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SUMMARY 

The mathematical background of the method CLEAN, as given by 
Schwarz (1978) is summarized. A method to derive source parameters 
(flux, position, extent) as a direct application of the theory is 
described. The ambiguity of the CLEAN method is discussed from a 
theoretical and practical point of view. Empirical results on the 
influence of the loop-gain are given. A new approach for the processing 
of maps with limited phase information is presented and a novel applica
tion of CLEAN for beam-switching observations (as an example for the 
case of a non-symmetric beam) is given. 

1. INTRODUCTION 

It is probably not necessary to give an outline of the algorithm 
of the method CLEAN, after its introduction by Hogbom (Hogbom, 1974) and 
first pioneering work by Rogstad (Rogstad and Shostak, 1971) eight years 
ago. The fact that it is still so widely used, speaks for the method or 
against the users. 

In the first part I give a short summary of the mathematics of the 
method, as recently published (Schwarz, 1978, hereafter called Paper I), 
in order to introduce those concepts, on which the further discussion 
will be based. In the second part I give some direct applications of the 
theory. The third part is more empirically oriented, where some ambigui
ties and pitfalls are mentioned. In the final section some variations 
and other applications of the method are presented. 

1.1 Algebraic Description and Convergence of CLEAN 

Although the method CLEAN is conceived entirely in the map-domain, 
it is of great use to analyse the working of the method in the plane 
which is the Fourier transform of the map, the UV-plane. In order to do 
this one must first describe the method mathematically in the map-plane 
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and then as a second s tep i n t e r p r e t i t in the UV-plane. 
i ) CLEAN in the map-plane: We can wr i t e the r e s u l t of the CLEAN 

process ( ac tua l ly the f i r s t phase, namely the decomposition) a f t e r some 
i t e r a t i o n s by 

d. - B _t' = £ (1) 

where d̂  is the original map (the 'dirty' map), £' the ensemble of compo
nents, _r the residuals and B a matrix containing the values of the syn
thesized beam, b_, (the 'dirty' beam) as elements, such that the convolu
tion of the components t' with the dirty beam can be written in this 
simple way. This notation in vector form does not mean that one is 
restricted to the one-dimensional case. The multi-dimensional case can 
be put exactly in this form as well. 

The CLEAN process of searching for the maximum of the residuals 
and subtraction of g times (g = 'loop-gain') this value convolved with 
the dirty beam, b, is nothing else than a well known iterative method 
from the pre-computer time to solve a system of linear equations 

B _t = di . (2) 

For our purpose this method is attractive since we can assume that the 
sky is almost empty; this aspect will be examined in more detail later. 
When discussing the convergence of the CLEAN process it is useful to 
introduce a norm Q. One can prove that the following norm, 

Q = /\£. B At_ with At_ = jt' - t_ , (3) 

diminishes with each iteration and hence converges to zero, if 0<g<2 
(g = loop-gain), B is symmetric and Q cannot become negative. This last 
condition can be fulfilled easily, as will be shown below. t is the 
solution of equation 2, therefore: 

t' -> t = t + z . (4) 
— — —o —o 

The final solution is the 'true' map, _£_, if eq. 2 has a unique solution. 
Normally in our applications this is not the case and any zero-eigen
vector z^ ('ghost') can be added. 

Since one does not know t in advance one can calculate another 
quantity H which is related to Q by 

Q = Qo - H with H = _t' (d. + r) , QQ = t_ d . (5) 

H increases with each iteration by 

AH = g (2 - g) r2 (6) 

where g is the loop-gain and r the maximum residual. H is a measure 
of the quality of _t'; the starting value is 0 and can reach a maximum 
of Q when _r = 0. 
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ii) Interpretation of CLEAN in the UV-plane: We define the visibil
ity, V, as the FT of the 'true' map. This visibility is observed at some 
sample points and is given a weight. This sampling and weighting function 
is w. The FT of the weighting function is the dirty beam, b. The observed 
visibility which includes noise we call VQ. The FT of wVQ is the dirty 
map, d_. 

