, temperature (optimal range 45–
57�C), solubility of phytate and the presence of certain
inhibitors (Cheryan, 1980; Egli et al. 2003). Egli et al.
(2002) have observed that during germination rice, millet
and mungbean (Vigna radiata L.) have the largest reduc-
tions in phytate content, ranging from 50% (for mung-
beans) to 64%.

Such reductions in the levels of higher inositol phos-
phates can have a major impact on mineral bioavailability
because they form complexes with divalent and trivalent
cations (particularly Zn, Fe, Ca and Mg) at the physiolo-
gical pH conditions of the small intestine, making them
unavailable for absorption (Oberleas & Harland, 1981;
Hurrell, 2003; Egli et al. 2004; Hurrell et al. 2004); the
higher inositol phosphates have no effect on Cu absorption
(Egli et al. 2004). The hexa- and pentaphosphates may
also complex endogenously-secreted minerals such as Zn

(Sandström, 1997; Manary et al. 2000) and Ca (Morris &
Ellis, 1985), making them unavailable for re-absorption
into the body. In contrast, myo-inositol phosphates with
less than five phosphate groups (i.e. monophosphates to
tetraphosphates) do not have a negative effect on Zn
absorption (Lönnerdal et al. 1989) and those with less
than three phosphate groups do not inhibit non-haem-Fe
absorption (Sandberg et al. 1999). There appears to be no
adaptation to the inhibitory effect of a high-phytate diet
on absorption of Fe (Brune et al. 1989) or exogenous
Zn, although endogenous excretion of faecal Zn may be
decreased in healthy subjects (Sandström et al. 1993).

Certain tannins and other polyphenols in legumes (e.g.
Vicia faba) and red sorghum may also be reduced during
germination as a result of the formation of polyphenol
complexes with proteins and the gradual degradation
of oligosaccharides (Camacho et al. 1992). Naturally-
occurring polyphenol oxidase extracted from banana
(Musa X paridasiaca L.) or avocado (Persea americana
Mill.) and subsequently reduced by dialysis has also been
used to reduce the polyphenol content of high-tannin
sorghum (Matuschek & Svanberg, 2004).

a-Amylase activity is also increased during germi-
nation of cereals, particularly sorghum and millet. This
enzyme hydrolyses amylase and amylopectin to dextrins
and maltose, thus reducing the viscosity of thick cereal
porridges (Gibson & Ferguson, 1998). A threefold increase
in Fe absorption has been reported in amylase-treated

Table 3. Influence of household food processing and preparation methods on bioavailability of nutrients in plant foods

Processing method Main technical influences Nutritional consequences

Thermal processing Releases some vitamins from poorly-digested

complexes

Enhances bioavailability of vitamin B6, niacin,

folate and certain carotenoids

Inactivates heat-labile anti-nutritional factors (e.g.

protease inhibitors, a-amylase inhibitors, lectins,

thiaminases, goitrogens)

Enhances digestibility of proteins and starch

May degrade phytate, depending on temperature

Enhances bioavailability of thiamine and I

Gelatinizes starch

May enhance Zn, Fe and Ca bioavailability

Enhances digestibility

Baking Induces Maillard browning in foods containing

reducing sugars

Destroys basic essential amino acids lysine,

arginine and methionine

Reduces protein quality and protein digestibility

Boiling Reduces oxalate content Enhances Ca absorption

Germination and malting Increases phytase activity via de novo synthesis or

activation of endogenous phytase

Induces hydrolysis of phytate and hence increases

Zn, Fe, Ca, and Mg absorption

Reduces polyphenol content of some legumes

(e.g. Vicia faba)

Enhances non-haem-Fe absorption

Increases a-amylase content of cereals (e.g.

sorghum and millet)

Facilitates starch digestion; may increase

non-haem-Fe absorption through a change in

consistency

Village-based milling or

home pounding

Reduces phytate content of cereals with phytate

localized in outer aleurone layer (rice, wheat,

sorghum) or in germ (maize)

