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Abstract

Consider a real-valued discrete-time stationary and ergodic stochastic process, called the
noise process. For each dimension n, we can choose a stationary point process in R

n

and a translation invariant tessellation of R
n. Each point is randomly displaced, with a

displacement vector being a section of length n of the noise process, independent from
point to point. The aim is to find a point process and a tessellation that minimizes the
probability of decoding error, defined as the probability that the displaced version of the
typical point does not belong to the cell of this point. We consider the Shannon regime,
in which the dimension n tends to ∞, while the logarithm of the intensity of the point
processes, normalized by dimension, tends to a constant. We first show that this problem
exhibits a sharp threshold: if the sum of the asymptotic normalized logarithmic intensity
and of the differential entropy rate of the noise process is positive, then the probability
of error tends to 1 with n for all point processes and all tessellations. If it is negative
then there exist point processes and tessellations for which this probability tends to 0.
The error exponent function, which denotes how quickly the probability of error goes
to 0 in n, is then derived using large deviations theory. If the entropy spectrum of the
noise satisfies a large deviations principle, then, below the threshold, the error probability
goes exponentially fast to 0 with an exponent that is given in closed form in terms of the
rate function of the noise entropy spectrum. This is obtained for two classes of point
processes: the Poisson process and a Matérn hard-core point process. New lower bounds
on error exponents are derived from this for Shannon’s additive noise channel in the high
signal-to-noise ratio limit that hold for all stationary and ergodic noises with the above
properties and that match the best known bounds in the white Gaussian noise case.
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1. Introduction

To study communication over an additive noise channel, information theorists consider
transmission via, and decoding from, the noise-corrupted reception. For the purposes of this
paper, think of a codeword as a sequence of real numbers (called symbols) of a fixed length
(called the block length). A codebook is a set of codewords. The allowed codewords in
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the codebook are generally subject to constraints such as power or magnitude constraints,
or more complicated constraints such as run length constraints (which are constraints on the
allowed patterns of symbols). In this paper we focus on just the power constraint, which is
the most important case. The transmitter chooses a codeword to transmit its data over the
noisy communication medium. For instance, if there are 2k codewords in the codebook, the
transmitter can convey k bits by the choice of the codeword if the communication medium is
noise free. Only additive noise channels are considered; this is the case where the receiver
sees the sum of the transmitted codeword and a noise vector. The receiver does not know the
transmitted codeword. The aim is to design the codebook so that the receiver’s probability of
error is small, assuming that the transmitter was a priori equally likely to have transmitted any
one of the codewords. One of the main preoccupations of the subject of information theory,
initiated by Shannon [17], is to study how to design codes for various communication channels
in the asymptotic limit as the block length goes to ∞. While situations involving multiple
transmitters and receivers are also of great interest, only the single transmitter and receiver case
(this is called the point-to-point case) is considered in this paper.

In the asymptotic analysis, we require the error probability to be asymptotically vanishing
in the block length. Typically, we can do this while having codebooks whose cardinality
grows exponentially with the block length. Communication channels are thus characterized
first of all by their Shannon capacity, which is the largest possible such exponent. The next
question of interest is how quickly the error probability can be made to go to 0 when using
codebooks with a rate (i.e. exponent of the exponentially growing size of the codebook) that
is less than the Shannon capacity. The best possible exponent, as a function of rates below the
Shannon capacity, is called the error exponent function or reliability function of the channel.
Characterizing this is largely an open problem and is one of the most challenging mathematical
problems in information theory. There are two major classes of lower bounds that can be
proved for the error exponent. One is the random coding bound, which follows, in the power-
constrained case, by considering codewords drawn uniformly at random from the sphere of
points that satisfy the power constraint [18]. The second is the expurgated bound, which
follows from refining this random coding ensemble by specifically eliminating codeword pairs
that are too close to each other, while only slightly changing the rate of the codebook, in a way
that is asymptotically negligible [9].

Our main contribution is to bring the techniques of point process theory, and more specifically
Palm theory [6], [12], to bear on this problem. Our approach is closely related to the earlier work
of Poltyrev [16]. However, the Palm theory viewpoint which is brought into play here is not
apparent in [16]; this allows us to go well beyond the contribution of that work, which deals only
with independent and identically distributed (i.i.d.) Gaussian noise. In this framework, at block
length n, we need to think about a stationary marked point process on R

n. Each realization of the
points is now thought of as a codebook. The power constraint has now vanished, so we can think
of being in the infinite signal-to-noise ratio (SNR) limit. A mark is associated to each point.
This mark is thought of as the realization of the noise vector when that codeword (synonymous
with the point of the process) is ‘transmitted’. The noise vectors are independent from point
to point, and have the law of a section of length n of a given underlying stationary and ergodic
centered real-valued discrete-time stochastic process, which characterizes the communication
channel. The ‘received noise-corrupted codeword’ is thus represented by the sum of the point
(codeword) and its mark (noise vector). The decoding problem is to figure out the mother
point by knowing just the law of the noise process, the realization of the entire point process,
and the sum of the mother point and its mark (without knowing what the mother point is).
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For instance, in the case of i.i.d. Gaussian noise a natural way to do this would be to consider
the Voronoi tessellation [15] of R

n associated to the point process. Note that the Voronoi cells
can also be thought of as marks of the point process. A decoding rule is characterized by its
error probability, defined as the limit over large cubes of the error probability per point for the
points in that cube (i.e. in order to compute the error probability, we assume that the transmitter
chooses one of the points within the cube uniformly at random a priori). It is not hard to see
that it suffices to consider decoding rules that are jointly stationary with the underlying point
process. This means that the error probability can be computed using Palm theory.

For the connection with information theory, the intensity of the underlying point process
is itself thought of as scaling exponentially in n. The logarithm of the point process intensity
on a per unit dimension basis will be called the normalized logarithmic intensity. The first
question that arises then is: for a given noise process, how large can the asymptotic normalized
logarithmic intensity be while still allowing for a choice of the point process (this corresponds to
the codebook) and choice of decoding rule for that codebook such that the Palm error probability
asymptotically vanishes? Proving the existence of and identifying this threshold would give
a point process analog of Shannon’s capacity formula. This is the first problem we treat in
this paper. There are no surprises here, since it boils down to volume counting. The threshold
turns out to be the negative of the differential entropy rate of the noise process. In honor of the
pioneering work in [16], we propose to call this threshold the Poltyrev capacity of the associated
noise process.