Starting the iteration process with a subtraction of the convolution 
of the 'dirty' beam with the first component, corresponds in the UV-plane 
to the subtraction of a sine-wave multiplied by w. After some iterations, 
the FT of the residuals _r is left. This can be expressed as wAV=w(V0-V), 
where V is the FT of the set of components, t', and AV = V -V .—Since 
£ -*• 0, wAV will converge to zero. This means that V approaches V0. This 
is illustrated in Figure 1, where the first iterations of a model example 
are shown; since the visibility is a complex quantity, the cosine- and 
sine-components are shown separately with subscripts c and s respectively. 

Figure 1. One-dimensional CLEAN of a double source. The first few itera
tions are displayed. The loop-gain is 1. Left is the map-plane, right 
the U-plane. Left, from top to bottom: tQ = the true map, b = the dirty 
beam, d,r = dirty map and residuals; the vertical bars indicate the first 
three components. Right at top and bottom the real and imaginary parts 
respectively of the following complex quantities: curves 1 to A = FT of 
the components, for the 4 first iterations. +: the visibility of the 
true map, at the sample points, VQ. x: the weighted visibility wV0. 
*: + and x coincide. The visibility of the components approaches closer 
and closer the visibility of the true map (but not the weighted ones) 
with increasing number of components. 
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Note that V does not approach the weighted visibility wV , but V , 
regardless of the amplitude of the applied weighting function w. This 
shows that the decomposition in components is in fact a deconvolution. 

The convergence of AV to zero can be described mathematically more 
precisely by using the norm Q introduced above. It can be shown that 

Q = £wk AV
2 / Swk (7) 

is the normalized sum of squares of the difference between the FT of the 
components V1 and the observed visibility V . We see immediately that 
one of the criteria of convergence, Q >. Q, is fulfilled if w, > 0 for 
all k. Since V is affected by random noise, Q converges towards a mini
mum in a proper least square sense, if the weights are 'natural' weights, 
i.e. inversely proportional to the u, , where u, is the rms-error of an 
observation. 

We can also calculate QQ in a simple way, which is the starting 
value of the norm Q or the maximum value of H (cf. eq. 5): 

% = 2wk Va I Zwk (8) 

k 
We can use Q as a criterion to stop the iteration process, namely, when 
Q reaches the value which would be expected from random noise only. 
For natural weighting we get from eq. 7 

<Q> = Zwk u
2 / £wk = y2 R/z:wk = Ra2 (9) 

where y is the noise of an observation per unit weight, and a is the 
rms noise of a point in the map. 

1.2 CLEAN as an Iterative Harmonic Analysis 

Suppose that the true map consists of one point-like source. In 
harmonic analysis if one wanted to fit a sine-wave to the observed 
visibility one would FT the visibility and look for the largest harmonic, 
i.e. the maximum in the dirty map. This is idential to the CLEAN method. 
Therefore one could interpret the CLEAN method as an iterative harmonic 
analysis. 

1.3 CLEAN as a Least Squares Fit 

Normally the iteration process of CLEAN is stopped if the residuals 
become smaller than a given threshold. But in order to get the advantages 
of a proper least squares fitting, one has to deviate from the above 
scheme slightly and to distinguish between two phases: 

i) The search phase: This is the usual iteration process, where 
the maximum residual is searched in the whole map or part of it. 

ii) Optimization: The CLEAN process goes on, but the search of 
the maximum residuals is done only within the positions, which have al
ready a component, say in W positions. In this way the residuals within 
this 'window' approach zero and one solves a subsystem of the eq. 2. 
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Outside the window the residuals are not necessarily zero. The optimiza
tion insures that one has fitted the FT of W components to the observed 
visibility in a proper least squares fit. Naturally the number of posi
tions W may not exceed the number of observations R (R/2 complex quanti
ties) , otherwise the matrix By will be singular. 

1.4 Error Calculation 

Now we have a standard problem for a least squares solution. It in
volves the inversion of a matrix, which for the case of uniform taper is 
just By , the inverse matrix of the submatrix of order W. One easily can 
calculate the errors of the components or of their FT. An example is 
shown in Figure 4 of Paper I. There one sees, that the uncertainty of 
the high spatial frequencies become very large. Thus an increase in reso
lution requires high S/N ratios! In order to cut down the uncertain high 
spatial frequencies, one normally convolves the components with a 'clean' 
beam. 

