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Abstract. Extreme value statistics (EVS) is applied to the pixelized distribution of galaxy
luminosities in the Sloan Digital Sky Survey (SDSS). We analyze the DR8 Main Galaxy Sample
(MGS) as well as the Luminous Red Galaxy Sample (LRGS). A non-parametric comparison
of the EVS of the luminosities with the Fisher-Tippett-Gumbel distribution (limit distribution
for independent variables distributed by the Press-Schechter law) indicates a good agreement
provided uncertainties arising both from the finite size of the samples and from the sample
size distribution are accounted for. This effectively rules out the possibility of having a finite
maximum cutoff luminosity.
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1. Introduction
Extreme value statistics analyzes the behavior of the tails of distributions. The distribution of

extreme values for i.i.d. (independent, identically distributed) variables converge to a few limiting
distributions depending on the tail behavior of the parent population (Fisher-Tippet-Gumbell,
Weibull, Fisher-Tippet-Frechet). The onset of the scaling behavior is quite slow, therefore re-
quires very large samples. The galaxy samples in the SDSS redshift survey may be just large
enough to attempt such an analysis, and we present here a study of the distribution of maximal
luminosities.

We minimize the correlations between luminosities and positions by selecting the maximal
luminosities from the batches of galaxies in elongated conical regions (defined by the footprints
of HEALPix cells on the sky). We also explore random sampling.

The shape of the galaxy luminosity function is important for the EVS. This function is well
described by the Schechter function, functionally similar (and motivated by) the theoretically
derived Press-Schechter formula, with a power law distribution and an exponentially falling tail.
Such a tail would imply a Fisher-Tippett-Gumbel (FTG) EVS distribution, with corrections for
the finite sample sizes depending on the power law at low luminosities. In this analysis we will
show that there is an excellent agreement with these expectations, implying that the Schechter
function extends to very high luminosities, i.e. there is no indication for a sharp cutoff at a high
but finite luminosity.

In order to arrive at the above results, it was important to notice that the galaxies can be
divided into two types with significantly distinct luminosities and spatial distributions.

Previous studies have examined whether Brightest Cluster Galaxies (BCG) are the extremes of
a red early-type galaxy luminosity function or they are different. Tremaine and Richstone (1977)
investigated the statistics of the luminosity gap between the first and second brightest galaxies in
clusters of galaxies and found that it is substantially larger than what can be explained with an
exponentially decaying luminosity function. BCGs in high-luminosity clusters are not drawn from
the luminosity distribution (LD) of all red cluster galaxies, while BCGs in less luminous clusters
are the statistical extreme. For a volume-limited sample of Luminous Red Galaxies (many of
them BCGs) we find that they are the extremes of a LD with an exponentially decaying tail.

Even though the SDSS sample is large, the residual from the FTG distribution can be ex-
plained only when we consider the corrections due to both the finite size of the samples and the
distribution present in the sample sizes (the number of galaxies in a cone is finite and varies
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from cone to cone). The distributions of the galaxy luminosities and the galaxy counts in pencil
beams are constructed in Section 2.

2. Sample Creation
We use data from SDSS-DR8, available in a MS-SQL Server database that can be queried

online via CasJobs (http://casjobs.sdss.org). The spectroscopic survey renders a complicated
geometry defined by sectors.

We explore 2 different galaxy samples: the Luminous Red Galaxies (LRGs) (Eisenstein 2001)
and the Main Galaxy Sample (MGS) (Strauss 2002). The LRGs (magnitude limit 19.2) are
slowly evolving and intrinsically luminous red galaxies composed of old stellar populations,
selected for tracing the structure at a higher redshift [0.20, 0.38] than MGSs. For selecting the
MGS we impose a redshift interval of [0.065, 0.22] and magnitude [13.5,17.65] in r-band Petrosian
magnitude limit of 17.77 . A total of NT = 348975 MGS and NT = 52579 LRG galaxies are
obtained in a survey’s comoving volume of VS = 0.56 Gpc3 and VS = 2.18 Gpc3 respectively.

2.1. Footprint and HEALPix based pencil beams, Distributions of galaxy counts in a
HEALPix cell

In order to have close-to-i.i.d realizations (batches) from which to draw the maximal luminosities,
we tessellate the sphere into regions defined by individual HEALPix cells (Gorski 2005), all of
which have the same area. This creates 3-dimensional pencil-like beams that sample the galaxy
populations across different redshifts.

We create the entire SDSS-DR8 spectroscopic footprint with resolution Nside = 512 (
√

Ωp ix �
6.87′). We degrade the footprint to 3 lower resolution maps defined by Nside = 16, 32 and 64,
creating thus the cells that define the pencil beams. We use only the group of cells which satisfy
that their fractional area occupancy inside the footprint f � 0.97.

The other approach we use is the random sampling of the luminosity parent distribution in
batches of fixed size.

We construct the luminosity functions of the different galaxy samples and fit the MGS sample
with Schechter, generalized gamma distribution (see also Figures 2 and 4).

The LRG sample was made to include the brightest early types. Therefore, they are naturally
fitted - their luminosity function itself - with an extreme value distribution or its special case
the Gumbel.