Much more interesting is the following question: for a given noise process and a given
asymptotic normalized logarithmic intensity that is less than the Poltyrev capacity of the noise
process, how large can we make the exponent of the rate at which the Palm error probability can
be made to go to 0? Here point process analogs of the random coding and expurgated exponents
are found. The random coding exponent comes from considering the Poisson process, while
the expurgated exponent comes from considering a Matérn point process. Furthermore, just as
the capacity is determined by the differential entropy rate of the noise process, the associated
lower bounds on the infinite SNR error exponent are derived from a large deviations principle
(LDP) on its entropy spectrum (the entropy spectrum for each dimension n is the asymptotic
law of the information density, which, in turn, is the random variable defined by the logarithm
of the density whose expectation, on a per symbol basis, asymptotically yields the differential
entropy rate). Identifying this connection is one of the main contributions of the point process
formulation investigated in this paper.

Finally, all these results obtained in the infinite SNR setting can be translated back to give
lower bounds on the error exponents in the original power-constrained additive noise channel
which are new in information theory.

This Palm theory approach was first introduced in [1], where the i.i.d. Gaussian case (called
the additive white Gaussian noise (AWGN) case in the information theory literature) was
investigated, where it was shown that the infinite SNR random coding and expurgated exponents
of [16] could be recovered with this viewpoint. The main contribution of the present paper is to
go beyond the i.i.d. Gaussian case to the general stationary and ergodic noise processes, subject
to a mild technical condition needed to have an LDP for the entropy spectrum.

The problem is formally set up in Section 2. In Section 3 we prove that the Poltyrev
capacity is the threshold for the asymptotic normalized logarithmic intensity in the sense
described above. In Section 4 we state representations of the error probability which will be
instrumental in analyzing the logarithmic asymptotics of the error probability. In Section 5 we
develop the infinite SNR random coding exponent, based on the Poisson process and maximum
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likelihood (ML) decoding, while in Section 6 we develop the expurgated exponent, based on
a Matérn process and ML decoding. Section 7 is devoted to the connections between the
results from the point process framework and the motivating problem of information theory,
namely, how to translate the lower bounds on the infinite SNR error exponent to those for the
problem with power constraints. Several examples of noise processes of practical interest are
studied in Section 8. In particular, the AWGN case is studied in depth. In Section 9 we briefly
describe how the results of this paper generalize to the case of mismatched decoding, which is
of significant practical interest.

Throughout the paper, all logarithms are to the natural base. When discussing a family of
random variables indexed by the points of a point process, notation such as {Zk}k is used (this
would mean that Zk is associated to the kth point of the process). For all basic definitions
pertaining to point process theory, see [6]; information theory, see [5] and [8]; and large
deviations theory, see [7] and [19].

2. Statement of the problem

2.1. Encoding; normalized logarithmic intensity

Fix an integer n, and let (K = Kn, K = Kn) be a measurable space. Let M(K) and
M respectively denote the sets of simple marked counting measures ν on R

n × K and simple
counting measures ν on R

n. They are endowed with the σ -algebras M(K) and M, respectively,
which are generated by the events ν(B × L) = k and ν(B) = k, respectively, where B ranges
over the Borel sets of R

n, L over the measurable sets of Kn, and k over the nonnegative integers
(see, e.g. [12]).

Each ν ∈ M has a representation of the form

ν =
∑

k

εtk ,

with εx the Dirac measure at x and {tk}k the atoms of the counting measure ν. Similarly, each
ν ∈ M(K) has a representation of the form

ν =
∑

k

εtk,mk
,

with {(tk, mk)}k the atoms of ν, where tk ∈ R
n and mk ∈ Kn. The set {tk}k is the set of points

of νn and the set {mk}k is its set of marks. Let M0(K) and M0 respectively denote the sets of
all simple marked counting measures and simple counting measures with an atom whose first
coordinate is 0.

Below, only stationary and ergodic marked point processes are considered. Thus, it is
assumed that, for each n ≥ 1, there exists a probability space (�, G, P, θt ), endowed with
an ergodic and measure preserving shift θt indexed by t ∈ R

n. A stationary marked point
process μ on R

n × Kn is a measurable map from (�, G) to (M(K), M(K)) such that, for all
t ∈ R

n,
μ(θt (ω)) = τt (μ(ω)),

where τt (μ) is the translation of μ by −t ∈ R
n: if μ(ω) = ∑

k εTk(ω),Mk(ω) then

μ(θt (ω)) =
∑

k

ε−t+Tk(ω),Mk(ω).
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Let λn denote the intensity of μ = μn. The scaling where the normalized logarithmic
intensity approaches a limit as the dimension n goes to ∞ is of particular interest. Here Rn,
the normalized logarithmic intensity of μn, is defined via λn = enRn . Denote by P0 the Palm
probability [6] of μ (by convention, under P0, T0 = 0), and by Vk the Voronoi cell of point Tk

with respect to the point process μ (see, e.g. [15]), which is taken here to be an open set.
As described informally in Section 1, the points of this point process are thought of as

representing the codewords used by a transmitter in a communication system in the infinite
SNR limit. This connection with information theory provides the motivation for the scaling
considered here. Realizations of the noise vector, as well as decoding regions (see below), are
typical examples of the kinds of marks considered.

2.2. Decoding

To each point Tk of the point process μ = μn (the superscript n is omitted in this section), we
associate the independent mark Dk , a random vector taking values in R

n, called the displacement
vector. When the point Tk of μ is thought of as a codeword, the transmission over an additive
noise channel adds to it the displacement vector Dk , so that the received point is Yk = Tk +Dk .

Decoding is discussed in terms of a sequence of marks of μ which are measurable sets of R
n.

The mark of point Tk will be denoted by Ck . The set Ck is the decoding region of Tk . The sets
{Ck}k are required to form a tessellation of R

n, namely, they are all disjoint and the union of
their closures is R

n.
The displacement sequence {Dk}k is assumed to be i.i.d. and independent of the marked

point process {Tk, Ck}k . This makes {Tk, (Dk, Ck)}k a marked point process.
The canonical example to keep in mind, which is motivated by the AWGN channel of

information theory, is when the vectors associated to the individual points of the process are
i.i.d. zero-mean Gaussian random vectors each with i.i.d. coordinates and independent of the
points. Then the natural choice of the decoding region of a point is its Voronoi cell in the
realization of the point process.