In this summary, many aspects and problems of CLEAN are not mention
ed, such as the question of the clean beam, adding the residuals to the 
clean map, etc. Those and details of the points above can be found in 
Paper I. 

2. APPLICATIONS OF THE THEORY 

2.1 Determination of Parameters of Point-like or Slightly Resolved 
Sources 

There are several methods to determine the parameters of discrete 
sources. Most use a fitting procedure in some way. Clearly the best 
method is to fit some model function directly to the observed visibility, 
but this requires quite a large computational effort, at least for the 
two-dimensional case. Therefore the fitting is mostly done in the 'sky'-
plane; but then one must correct the parameters found for the convolution 
effect due to the 'dirty beam'. An alternative approach is to 'clean' 
the sources and to determine the source parameters using the components, 
_t. These components are implicitly based on a least squares fit to the 
visibility as has been shown above; they are therefore free of the 
effects of the convolution by the dirty beam. 

A simple straightforward method to determine the source parameters 
is to use the moments with respect to the x-y coordinates in the sky. 
The moments up to second order are: 

M^ = Z . t . 
o l i 

M = x = Z . t . x . / M 
x 1 1 1 0 

M = y = E . t . y . / M 
y 3

 I i J i o 

M = E . t . ( x . - x)2/M 
XX 1 1 1 O 

(9) 
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M = l.t.(x. - x)(y. - y)/M 
xy i iv i 'i ' o ( g ) 

M = l.t.(y. - y)2/M 
yy I l J l J o 

The zeroth order moment gives the flux, the first moments give the posi
tion and the second moments allow one to calculate parameters of models 
of extended sources, such as a two-dimensional Gaussian or an equal point 
double. An important fact to note is that the second order moments need 
not to be positive; they can be zero or even negative. For a point-like 
source they are on the average zero but deviate from zero due to statis
tical fluctuations. 

In order to calculate the mean errors of the parameters, derived 
from the above moments, one needs the derivatives with respect to the 
components, 3M/3t.. These derivatives are (van Dijk, 1977, priv. comm.): 

3M /3t. = 1 (10) 
o l v ' 

8M x /3 t . = ( x k - x)Mo 3 M y / 3 t . = (yfc - y ) / M Q 

3 M x x / 3 t i = ( ( x k " *>*" M x x ) / M o 3 M y y / 3 t i = ( ( y k " y ) 2 ~ V / M o 

3M / 3 t . = ( (x . - x ) ( y . - y ) - M )/M 
xy I Tc • 'k J xy o 

For instance the error of one of the second order moments becomes then 

y2(Mxx) = a2z(3Mxx/3t.)(3Mxx/3tk)B^k. (.1) 

Error estimates for diameters, position angles, etc. can be calculated 
based on these errors in the moments. Extensive Monte Carlo tests have 
been made to check these errors and showed good agreement with prediction. 

The method was tested with artificial sources and with real sources 
in synthesis maps made from Westerbork data. It was found, using typical
ly 5 to 9 components, that for accurate positions a small area around 
the source must be chosen (approx. 3/2 beam diameters), but for accurate 
fluxes and the second moments the area should be larger (about twice as 
large). A compromise was found by applying a Gaussian weighting function 
(size about twice the beam width) to the components in order to calculate 
the positions. This yields typically flux accuracies of the order of 20% 
of the flux and in positions of 8% of the beamwidth for sources with a 
flux of about 10a. 

A different approach to overcome the difficulty of this 'trade-off 
in accuracy between various parameters would be to use constraints on 
the minimization of the norm Q. The constraints can be that the second 
order and higher moments must agree with a model to be determined. For 
instance if one likes to get the flux and position of a source, assuming 
it to be a point-like source, then one would require that the second and 
higher moments are zero. Then one would get from CLEAN, components which 
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are subject to these constraints. I have not worked out an algorithm or 
error analysis in CLEAN to solve this problem. 