Enhances bioavailability of Zn, Fe, and Ca,

although mineral content simultaneously

reduced

Microbial fermentation Induces hydrolysis of phytate by microbial phytase Enhances bioavailability of Zn, Fe and Ca

Increases content of organic acids May form soluble ligands with non-haem-Fe and

Zn, and enhance bioavailability

Microbial enzymes may destroy protein inhibitors

that interfere with N digestibility

May improve protein quality in maize, legumes,

groundnuts and pumpkin and millet seeds

Sorghum, Sorghum bicolor (L.) Moench; millet, Achnatherum hymenoides; groundnut, Apios americana Medic.; pumpkin, Cucurbita Pepo.
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roller-dried rice cereal compared with the untreated roller-
dried cereal, which is associated with the viscosity changes
induced by a-amylase (Hurrell et al. 2002).
Milling or household pounding. In developing coun-

tries this process is used to remove the bran and/or germ
from cereals such as wheat, sorghum, rice and maize.
These processes also reduce the phytate content if the
phytate is localized in the outer aleurone layer (e.g. rice,
sorghum and wheat) or in the germ (i.e. maize; O’Dell
et al. 1972). Milling can thus enhance mineral bioavail-
ability, although the content of minerals and some vitamins
of the milled cereals are simultaneously reduced. As a
result, in some countries milled cereal flours are enriched
to compensate for the micronutrients lost.
Microbial fermentation. Higher inositol phosphates are

hydrolysed to lower inositol phosphates through the action
of microbial phytase enzymes (Sandberg, 1991). These
micro-organisms may occur naturally on the surface of
cereals and legumes or can be introduced via inoculation
with a starter culture. The extent of the reduction in higher
inositol phosphate levels depends on the type of fermen-
tation; sometimes ‡90% phytate can be removed by
fermentation of maize, soyabeans, sorghum, cassava,
cocoyam (Colocasia esculenta), cowpeas (Vigna unguicu-
lata) and lima beans (Phaseolus limensis; Marfo et al.
1990; Sandberg, 1991; Svanberg et al. 1993). Fermentation
of bread dough with yeast also induces phytate hydrolysis,
although if Ca is added as a fortificant phytase activity in
yeast is inhibited (Hallberg et al. 1991).

Organic acids are also produced during fermentation
and can potentially enhance Fe and Zn absorption via the
formation of soluble ligands (Charlton, 1983; Hazell &
Johnson, 1987; Walter et al. 1998; Porres et al. 2001).
They may also complex some of the minerals bound
to phytate molecules, rendering them more susceptible to
hydrolysis via phytase enzymes (Maenz et al. 1999), while
simultaneously generating a pH that optimizes the activity
of intrinsic phytase from cereal or legume flours (Porres
et al. 2001). In contrast, organic acids may have an inhi-
bitory effect on the activity of the intestinal brush-border
enzyme glutamate caroboxypeptidase II, attributed to a
lowering of the pH (McNulty & Pentieva, 2004).

Improvements in protein quality have also been docu-
mented after fermenting blended mixtures of plant-based
complementary foods based on maize and legumes (Nnam,
1999), groundnuts (Apios americana Medic), pumpkin
(Cucurbita Pepo) and millet seeds (Ezeji & Ojimelukwe,
1993) and cereal and soyabean blends (Sanni et al. 1999).
Such improvements may be associated with the destruction
by microbial enzymes of protein inhibitors that interfere
with N digestibility (Nnam, 1999), or from the ability of
starter cultures to synthesize certain amino acids (Odunfa,
1985).
Soaking. The soaking of cereal and most legume flours

in water results in the passive diffusion of water-soluble
sodium, potassium or magnesium phytate, which can be
removed by decanting the water (De Boland et al. 1975;
Chang et al. 1977; Perlas & Gibson, 2002). Nevertheless,
the extent of the removal depends on the species, pH and
length and conditions of soaking. Reductions in the penta-
and hexaphosphates of 47, 57 and 98% respectively have

been reported for mungbean, maize and rice flours after
soaking (Hotz & Gibson, 2001; Perlas & Gibson, 2002;
Temple et al. 2002); however, no reductions are achieved
after soaking whole mungbeans and maize kernels for 6 h
(Perlas & Gibson, 2002; Temple et al. 2002). Reductions
in the content of other anti-nutrients such as glycosides,
alkaloids, oligosaccharides, saponins, polyphenols and
oxalates may also occur (Chang et al. 1977).