The most general setting concerning the noise (or displacement vectors) considered in this
paper will feature a real-valued centered stationary and ergodic stochastic process 
 = {
l},
and displacement vectors {Dk}k independent of the point process, i.i.d. in k, and with a law
defined by D = Dn = (
1, . . . , 
n) for all n. As will be seen, more elaborate though natural
decoding tessellations then show up, determined by the law of 
.

The decoding strategy associated with the sequence of marks {Ck}k expects that, when Tk

is transmitted, then the received point Yk lands in Ck . An error happens if this is not the case.
The error probability is now formally defined in a Palm theory setting. Our eventual goal, as
informally described in Section 1, is to study the exponent of decay in n of the error probability.

2.3. Probability of error

Within the above setting, for all n, when (μn, Cn) and the law of Dn are given, define the
associated probability of error as

pe(n) = lim
W→∞

∑
k 1{T k

n ∈Bn(0,W)} 1{Yn
k /∈Cn

k }∑
k 1{T k

n ∈Bn(0,W)}
. (1)

The limit in (1) exists almost surely and is nonrandom. This follows from the assumption that
the marked point process μn with marks (Dn

k , Cn
k ) is stationary and ergodic. The pointwise

ergodic theorem implies that

pe(n) = P
n
0(Y n

0 /∈ Cn
0 ) = P

n
0(Dn

0 /∈ Cn
0 ). (2)
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3. Poltyrev capacity of an additive noise channel

The infinite SNR additive noise channel for dimension n is characterized by the law of the
typical displacement vector Dn, with Dn = (
1, . . . , 
n), with 
 = {
l} as defined above.
It will also be assumed that these displacement vectors Dn have a density f n admitting a
differential entropy rate

h(
) = − lim
n→∞

1

n
E[ln f n(Dn)]. (3)

We define −h(
) to be the Poltyrev capacity of the additive noise channel with displacement
vectors defined in terms of the process 
.

The terminology is chosen in honor of Poltyrev’s work [16]. The justification for this
terminology comes from the following two simple theorems, which together give an analog of
Shannon’s capacity theorem for additive noise channels in information theory. Before stating
and proving these theorems, recall that, for δ > 0, if we let

An
δ =

{
xn ∈ R

n :
∣∣∣∣ −1

n
ln(f n(xn)) − h(
)

∣∣∣∣< δ

}
,

then we have

P(Dn ∈ An
δ ) → 1 as n → ∞. (4)

This can be seen as a consequence of either one of the generalized Shannon–McMillan–Breiman
theorems in [4] or [13].

Theorem 1. For all point processes μn such that lim infn Rn > −h(
), and all choices of
decoding regions Cn

k which are subsets of R
n jointly stationary with the points and forming a

tessellation of R
n, we have limn→∞ pe(n) = 1.

Proof. For all stationary tessellations {Cn
k }k , we have

P
n
0(Dn

0 ∈ Cn
0 ) ≤ E

n
0

(
1{Dn

0 ∈Cn
0 ∩An

δ }
) + E

n
0

(
1{Dn

0 /∈An
δ }

)
.

The second term tends to 0 as n tends to ∞ because of (4). The first term is

E
n
0

(∫
Cn

0 ∩An
δ

f n(xn) dxn

)
.

It is bounded from above by e−n(h(D)−δ)
E

n
0(vol(Cn

0 )), and, for all translation invariant tessel-
lations of the Euclidean space, E

n
0(vol(Cn

0 )) = e−nRn , which allows us to complete the proof.

Theorem 2. Let μn be a Poisson point process of intensity λn = enRn . If lim supn Rn < −h(
)

then it is possible to choose decoding regions Cn
k that are subsets of R

n jointly stationary
with the points and the displacements, forming a stationary tessellation of R

n, such that
limn→∞ pe(n) = 0.
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Proof. Let {Cn
k }k be the following tessellation of R

n:

Cn
k =

{
(T n

k + An
δ ) ∩

{⋃
l 	=k

(T n
l + An

δ )

}c}

∪
{
Vn

k ∩
{⋃

l 	=l′
[(T n

l + An
δ ) ∩ (T n

l′ + An
δ )]

}}

∪
{
Vn

k ∩
{⋃

l

(T n
l + An

δ )
c

}}
,

where Vn
k denotes the Voronoi cell of T n

k . In words, Cn
k contains all the locations x which

belong to the set T n
k + An

δ and to no other set of the form T n
l + An

δ , all the locations x that
are ambiguous (i.e. belong to two or more such sets) and which are closer to T n

k than to any
other point, and all the locations which are uncovered (i.e. belong to no such set) and which
are closer to T n

k than to any other point. This scheme will be referred to as typicality decoding
in what follows.

Let μn
! = μn − ε0. Consider the bound

P
n
0(Dn

0 /∈ Cn
0 ) ≤ P

n
0(Dn

0 /∈ An
δ ) + P

n
0(Dn

0 ∈ An
δ , μ

n
! (D

n
0 − An

δ ) > 0).

The first term tends to 0 due to (4). For the second term, Slivnyak’s theorem [6] is used to
bound it from above by

P
n(μn(Dn

0 − An
δ ) > 0) ≤ E

n(μn(Dn
0 − An

δ )) = E
n(μn(−An

δ )) = enRn |An
δ | .

But
1 ≥ P

n(Dn
0 ∈ An

δ )

=
∫

An
δ

f n(xn) dxn

=
∫

An
δ

en(1/n) ln(f n(xn)) dxn

≥
∫

An
δ

en(−h(D)−δ) dx

= e−n(h(D)+δ)|An
δ |,

so that |An
δ | ≤ en(h(D)+δ), which allows us to complete the proof.

Examples of stationary and ergodic noise processes are considered in Section 8. The reader
may wish to consult some of the examples at this stage for concrete instances of the result above.

4. Maximum likelihood decoding

In this section we present representations of the ML decoding error probability that will be
instrumental for the evaluation of error exponents in the forthcoming sections.