2.2 The Ambiguity of the Solution 

It is obvious that if the sampling in the UV-plane is not complete 
there can be components of the brightness-distribution which we can 
never reconstruct (with any method!). The most simple example is a uni
form background which will be missed completely if we do not measure the 
zero-spacing. The 'dirty' map contains no trace of it and in the UV-
plane this contribution is contained in a single point, therefore no 
interpolation will help. But such a distribution contradicts our condi
tion that the true brightness distribution is zero in most parts. We can 
ask the general question: Does some brightness distribution exist, which 
is confined in the map-plane, and whose FT is also confined in the UV-
plane? This is not possible, since any confined distribution in the map 
can be multiplied by a box-function. In the UV-plane this corresponds to 
the convolution of the visibility with the FT of the box-function (in 
one dimension a sin x/x-function), which extends to infinity. Therefore 
the visibility of such a confined source must necessarily be spread over 
the whole UV-plane, and therefore it cannot be missed completely by the 
observations. This proof is not completely tight, since some brightness-
distribution with periodities matched to periodities in the sampling 
function could escape unnoticed. These would be distributions of the 
type of grating responses and one can argue whether these do or do not 
satisfy the criterion of emptiness of the sky. 

Apart from this case, it is then possible in principle to extra
polate the non-observed parts of the visibility assuming noise-free data. 
Can CLEAN achieve such an extrapolation? In general this will not be the 
case, at least in this form of CLEAN presented here, where the components 
are restricted to positions on a grid. However if the true map is 
restricted to grid-points too, then it is shown in Paper I that the solu
tion is unique if Q = 0 and if the solution contains less than R/2 compo
nents (where R/2 is the number of measured complex visibilities). 

The above arguments are all based on noise-free observations and 
hence are only of theoretical value. In presence of noise it is meaning
less to make Q = 0, since the expectation value of Q for noise is non
zero, see eq. 9. From eq. 3 we know that if Q > 0 then At, the difference 
between components and the true distribution, is not zero either. Can we 
make some estimates about the size of At? 

A simple approach is the following. How large can the total flux 
AF be of a distribution At, which would produce a constant change in 
zero-level of the dirty map? Let us relate this zero-shift to the noise 
in the map, a, say no, where n is a number smaller than one, then we get 
from eqs. 1 and 3 

B At| = no (B is a submatrix of B) (12) 
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and there fore 

IAF t = 1 ZAt - I = no-SB"1 . (13) 
1 1 ' l ' w . . 

For dirty beams with small sidelobe level, 

but for beams with larger sidelobes this sum can become considerably 
larger. B̂ J1 is usually not calculated explicitly, but is required if an 
error analysis is made. 

3. PROBLEMS OF THE PRACTICE 

3.1 Influence of Loop-Gain 

In the many years that the method CLEAN has been used I believe 
that mostly a loop-gain of less than unity has been found to be optimum. 
In fact a very small loop-gain can be practical. It is even possible to 
use an infinitesimal small loop-gain by an algorithm closely related to 
the theory of CLEAN, being equivalent of solving a system of equations. 

A systematic analysis of the problem of loop-gain has been done by 
Ron Harten (yet unpublished) by a purely empirical method. He cleaned a 
noise free point-source lying exactly in between two gridpoints, using 
a different number of gridpoints per halfwidth of the dirty beam, and 
for various loop-gains (0.9, 0.5 and 0.25). He looked at speed of 
convergence accuracy of flux determination and area needed, for the case 
of a free running CLEAN, without optimization. I would like to discuss a 
few aspects of this work: 

i) Area required: The smaller the loop-gain the smaller the area 
needed. 

ii) Convergence: The closer the loop-gain to unity, the higher is 
the frequency of oscillation. The amplitudes are in the test cases about 
equal. In the beginning, after only a few iterations large deviations 
from the true flux do occur. 

iii) Influence of number of points per halfwidth of dirty beam: The 
more points, the smaller the amplitude of oscillation. 