Application of household processing and preparation
strategies to enhance nutrient bioavailability of plant

foods in developing countries

There is an urgent need to improve the nutritional quality
of plant-based foods in developing countries, especially
those used for feeding infants and young children. In the
past the emphasis has been on enhancing their protein
quality by blending cereals with legumes (usually in ratios
of 70 :30 (w/w) to provide the optimal mixture of essential
amino acids), and problems associated with mineral bio-
availability have often been ignored. This approach is
unfortunate because many of these cereal–legume blends
have a very high phytate content and high phytate :Zn and
phytate :Fe molar ratios.

The inhibitory effect of phytate on Zn absorption
follows a dose-dependent response (Navert et al. 1985) and
the molar ratio for phytate :Zn in the diet is used to esti-
mate the proportion of absorbable Zn (Oberleas & Harland,
1981). For Fe, phytic acid begins to lose its inhibitory
effect on Fe absorption when ratios are <1.0 :1.0 and it
still inhibits Fe absorption at ratios as low as 0.2 :1.0
(Hallberg et al. 1989; Hurrell et al. 1992).

Both in vitro and in vivo methods have been used to
estimate the bioavailability of Fe, Zn and Ca in plant
foods. Some in vitro methods are based on a two-stage
simulated digestive process of the food or test meal,
followed by determination of the dialysable Fe, Zn or Ca
released. In general, the magnitude of the responses
measured using these methods are not the same as those
observed in human subjects, but some of these methods
have been used to rank foods with respect to the effect of
processing and preparation practices on mineral bioavail-
ability (Latunde-Dada et al. 1998). For example, increases
in dialysable Fe, Zn and Ca have been reported after
processing porridges prepared from legumes such as
chickpea (Cicer arietinum) and black gram (Phaseolus
mungo) flours and/or cereal flours such as maize, sorghum
and rice by fermentation with a starter culture (Svanberg
et al. 1993; Jood & Kapoor, 1997; Sharma & Khetarpaul,
1998) and/or by soaking and germination (Svanberg et al.
1993; Mbithi-Mwikya et al. 2002).

More recently, cultured human intestinal cells (i.e. a
Caco-2 cell in vitro model) have been developed for
studying the characteristics of Fe, and in some cases Zn
and Ca, transport by the intestinal absorptive epithelium
(Han et al. 1994; Wortley et al. 2005). However, currently,
there is no standardized Caco-2 cell method and the mag-
nitude of the effects observed appears to depend on the
procedures used, making inter-laboratory comparisons
difficult. Studies have applied this technique to screen and
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rank selected staple-food genotypes for bioavailable Fe
(Van Campen & Glahn, 1999), but further development
of the Caco-2 cell model is needed before it can be used
to determine the bioavailability of Zn and provitamin A
carotenoids in plant foods.

To date, in vivo isotope studies to measure the bio-
availability of Fe or Zn in plant foods modified using
household strategies to enhance Fe or Zn absorption are
limited. Studies on adults have demonstrated increases in
Fe and Zn absorption when they are fed porridges used for
infant feeding that have been prepared from a variety of
dephytinized cereals as compared with those containing
their native phytate. In a study of Fe absorption (Hurrell
et al. 2003) phytic acid was degraded by the addition of
exogenous commercial phytase enzyme, whereas in a Zn-
absorption study (Egli et al. 2004) dephytinization of a
wheat–soyabean blend was achieved by the use of phytase
naturally occurring in wholegrain cereals (Egli et al. 2003).
In a hospital-based study in Malawi (Manary et al. 2000)
the reduction of phytate in a maize–soyabean porridge by
using a commercial phytase enzyme has been shown to
increase fractional and total Zn absorption and reduce
endogenous Zn losses in children recovering from tuber-
culosis but has no effect on Zn absorption in apparently-
well children.