As in Section 3, f n denotes the density of the displacement vector Dn = (
1, . . . , 
n)

which is a section of 
 = {
l}, a real-valued centered stationary and ergodic stochastic process.
The function

yn ∈ R
n → �f n(yn) = 1

n
ln(f n(yn)) ∈ R

is the (rescaled) log-likelihood of f n at yn. Note that �f n(yn) ∈ [−∞, +∞] in general.
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Below, −�f n is often used rather than �f n . The reason is that the real-valued random variable
−�f n(Dn) is well known and referred to as the normalized entropy density of Dn [11]. Its law,
denoted by ρn


(du), is referred to as the entropy spectrum of Dn [11]. Note that the existence
of a density for Dn does not imply that ρn


(·) admits a density. Furthermore, the support of
ρn


(·) is not necessarily the whole real line.
The sets

Sn

(u) = {yn ∈ R

n : − �f n(yn) ≤ u}, u ∈ R,

will be referred to as the log-likelihood level sets of Dn. The volume Wn

(u) of Sn


(u) will be
referred to as the log-likelihood level volume for u. The measure wn


 on R defined by

wn

(B) = vol{yn ∈ R

n : − �f n(yn) ∈ B}
for all Borel sets B of the real line, will be called the log-likelihood level measure. It turns out
that the measures wn


 and ρn

 are mutually absolutely continuous. Indeed, we have

ρn

(B) =

∫
1{−�f n (xn)∈B} f n(xn) dxn,

which implies that, for all bounded Borel sets B of the real line,

e−n sup(B)wn

(B) ≤ ρn


(B) ≤ e−n inf(B)wn

(B). (5)

From (5), it immediately follows that the measure wn

 is σ -finite. Also, for all u,

Wn

(u) =

∫
(−∞,u]

wn

(ds) =

∫
(−∞,u]

ensρn

(ds). (6)

Since μn is a point process, for all xn, P
n
0-almost surely (P-a.s.), the R

n–valued sequence
{xn − T n

k }k has no accumulation point. Hence, P
n
0-a.s., the set

argmaxk�f n(xn − T n
k )

is nonempty, i.e. the supremum is achieved by at least one k. By definition, under ML decoding,
when xn is received, we return the codeword argmaxk�f n(xn − T n

k ) if the latter is uniquely
defined. If there is ambiguity, i.e. if there are several solutions to the above maximization
problem, then we return any one of them.

Given that 0 = T n
0 is ‘transmitted’ and that the realization of the additive noise is xn, a

sufficient condition for ML decoding to be successful is that μn has no point T n
k other than

T n
0 = 0 such that �f n(xn − T n

k ) ≥ �f n(xn). But, for all xn,

�f n(xn − T n
k ) < �f n(xn) for all k 	= 0 if and only if (μn − ε0)(F (xn)) = 0,

with
F (xn) = {yn ∈ R

n : �f n(xn − yn) ≥ �f n(xn)} .

Hence,
pe(n) ≤ P

n
0((μn − ε0)(F (Dn)) > 0).

Also, note that the volume of the set F (xn) depends only on �f n(xn). If this last quantity is
equal to −u, the associated volume is

vol{yn ∈ R
n : − �f n(xn − yn) ≤ −u} = vol{yn ∈ R

n : − �f n(yn) ≤ −u},
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i.e.
vol(F (xn)) = Wn


(−�f n(xn)). (7)

The main result of this section is stated in the following theorem.

Theorem 3. For all stationary and ergodic point processes μn and all i.i.d. displacement
vectors, under ML decoding,

pe(n) ≤ 1 −
∫

xn∈Rn

P
n
0((μn − ε0)(F (xn)) = 0)f n(xn) dxn. (8)

If μn is such that, under P
n
0 , the point process μn − ε0 admits an intensity bounded from above

by the function gn(·) on R
d , then

pe(n) ≤
∫

xn∈Rn

min

(
1,

∫
F (xn)

gn(yn) dyn

)
f n(xn) dxn. (9)

If μn is a Poisson of intensity λn then

pe(n) ≤ 1 −
∫

u∈R

exp(−λnW
n

(u))ρn


(du), (10)

where ρn

(du) is the entropy spectrum of f n.

Proof. The probability of success (given that 0 is sent and that the additive noise is xn) is
the probability that μn has no point other than 0 in F (xn), which proves (8). Equation (9)
is immediate from (8) and the definition of F (xn). Equation (10) follows from (7), (8), and
Slivnyak’s theorem.

With the preceding discussion of ML decoding in view, it is convenient to define the
(log-)likelihood cell Ln

k(
) of point T n
k as follows:

Ln
k(
) = {xn : �f n(xn − T n

k ) > inf
l 	=k

�f n(xn − T n
l )}

∪ {xn : �f n(xn − T n
k ) = �f n(xn − T n

l ) for some l 	= k} ∩ Vn
k .

It is comprised of the locations xn with a likelihood (with respect to f n) to T n
k larger than that

to any other point; as well as the locations xn with an ambiguous log-likelihood but which are
closer to T n

k for Euclidean distance than to all other points of μn. These cells form a stationary
tessellation of the Euclidean space which we refer to as the likelihood tessellation with respect
to the point process μn for the noise 
 (more precisely, Dn or f n). The likelihood tessellation
with respect to additive white Gaussian noise with positive variance is the Voronoi tessellation
for all dimensions n, all point processes μn on R

n, and all k.
The resolution of ambiguity in this definition is somewhat Gaussian centric. Any other

tessellation whose cells satisfy the conditions of Section 2 could be used in place of the Voronoi
tessellation.

5. Random coding exponent: the Poisson process

Let 
 be a stationary, ergodic, centered, discrete-time, real-valued stochastic process. For all
stationary and ergodic point processes μn of normalized logarithmic intensity −h(
) − ln(α),
with α > 1, and decoding regions Cn = {Cn

k }k jointly stationary and ergodic with μn, let

p
pp
e (n, μn, Cn, α, 
)
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denote the probability of error associated with these data, as defined in (2). The ‘pp’ superscript
is used to recall that the setting is the point process setting described in Section 2.