It is quite plausible that a small loop-gain needs a smaller area. 
This we see more clearly for a very small loop-gain, then the dirty map 
is steadily cut-down from the top, making more and more residuals equal. 
If one has one dominant source, CLEAN with small loop-gain will start 
with the highest point and steadily use new points thereby going further 
from the centre of the source in both directions. This is not only an 
advantage for extended sources but also for point-like sources giving a 
more accurate final result. 
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Interesting experiments were made by J.M. van der Hulst (1977) in 
connection with the observations of neutral hydrogen on the 'antenna'-
pair of galaxies, NGC 4038/39, which has a negative declination and can 
therefore be observed at Westerbork only for a limited range in hour-
angle. This missing information results in strong negative sidelobes 
(34% at a distance of 1.25 the beamwidth) in the antenna pattern in 
the EW-direction. From the optical picture (and theoretical dynamical 
models of an interacting pair) one would expect radiation in a filament 
running partly E-W. Due to the characteristics of this particular beam, 
the amplitude of any elongated E-W structure is strongly reduced. He 
showed that CLEAN can only partly reconstruct the missing information, 
using a realistic model with superimposed noise. 

Somewhat disappointed by this result, I started to make similar 
experiments, using the same data, but a more simple model, namely a thin 
bar lying exactly in an E-W direction which gives, from the point of 
view of CLEAN, the strongest effects. I systematically varied the amount 
of noise superimposed and the loop gain. The results from these experi
ments can be summarized as follows: 

i) The ability of CLEAN to reconstruct the true distribution is 
strongly affected by the S/N ratio. There is a rather sharp transition, 
where CLEAN starts to fail. 

ii) The S/N ratio at which the true distribution can be reconstructed 
showed in some cases to be dependent of the loop-gain. For a bar of con
stant amplitude (thus with sharp edges) a high loop-gain, up to 1.5, was 
more successful than a small loop-gain. On the other hand a Gaussian 
amplitude (smooth edges) distribution along the bar showed no great 
differences in the results for various loop-gains. 

The conclusion is that a small loop-gain is in general advisable, 
especially if one has a dirty beam with significant positive sidelobes. 
Ambiguities in CLEAN, due to different loop-gains, number of iterations, 
etc. can occur at too low a S/N ratio. 

3.2 Increase of Resolution 

It is tempting to use (or misuse) the method CLEAN to achieve higher 
angular resolution than one would obtain by the usual techniques. I would 
like to distinguish two categories: 

i) First category: One would like to extrapolate the visibility to 
higher spatial frequencies than are contained in the observation. In 
Paper I application of the error theory shows clearly, that this is only 
possible for very high signal-to-noise ratios. But even in such cases 
one should keep in mind, that non-statistical errors of the observations 
then can play an important role. 

ii) Second category: In Fourier transforming the observations, one 
usually applies a weighting or taper function, in order to reduce the 
side-lobe level of the dirty beam, resulting in prettier looking maps. 
As already mentioned in Section l.l-(ii) CLEAN does recover these arti
ficially degraded high spatial frequencies. Ron Harten used CLEAN to in
crease the resolution of maps, where such a taper function has been 
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applied. He could demonstrate that the undoing of the taper function is 
possible, but any further increase in resolution leads to unrealistic 
maps. - But this method looks rather a cumbersome way to begin with; 
this is however not true, since the cleaned map is restored with a clean 
beam, therefore one gets higher resolution and a pretty looking map. 

3.3 Some Pitfalls 

a) CLEAN of smoothed maps: There is no objection using smoothed 
maps, if the dirty beam is smoothed as well, and if the FT of the smooth
ing function is non-negative. This condition can sometimes be violated 
however, if the smoothing is done in the map (e.g. in a small region of 
interest to save computing time), since the truncation of the smoothing 
function can in fact introduce negative weights in the UV-plane, which 
will lead to divergence during the CLEAN process. 

b) CLEAN of extended sources: A basic assumption we made in earlier 
sections was that the sky is essentially empty. Suppose we sampled the 
visibility including a zero-spacing, which picks up a general background. 
We could use CLEAN in a restricted area, keeping the number of points W 
in the window smaller than the number of observations, R. In this case 
we obviously cannot expect to reconstruct the true distribution correctly. 
On the other hand if we were to use the whole map for CLEAN (thus violat
ing the condition W < R) strange things can happen. Figure 2 shows a case 
where an artificial map of constant amplitude has been cleaned with loop-
gain g = 1. The result is a sinusoidal looking wave, a perfect artifact. 