Only a few community-based efficacy trials have
assessed the impact of food-based strategies in the house-
hold designed to enhance nutrient bioavailability. Early
studies focused on improving the bioavailability of non-
haem-Fe have been reviewed by Ruel (2001). More recent
studies have measured various outcomes, including ab-
sorption in vivo using stable isotopes of Fe (Diaz et al.
2003), nutrient adequacy (Gibson et al. 2003; Hotz &
Gibson, 2005) and biochemical and/or functional health
outcomes (Dewey et al. 1997; Manary et al. 2002b;
Yeudall et al. 2002; Garcia et al. 2003; Mamiro et al.
2004).

In a recent study in rural Mexico no improvement in
biochemical Fe status was observed among Fe-deficient
women receiving 25 mg ascorbic acid from fresh lime juice
twice daily on 6 d/week for 8 months compared with those
receiving a placebo (Garcia et al. 2003), despite a twofold
increase in Fe absorption, based on earlier stable-isotope
results (Diaz et al. 2003). Similarly, after withholding
coffee for 5 months no positive effect on Fe status was
observed among Fe-deficient Guatemalan toddlers, except
among those taking Fe supplements (Dewey et al. 1997),
attributed to the relatively small amount of coffee ingested.
Furthermore, in a large community-based double-blind
randomized controlled trial in Tanzania (Mamiro et al.
2004), in which a processed complementary food (based
on soaked and germinated finger millet (Eleusine cora-
cana) and kidney beans (Phaseolus vulgaris), with roasted
peanuts (Arachis hypogea) and mango (Mangifera indica
L.) puree) and an identical unprocessed blend were fed to
6-month-old infants (n 309) for 6 months, no significant
differences were found between the two groups at the end
of the study in either Fe status, as measured by Hb and
zinc protoporphyrin, or growth, perhaps in part because
there was only a 34% reduction in the phytate content of
the processed complementary food.

These results emphasize that an integrated approach that
combines a variety of the strategies discussed earlier,
including the addition of even a small amount of animal-
source foods, is probably the best strategy to improve
the nutrient bioavailability in diets based on plant foods.
Two such community-based efficacy trials have been
undertaken among weanlings and young children in rural
Malawi. Both trials employed a quasi-experimental design
with non-equivalent control groups and used a partici-
patory approach to implement a combination of food-based
strategies in the household to enhance their awareness,
feasibility and acceptability to caregivers in the local
community. Details of the strategies and their imple-
mentation have been published (Gibson et al. 1998, 2003;
Yeudall et al. 2002, 2005; Hotz & Gibson, 2005); their
efficacy was evaluated by determining knowledge, trial
and adoption of the new practices and comparing dietary
quality and the adequacy of the energy and nutrient intakes
of the intervention and control groups post-intervention
(Gibson et al. 2003; Hotz & Gibson, 2005) and, for the
children only, changes in growth and body composition,
morbidity and Hb and hair Zn concentrations (Yeudall
et al. 2002).

Results of the Malawian studies suggest that a combi-
nation of household food-based strategies, comparable with
those outlined earlier, can be designed to be feasible and
acceptable to caregivers of weanlings and children in sub-
sistence farming settings, although on-going nutrition
education and social marketing efforts are required to
enhance their adoption and to empower the community
to sustain them. Nevertheless, even when such a combi-
nation of strategies is used, they are probably not sufficient
to overcome the deficits in Ca, Fe and Zn, and possibly
other micronutrients that exist in complementary diets in
low-resource settings. In such cases additional strategies
to enhance the micronutrient adequacy of these comp-
lementary diets are urgently required. Possible strategies
include fortifying cereal-based dephytinized complement-
ary foods with a fortificant containing balanced and
physiological levels of multi-micronutrients. In the long
term, biofortification of staple cereals involving strategies
to enhance both micronutrient density and bioavailability
may become a feasible option for improving the micro-
nutrient status of the entire household in poor-resource
settings.
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