For a fixed family (μ, C) = (μn, Cn) of a jointly stationary and ergodic point process and
decoding region for each dimension n, with normalized logarithmic intensity −h(
) − ln(αn)

for all dimensions n ≥ 1 and with αn → α as n → ∞, let

π(μ, C, α, 
) = lim sup
n

−1

n
ln(p

pp
e (n, μn, Cn, αn, 
)),

π(μ, C, α, 
) = lim inf
n

−1

n
ln(p

pp
e (n, μn, Cn, αn, 
)). (11)

The assumptions on the density f n on R
n of Dn = (
1, . . . , 
n) under which error

exponents will be analyzed in the point process formulation are summarized below (where
H-SEN stands for hypothesis on stationary ergodic noise).

Assumption H-SEN. (i) For all n, the differential entropy of f n, h(Dn), is well defined.

(ii) The differential entropy rate of 
 = {
l}, i.e. h(
), as defined in (3), exists and is finite.

(iii) The entropy spectrum ρn

(du), i.e. the law of the random variables {−(1/n) ln(f n(Dn))},

satisfies an LDP (on the real line endowed with its Borel σ -field), with good (in particular
lower semicontinuous) and convex rate function I (x) [7], [19].

A simple sufficient condition for Assumption H-SEN(iii) to hold is that the conditions of the
Gärtner-Ellis theorem hold, namely that the limit

lim
n→∞

1

n
ln(E((f n(Dn))−θ )) =: G(θ)

exists as an extended real number, is finite in some neighborhood of the origin, and is essentially
smooth (see [7, Definition 2.3.5]). From the Gärtner-Ellis theorem, the family of measures
ρn


(dx) then satisfies an LDP with good and convex rate function

I (x) = sup
θ

(θx − G(θ)). (12)

The following lemma gives the log-scale asymptotics of the log-likelihood level volumes.
(Some of the results derived below do not require this convexity assumption.)

Lemma 1. Suppose that Assumption H-SEN holds. Then

sup
s<u

(s − I (s)) ≤ lim inf
n→∞

1

n
ln(Wn


(u)) ≤ lim sup
n→∞

1

n
ln(Wn


(u)) ≤ sup
s≤u

(s − I (s)).

Furthermore, the function
J (u) = sup

s≤u
(s − I (s)), (13)

which will be referred to as the volume exponent, is upper semicontinuous.

Proof. From (6),

Wn

(u) ≥

∫
enφ(s)ρn


(ds),
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where

φ(s) =
{

1 if s < u,

−∞ if s ≥ u.

Since ρn

(dx) satisfies an LDP and since the function φ is lower semicontinuous, the lower

bound is proved as in Lemma 4.3.4 of [7]. Similarly,

φ̃(s) =
{

s if s ≤ u,

−∞ if s > u,

is upper semicontinuous and the upper bound is proved as in Lemma 4.3.6 of [7]. In both cases,
it should be noted that the proofs in [7] actually allow for functions φ with values in {−∞}∪R.

We now show that the upper semicontinuity of the function g(s) = s − I (s) implies the
upper semicontinuity of the function J (u) = sups≤u g(s). We have to show that

J (u) ≥ lim
ε→0

sup
s∈[u−ε,u+ε]

J (s) = lim
ε→0

J (u + ε), (14)

where the rightmost equality follows from the fact that J is nondecreasing. Hence, using
monotonicity again, we have to show that J is right continuous.

We have

J (u + ε) = J (u) + sup
s∈[u,u+ε]

(g(s) − J (u))+,

with a+ = max(a, 0). So, either g(s) ≤ J (u) for all s ∈ [u, u + ε], in which case J (u + ε) =
J (u) and the right continuity is trivially satisfied, or g(s) > J (u) for some s ∈ [u, u + ε], in
which case

J (u + ε) = sup
[u,u+ε]

g(s).

It then follows from the upper semicontinuity of the function g(s) that

J (u) ≥ g(u) ≥ lim
ε→0

sup
[u,u+ε]

g(s) = lim
ε→0

J (u + ε),

so that (14), and hence right continuity, holds in this case too.

Since I (h(
)) = 0, it follows from (13) that J (h(
)) ≥ h(
). The concavity of the
function x → x −I (x) implies that this function is nondecreasing on the interval (−∞, h(
)].
Hence, from (13), we have

J (h(
)) = h(
).

Furthermore, we may conclude that at all points u of continuity of J we have

lim
n→∞

1

n
ln(Wn


(u)) = J (u).

The following theorem, which follows from considering the family of Poisson point pro-
cesses with ML decoding, yields the random coding exponent for the problem formulation
adopted here.
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Theorem 4. Assume that μn is Poisson with normalized logarithmic intensity −h(
) − ln(α)

with α > 1 and that the decoder uses ML decoding. Suppose that Assumption H-SEN holds.
Then the associated error exponent is such that

π(Poi, L(
), α, 
) ≥ inf
u

{F(u) + I (u)}, (15)

where I (u) is the rate function of ρn

 (defined in (12)) and

F(u) = (ln(α) + h(
) − J (u))+,

where J (u) = sups≤u(s − I (s)) is the volume exponent defined in Lemma 1.

Proof. From (10),

pe(n) ≤
∫

u∈R

(1 − exp(−λnW
n

(u)))ρn


(du). (16)

Using (16) and the bound

1 − e−λnWn

(u) ≤ min(1, λnW

n

(u)),

we can write

pe(n) ≤
∫

u

e−nφn(u)ρn

(du),

with

φn(u) =
(

ln(α) + h(
) − 1

n
ln(Wn


(u))

)+
.

In order to conclude, we use Theorem 2.3 of [19]. Since the law ρn

(du) satisfies an LDP

with good rate function I (u), it is enough to prove that, for all δ > 0, there exists ε > 0 such
that

lim inf
n→∞ inf

(u−ε,u+ε)

(
ln(α) + h(
) − 1

n
ln(Wn


(u))

)+
≥ (ln(α) + h(
) − J (u))+ − δ.

Since the function u → Wn

(u) is nondecreasing, it is enough to show that, for all δ > 0, there

exists ε > 0 such that

lim
n→∞

(
ln(α) + h(
) − sup

m≥n

1

m
ln(Wm


 (u + ε))

)+
≥ (ln(α) + h(
) − J (u))+ − δ.

There are two cases to consider: if ln(α) + h(
) − J (u) ≤ 0, the result is obvious, and if
ln(α) + h(
) − J (u) > 0 then we have to prove that, for all δ, there exists an ε such that

lim
n→∞ sup

m≥n

1

m
ln(Wm


 (u + ε)) ≤ sup
s≤u

(s − I (s)) + δ.