Figure 2. Experiments with a continuous brightness distribution in one 
dimension, (a) dirty beam, (b) clean map (the clean beam is equal to the 
dirty beam to the first zero), (c) FT of components. In (b) and (c): 
full lines, loop-gain = 1; dashed lines, loop-gain = 0.01, 1000 itera
tions. The dots give the assumed 'observation'. One sees that CLEAN with 
g = 1 gives rise to artifacts. 
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In the UV-domain, one sees that CLEAN has done its job perfectly well, 
the FT of the components - although wavy - equals exactly the 'observed' 
visibility at the positions of sampling. Another experiment was made, 
using a loop-gain g = 0.01, for 1000 iterations. The final residuals are 
at the 10% level of the dirty map. In Fig. 2 the components are shown by 
the broken line; one sees they are almost uniform. This demonstrates 
that a small loop-gain does not turn a smooth background into pronounced 
artifacts. 

The above example gives a possible explanation of some features in 
a controversial map of the galactic centre made by Balick et al. (1974), 
based on observations with the NRAO interferometer. This map showed lobes 
which were not present in a more completely sampled map by Ekers et al. 
(1975). The odd orientation of the baseline of the NRAO interferometer, 
combined with the effect of low declination, results in projected short 
spacings, which are sensitive to the extended source. If one applies 
CLEAN to the map (what has been done by Balick et al.) in a restricted 
area, one can expect artifacts similar to those in above example, 
especially if a high enough loop-gain is used. Using the original data 
it can be shown that these lobes can be avoided with a small loop-gain. 

The main question is how to avoid this effect? The most safe method 
is to clean an area with less points than the number of observations 
(W < R) and if an extended source may be present, which exceeds the size 
of the area to be cleaned, the corresponding short spacings should be 
excluded. The use of a small loop-gain helps to avoid difficulties as 
above experiments and also those of other users of CLEAN have shown. 

4. VARIATIONS AND OTHER APPLICATIONS OF CLEAN 

4.1 Limited Phase Information 

In VLBI observations the phase cannot be measured absolutely, only 
relative phases. In recent years a new reduction technique has been 
developed, using the concept of closure phase. In simultaneous multi-
interferometer observations phases must add up in some simple way to 
zero. Assuming some phases one can calculate the remaining phases from 
these conditions. The resulting map is then processed using CLEAN in an 
iterative way (Readhead et al., 1978). I do not intend to describe this 
method in detail, but I would like to make a remark related to the 
previous section. Due to the erroneous phase, the calculated 'true' 
source may extend over a large part of the map. If CLEAN is used in a 
restricted area one can also introduce artifacts by using a high loop-
gain and by continuing the iteration-process too long. 

I have tried a different approach to a similar problem, by using 
the CLEAN concept in its original form. Suppose one has observations 
with partial phase information. Putting the unknown phases to zero, one 
gets by Fourier transforming the data a dirty map. If we search this 
map for the maximum and subtract a beam at this position, we have to 
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keep in mind, that due to the missing phase, the beam cannot simply be 
shifted to this position, but has also to be calculated for this particu
lar position, setting the phase to zero at those sample points where no 
phase information is available, because in this case the shape of the 
beam depends on the position in the map. This is the only difference from 
the usual CLEAN. The analogy with the normal CLEAN is evident, because 
one also puts non-measured samples of the visibility to zero (amplitude 
and phase), whereas the described method puts only the phase to zero, 
since the amplitude is observed. As in the normal CLEAN the missing 
information is interpolated. 