3. Theory of Extreme Value Statistics
Extreme value statistics (EVS) is concerned with the probability of the largest value in a

batch of N measurements. For us, they are galaxy luminosities in a given solid angle of the sky
and N is the number of galaxies in the given angle.

The results of the EVS are simple for i.i.d. variables. The limit distribution belongs to one
of three types and the determining factor is the large-argument tail of the parent distribution.
Frechet type distribution emerges if the parent distribution f decays as a power law, Fisher-
Tippett-Gumbel (FTG) distribution is generated by fs which decay faster than any power law
and parent distributions with finite cutoff and power law behavior around the cutoff yield the
Weibull distribution. All the above cases can be unified as a generalized EVS whose integrated
distribution FN (v) is given in the N → ∞ limit by F (v) = exp [−(1 + ξv)−1/ξ ] where ξ > 0, =
0, < 0 correspond to the Frechet, FTG, Weibull classes, respectively, with the parameter ξ being
the exponent of the power law behavior.

The parent distribution for galaxy luminosities is known, it is the Gamma-Schechter distribu-
tion. For this the limit distribution of extremal luminosities belongs to the FTG class (ξ → 0)
P (v) = dF (v )

dv
= 1

b
exp

[
− v−a

b
− exp(− v−a

b
)
]

where the parameters can be fixed by setting
〈v〉 = 0 and σ =

√
〈v2 〉 − 〈v〉2 = 1. This choice (a = π/

√
6 and b = γE ≈ 0.577) leads to a

parameter-free comparison with the experiments provided the histogram of the maximal lumi-
nosities P (v) is plotted in terms of the variable x = (v −〈v〉N )/σN where 〈v〉N is the average of
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Figure 1. (a) Distribution of the number of galaxies N in the pencil beams for Nside = 64, for
the MGS and the LRG samples. Fits to the empirical data are also shown. (b) Comparison of
FTG with the count-averaged EVS, and their difference.

Figure 2. Distribution of r-band absolute magnitude Mr and distribution of maximal
luminosity for the full samples according to the fixed batch size random sampling.

Figure 3. Empirical finite-size corrections from batches of fixed size N for random sampling.

Figure 4. Parent distribution of r-band absolute magnitude Mr and distribution of maximal
luminosity for the full samples according to various HEALPix resolutions.
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the maximal luminosity while σN =
√

〈v2 〉N − 〈v〉2N is its standard deviation. The resulting scal-
ing function is the universal function in the limit N → ∞: ΦN (x) = σN PN (σN x+〈v〉N ) → Φ(x) .

3.1. Deviations from the ideal case
In addition to the assumption of i.i.d. variables, there are two additional problems with com-
paring data with theory. A notorious aspect of EVS is the slow the convergence to the limit
distribution. Second, the batch size N (the number of galaxies in a given solid angle) varies with
the direction of the angle. Thus the histogram of the maximal luminosities PN (v) is built from
a distribution of N s. Both effects introduce corrections to the limit distribution.

3.2. Finite size corrections
Finite size corrections to first order can be written as ΦN (x) ≈ Φ(x) + q(N )Φ1 (x) , where
q(N → ∞) → 0 and the shape correction Φ1(x) is universal. Both the amplitude q and the
shape correction Φ1 are known for Press-Schechter type parent distributions. The convergence
is slow since q(N ) = −θ/ ln2 N . The value of θ is roughly 1 thus for characteristic range of
N ≈ 10 − 200 one can expect a 20-4% deviation coming from finite-size effects.

The finite-size shape correction is Φ1 (x) = [M1 (x)]′ where M1 (x) = Φ(x)
[

ax 2

2 − ζ (3)x
a 2 − a

2

]
.

3.3. Variable batch size
If the normalized distribution F (N ) of N is known, the count-averaged EVS is

P (v) = lim
N →∞

∫ ∞

0
F(N )PN (v)dN (3.1)

and the difference P 1 (x) ≡ P (x)−P (x) provides us an estimate of corrections coming from the
variable sample size.

We carried out simulations for the following: F (N ) of the sample is fitted to (aN+b)3 exp(−(aN+
b)), and F (N ) is just the exact empirical distribution for the MGS and LRG samples (see Figures
1 and 3).

Combining the finite-size effects with the effects coming from the variable batch-size can
produce the features observed in the deviations from the FTG limit.

4. Distribution of Maximal Luminosities, Discussion
Figure 2 shows the distribution of maximal luminosity for the MGS and LRG samples ac-

cording to the fixed batch size random sampling. Figure 4 is the same but according to cones
of various HEALPix resolutions.

The distributions obtained are FTG distributions. This effectively rules out the possibility of
having a finite maximum cutoff luminosity.

We can claim that at large distances r the luminosity-luminosity correlations should decay
with an exponent C(r) ∼ r−σ with σ > 2. The FTG-s found suggest weak correlations, and the
noise and correlated features of the noise can be explained by the combination of finite-size and
variable batch-size effects.

We find that the LRGs – many of them BCGs – are the extremes of a luminosity distribution
with exponential decay.
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