But, from Lemma 1,

lim
n→∞ sup

m≥n

1

m
ln(Wm


 (u + ε)) ≤ sup
s≤u+ε

(s − I (s)).

Hence, it is enough to show that, for all δ, there exists an ε such that

sup
s≤u

(s − I (s)) ≥ sup
s≤u+ε

(s − I (s)) − δ.

This follows from the fact that the function J (u) is upper semicontinuous.
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Note that all terms in the final expression to be minimized, namely,

(ln(α) + h(
) − J (u))+ + I (u),

have a simple conceptual meaning. Here e−(ln(α)+h(
)) is the intensity, i.e. λn; enJ (u) is the
volume of the log-likelihood level set for level u; e−nI (u) is the value of the density of the
entropy spectrum at u; and, finally, the positive part stems from the minimum of the mean
number of points in the above set and the number 1.

6. Expurgated exponent: a Matérn process

A Matérn I point process is created by deleting points from a Poisson process as follows.
Choose some positive radius called the exclusion radius. Any point in the initial Poisson process
that has another point within this fixed exclusion radius is deleted (note that both points will
be deleted since the first point will also be within the same fixed radius of the second point).
This is the simplest type of hard-sphere exclusion. For an information theorist, this is reminis-
cent of expurgation [9] and this term will also be used below to describe the transformation of
the Poisson into a Matérn point process. This process, and a related process called the Matérn
II process, were introduced in [14]. The Matérn II process will not be considered in this paper.

Mimicking this idea, a new class of Matérn point processes is introduced in order to cope
with the general stationary and ergodic noise in the present problem formulation. Assume for
simplicity that f n(xn) = f n(−xn). If two points S and T of the Poisson point process μn are
such that −�f n(T − S) < ξ , with ξ ∈ R some threshold, then both T and S are deleted (−�f n

may be thought of as a surrogate distance; two points which are ‘too close’ are discarded).
The surviving points form the Matérn-
-ξ point process μ̂n.

Theorem 5. Under the assumptions of Theorem 3, the probability of error for the Matérn-
-ξ
point process satisfies the bound

pe(n) ≤
∫

xn∈Rn

min

(
1, λn

∫
yn∈Rn

1{−�f n (yn)≥ξ} 1{�f n (xn−yn)≤�f n (xn)} dyn

)
f n(xn) dxn. (17)

Proof. Let P̂
n
0 denote the Palm probability of μ̂n. Under P̂

n
0, the point process μ̂n − ε0 has

an intensity bounded from above by λn 1{−�f n (yn)≥ξ} at yn. The result then follows from (9).

Note that the Matérn-AWGN-ξ reduces to the Matérn I model for the exclusion radius

rn(ξ) =
√

2nσ 2
√

ξ − 1
2 ln(2πσ 2) (18)

for ξ > 1
2 ln(2πσ 2). Hence, the following special case holds.

Theorem 6. In the AWGN case,

pe(n) ≤
∫

r>0
min(1, λnvol(Bn(0, rn(ξ))c ∩ Bn(xn(r), r)))gn

σ (r) dr (19)

with xn(r) = (r, 0, . . . , 0) ∈ R
n and rn(·) defined in (18).

Proof. The result immediately follows from (17) and (18).
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In the general case, the unfortunate fact that the volume of the vulnerability set (the set which
ought to be empty of points for no error to occur) now depends on the point xn, and not only
on the value of �f n(xn), can be taken care of by introducing the upper bound

Mn

(u, ξ) = sup

{xn : −�f n (xn)=u}

∫
yn∈Rn

1{−�f n (yn)≥ξ} 1{−�f n (xn−yn)≤u} dyn,

which depends only on �f n(xn). This quantity will be referred to as the expurgated log-
likelihood level volume. By the same arguments as above, we obtain the following result.

Corollary 1. The probability of error for the Matérn-
-ξ point process satisfies the bound

pe(n) ≤
∫

u∈R

min(1, λnM
n

(u, ξ))ρn


(du).

In Section 8 we calculate the expurgated exponent based on the Matérn-
-ξ process in some
examples. Particular attention is paid to the AWGN case, where it is shown that the expurgated
exponent of [16] can be recovered.

7. The channel with power constraints

In the traditional model for point-to-point communication over an additive noise channel
with power-constrained inputs, the codewords, of block length n, are subject to the power
constraint P . A codebook is thus a finite, nonempty subset, call it T , of points in Bn(0,

√
nP )

(the closed ball of radius
√

nP around the origin), whose elements are the codewords. Then
R(T ) = (1/n) ln | T | ≥ 0 is the rate of the code. The noise vector for block length n, Dn =
(
1, . . . , 
n), is assumed to have the law of the first n values of the centered, real-valued
stationary, and ergodic stochastic process 
 = {
l}. Suppose that Assumption H-SEN holds,
and that the marginals of 
 have finite variance.

The transmitter is assumed to pick a codeword to transmit uniformly at random from the
codebook. The receiver sees the sum of the codeword and the noise vector, and, without
knowing which codeword was picked, is required to determine it from the received noise-
corrupted codeword. The optimum decision rule is maximum likelihood decoding, i.e. to
choose as the decision for the transmitted codeword one of those for which the conditional
probability of seeing the given observation is largest among all codewords. The probability
of error of the codebook, pe(T ), is defined to be the average probability of error over all
codewords, where the probability of error of a codeword is the probability of error of the
maximum likelihood decision rule, conditioned on this codeword having been transmitted.
Shannon [17], [18] proved that, asymptotically in the block length, there is a threshold on the
rate such that, for rates below this threshold, it is possible to choose codebooks for which the
probability of error goes asymptotically to 0, while, for rates above this threshold, this is not
possible. This threshold is given by the Shannon capacity, defined by

CP (
) = lim
n→∞

1

n
sup

T n,E(
∑n

i=1(T
n
i )2)<nP

I (T n, T n + Dn),

where the supremum is over all distribution functions for T n = (T n
1 , . . . , T n

n ) ∈ R
n such that

E(
∑n

i=1(T
n
i )2) < nP . This limit is known to exist. Here, for jointly distributed vector-valued

random variables (X, Y ), the expression I (X; Y ) denotes their mutual information [5], [8].
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Note that the Shannon capacity is a characteristic of both the noise process 
 and the power
constraint P . Let σ 2 denote the variance of 
0. The relation between the Shannon capacity
and the Poltyrev capacity is given by the following lemma, due to Shannon [17]. We give a
proof, since it is illuminating.