4.2 Other Applications of CLEAN 

To my knowledge CLEAN has not been used much outside the field of 
radio synthesis observations. An example of another possible application 
in astronomy I would like to explain concerns the interpretation of beam-
switching observations, used in radio-astronomy, but also extensively in 
a.o. infra-red observations. Two beams observe the brightness distribu
tion and the differential output is recorded. This is equivalent to the 
observation with a beam of the form 1, -1. This results in a different
iated brightness distribution. A standard method of analysis is to inte
grate the signal. This method has the disadvantage that it relies on the 
model beam to give a really differentiated distribution and integration 
can only be done in small pieces, otherwise the statistical fluctuation 
leads to large excursions of the baseline. Could one apply CLEAN? The 
conditions of convergence of CLEAN are that the dirty beam has to be sym
metric and its FT non-negative. In both senses the beam-switching beam 
is not conform to these requirements. Already Temple (1938) mentions the 
possibility in order to be able to apply his relaxation method (essen
tially CLEAN) to convolve the data with the asymmetric beam and to use 
the self-convolution of the beam as the 'dirty' beam. Obviously one then 
gets a symmetric dirty beam, whose FT is non-negative (being squared). 
Now it is possible to apply CLEAN, in the idealized case with a dirty 
beam -5, 1, -5. The matrix B will be positive definite, the resulting 
components are a linear combination of the convolved data (the coeffi
cients being the elements of the inverse matrix, B - 1 ) . This makes an 
error analysis possible; note that it will be different from the case of 
FT data. 

I tentatively tried this method with real IR data of a high altitude 
flight, published by M. de Muizon, 1978. The dirty beam is based on the 
observations of Saturn, see Figure 3, and the data is sampled at a 2' 
interval. In Figure 4 the result of the integration by Muizon of the 
source Ml 7 is shown, together with the results of a tentative CLEAN with 
15 components, which are convolved with a 415 Gaussian. 

There are other potential fields of application of CLEAN, such as 
seismography, tomography etc. But I think the method is only then 
successful, if one can assume that the 'true' map is almost empty. 
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10 15 

Figure 3. Profile of the beam-switching IR observations of Saturn 
(Muizon, 1978). The self-convolution gives the dirty beam, which is 
used in CLEAN shown in Figure 4. 
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Figure 4. Results of the standard integration method (full line) and 
experimental CLEAN (dashed line) for the IR-observations of Ml7 (Muizon, 
1978). 
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DISCUSSION 

Comment E.B. FOMALONT 
Is it always better to use a small loop gain in cleaning a map? 
Reply U.J. SCHWARZ 
Mostly yes, but not always, see reply by Ron Harten. 
Reply R.H. HARTEN 
The high gain factor can be of use for sources with high negative side-
lobes. Generally only the first few components need to be cleaned with 
a high gain factor. 

Comment J.P. HAMAKER 
In section 3.1 you discuss the mapping of a structure containing a bar. 
The only reason why you prefer the solution including the bar is that 
you have a priori information making it likely for something to be there. 
The u-v area that contains the pertinent information is not accessible 
in this case. Without your a priori knowledge you would most probably 
have accepted the two-component picture without a bridge as a reasonable 
one. The preference for the outcome using a high loop gain in this case 
is purely fortuitous. 
Reply U.J. SCHWARZ 
This is not completely true. There is no confined brightness distribution 
which is completely unaccessible by any sampling. But if one has noisy 
data, such a bar-like structure as above can stay undetected. My point 
is to show that for sufficient S/N one can recover the true distribution, 
and the quality measure can give an indication of the reliability of the 
reconstruction. 
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Comment L.R. D'ADDARIO 
You said very little about the clean beam. Would you comment on the 
fact that the final map, after convolution with the clean beam, dis
agrees significantly with the available visibilities? 
Reply U.J. SCHWARZ 
As shown in my paper, CLEAN fits the FT of the components to the un
weighted visibility of the true distribution. The components contain 
the most information, which can be used directly to calculate for in
stance moments. But in order to suppress the highly uncertain large 
spatial components, which can be disturbing in some applications, one 
can convolve the components with a clean beam. If one doesn't like to 
degrade the good reliable part of the fitted visibility but still likes 
to depress the large spatial components one can use the FT of a box 
function (method used by Rogstad and Shostak, A&A, 1973, ̂ 3_, 99). But 
in general one uses a clean beam similar to the FT of the taper or 
weighting function, having the same motivation as in making maps by the 
simple FT. 
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