Lemma 2. Under the foregoing assumptions,

1
2 ln(2πeP) − h(
) ≤ CP (
) ≤ 1

2 ln(2πe(P + σ 2)) − h(
). (20)

Proof. We have

I (T n + 
n; T n) = h(T n + 
n) − h(T n + 
n | T n) = h(T n + 
n) − h(
n).

It is well known that, for all stationary sequences {Ak}, we have

h(A1, A2, . . . , An) ≤ n

2
ln(2πe var(A1)).

Hence,
1

n
I (T n + 
n; T n) ≤ 1

2
ln(2πe(P + σ 2)) − 1

n
h(
n).

For the lower bound, the inequality h(T n + 
n) ≥ h(T n) is used to deduce that

I (T n + 
n; T n) = h(T n + 
n) − h(T n + 
n | T n) ≥ h(T n) − h(
n).

Taking now T n Gaussian with i.i.d. N (0, P ) coordinates, we obtain

CP (
) ≥ 1
2 ln(2πeP) − h(
).

In the power-constrained scenario, we define

E(n, R, P, 
) = −1

n
ln pe,opt(n, R, P, 
) ,

with pe,opt(n, R, P, 
) the infimum of pe(T ) over all codes in R
n of rate at least R ≥ 0 and

all decoding rules, when the signal power is P and the noise is 
. We then define

Ē(R, P, 
) = lim sup
n

E(n, R, P, 
) and E(R, P, 
) = lim inf
n

E(n, R, P, 
).

Assuming that these are identical, we denote this common limit by E(R, P, 
). For fixed P

and 
, the function R → E(R, P, 
), defined for rates less than the Shannon capacity, is
known as the error exponent function or the reliability function in information theory.

The following result shows how to obtain lower bounds on the error exponent function for
power-constrained additive noise channels from error exponents coming out of the point process
formulation (such as the random coding exponent and the expurgated exponent developed in
Sections 5 and 6, respectively).

The next theorem features a sequence of stationary point processes μn in R
n with normalized

logarithmic intensities converging to the finite limit −h(
) − ln(α′), where α > α′ > 1.
The following condition will be required on this collection: for all γ > 0 and all P > 0,

ln(Pn(μn(Bn(0,
√

nP )) ≥ (2πeP)n/2e−nh(
)e−n ln(α′+γ ))) = o(n). (21)
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This condition is satisfied, e.g. by homogeneous Poisson and Matérn point processes as both
are such that, for all Borel sets B of R

n,

E(μn(B)2) ≤ E(μ̂n(B)2), (22)

where μ̂n denotes the homogeneous Poisson point process with the same intensity as μn.
For Matérn point processes, (22) follows from the evaluation of the reduced second moment
measure, which is classical. For all collections {μn} satisfying (22) for all n, we obtain (21)
from Chebyshev’s inequality.

Theorem 7. Let 
 be a centered, real-valued, stationary, and ergodic stochastic process, and
let α > 1. Let (μ, C) := (μn, Cn) be a sequence where, for each n ≥ 1, μn is a stationary
and ergodic point process in R

n with normalized logarithmic intensity −h(
) − ln(αn), with
αn → α′ as n → ∞, where α > α′ > 1, and the sequence {μn} satisfies (21), and where, for
each n ≥ 1, the tessellation Cn is jointly stationary with μn. Then, for all P > 0 such that
1
2 ln(2πeP) > h(
) + ln(α), we have

E
( 1

2 ln(2πeP) − h(
) − ln(α), P, 

) ≥ π(μ, C, α′, 
) (23)

and

E

(
CP (
) − ln(α) − 1

2
ln

(
1 + σ 2

P

)
, P , 


)
≥ π(μ, C, α′, 
). (24)

Here π(μ, C, α′, 
) is the error exponent without restriction for the family (μ, C), as defined
in (11). In addition,

lim inf
P→∞ E(CP (
) − ln(α), P, 
) ≥ π(μ, C, α′, 
). (25)

Proof. From the very definition of Palm probabilities, for all n,

p
pp
e (n, μn, Cn, αn, 
) =

E
n(

∑
k : T n

k ∈Bn(0,
√

nP ) pe,k)

e−nh(
)e−n ln(αn)V n
B(

√
nP )

,

where pe,k denotes the probability that T n
k + Dn

k does not belong to Cn
k given {T n

l , Cn
l }l . Hence,

for all γ > 0, we can write

p
pp
e (n, μn, Cn, αn, 
)

≥
E

n
∑

{k : T n
k ∈Bn(0,

√
nP )} pe,k 1{μn(Bn(0,

√
nP ))≥(2πeP)n/2e−nh(
)e−n ln(α′+γ )}

e−nh(
)e−n ln(αn)V n
B(

√
nP )

≥ P
n(μn(Bn(0,

√
nP )) ≥ (2πeP )n/2e−nh(
)e−n ln(α′+γ ))

× pe,opt

(
n,

1

2
ln(2πeP ) − h(
) − ln(α′ + γ ), P, 


)
e−n ln(α′+γ )en ln(αn) (2πeP)n/2

V n
B(

√
nP )

,

where we have used the fact that pe,opt(n, R, P, 
) is nondecreasing in R and enR is non-
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decreasing in R. If γ > 0 is sufficiently small, we can then write:

− 1

n
ln(p

pp
e (n, μn, Cn, αn, 
))

≤ −1

n
ln

(
pe,opt

(
n, 1

2 ln(2πeP) − h(
) − ln α, P, 

))

− 1

n
ln(Pn(μn(Bn(0,

√
nP )) ≥ (2πeP)n/2e−nh(
)e−n ln(α′+γ )))

− ln(αn) + ln(α′ + γ ) − 1

n
ln

(
(2πeP)n/2

V n
B(

√
nP )

)
.

When taking the limit in n, the second term on the right-hand side tends to 0 (from (21)), and
the last term of the right-hand side tends to 0 as well (from classical asymptotics on the volume
of the d-ball). Hence, first taking the limit as n → ∞ and then letting γ → 0, (23) follows.

We obtain (24) from (23) when using the second inequality of (20) and the fact that the
function x → E(x, P, 
) is nonincreasing.

To prove (25), pick α̃ such that α > α̃ > α′ > 1. It suffices to observe that from the
preceding proof we have

E

(
CP (
) − ln(α̃) − 1

2
ln

(
1 + σ 2

P

)
, P , 


)
≥ π(μ, C, α′, 
).

The preceding theorem can, in particular, be used with the family (μ, C) taken to be either
(Poi, L(
)) or (Mat, L(
)), for which π(μ, C, α′, 
) has been studied in detail in this paper.
An excellent survey of the known upper and lower bounds for the error exponent function in
the power-constrained AWGN case is given in [3].

8. Examples

This section contains several examples of noise processes 
 of interest in applications and
calculation of the concrete instantiation of the preceding results in these cases. Consider first
the additive white noise (WN) case, i.e. when 
 = {
l} is an i.i.d. sequence, focusing on
the special cases of white symmetric exponential noise and white uniform noise. Additive
colored Gaussian noise (CGN) is then discussed, where {
l} is a Gaussian sequence which is
not necessarily white, and finally we discuss in detail the AWGN case, which is the case of
most interest in applications. Connections to the work in [16] in the AWGN case are made.
A random coding exponent is calculated in all examples, and an expurgated exponent is
calculated where it was possible to give a relatively clean looking result.

8.1. White noise

The WN case is that where the displacement vector 
 has i.i.d. coordinates. Let D be a
typical coordinate random variable. The differential entropy rate of 
 is then

h(
) = h(D) = −
∫

R

f (x) ln(f (x)) dx,

where f (x) denotes the density of D.
From Cramér’s theorem [7], [19] we have

I (x) = sup
θ

(θx − ln(E(f (D)−θ ))),

with D a random variable with density f .
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Note that the rate function I (·) is not necessarily a good rate function. A sufficient condition
is that 0 is in the interior of the set {θ : E((f (D))−θ ) < ∞} (see [7, Lemma 2.2.20]).

8.1.1. White symmetric exponential noise. The differential entropy of the symmetric exponen-
tial distribution of variance σ 2 is h(D) = ln(

√
2eσ) and

E(f (D)−θ ) = (
√

2σ)θE

(
exp

(
θ
|D|√2

σ

))
= (

√
2σ)θ

1

1 − θ
, θ < 1.

So
I (u) = sup

θ

(θu − θ ln(
√

2σ) + ln(1 − θ)),

that is,

I (u) =
{

+∞ for u ≤ ln(
√

2σ),

u − h(D) − ln(u − ln(
√

2σ)) otherwise,
(26)

which is a good and convex rate function.
From Lemma 1 we obtain

J (u) =
{

−∞ for u ≤ ln(
√

2σ),

ln(
√

2eσ(u − ln(
√

2σ))) otherwise.
(27)

It follows from (26) for I and (27) for J that in this case the function to minimize in (15) is

v − 1 − ln(v) + (ln(α) − ln(v))+

for v > 0. So in this case the random coding exponent is the right-hand side of the inequality

π(Poi, L(
), α, 
) ≥
{

α − 1 − ln α if 1 ≤ α < 2,

1 − 2 ln 2 + ln α if α ≥ 2.

Consider the Matérn-
-ξ point process, where 
 is white symmetric exponential noise and
where the exclusion regions are L1 balls of radius

rn(ξ) = nσ√
2

(ξ − ln(
√

2σ))

for ξ > ln(
√

2σ). For the target normalized logarithmic intensity −h(
) − α, we build
the Matérn point process μ̃n from a Poisson point process μn of intensity λn = enR with
R = − ln(

√
2eσα), where α > 1. The parameter ξ is chosen as

ξ = α − ε + ln(
√

2σ),

so that the L1 exclusion radius is rn = nσ(α − ε)/
√

2. The intensity of the associated Matérn
point process is then λ̃n = λnexp(−λnV

n
B,1(rn)), with

V n
B,1(rn) = (2rn)

n

n! = (
√

2σ(α − ε))nnn

n!
the volume of the L1 ball of radius rn. It is easy to see that λ̃n ≤ λn for all n and that
limn→∞ λ̃n/λn = 1.
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It follows from (17) that

pe(n) ≤
∫

r>0

min
(

1, λn sup
{xn : |xn|1=r}

vol(Bn
1 (0, rn)

c ∩ Bn
1 (xn, r))

)
gn

σ (r) dr, (28)

where | · |1 denotes the L1 norm, Bn
1 (x, r) the L1 ball of center x and radius r, and gn

σ (r) here
denotes the density of the L1 norm of Dn, given by

gn
σ (r) = e−√

2r/σ

(√
2

σ

)n
rn−1

�(n)
, r ≥ 0.

Making the substitution v = (
√

2r)/nσ , the right-hand side of (28) is∫
v>0

min
(

1, λn sup
{xn : |xn|1=vσn/

√
2}

W(xn, v)
)

e−vn (vn)n

v�(n)
dv, (29)

with

W(xn, v) = vol

(
Bn

1

(
0,

nσ (α − ε)√
2

)c

∩ Bn
1

(
xn,

vnσ√
2

))
. (30)

Let α̃ = α − ε. If v ≤ α̃/2 then W(xn, v) = 0 for all xn with |xn|1 = vσn/
√

2. It is proved
below that if v > α̃/2 then

lim
n→∞

1

n
ln

(
sup

{xn : |xn|1=vσn/
√

2}
W(xn, v)

)
= ln(

√
2veσ). (31)

We have
sup

{xn : |xn|1=vσn/
√

2}
W(xn, v) ≥ W(xn(v), v)

with xn(v) = (vσn/
√

2, 0, . . . , 0). The region R(n) on the right-hand side of (30) includes
the region{

yn = (y1, . . . , yn) ∈ R
n : y1 >

vσn√
2

,
(α − ε)σn√

2
< y1 +

n∑
i=2

|yi | <
2vσn√

2

}
,

which is comprised of 2n−1 copies (one for each configuration of signs of the variables
y2, . . . , yn; see Figure 1) of the following basic region:{

yn = (y1, . . . , yn) ∈ R
n+ : y1 >

vσn√
2

,
(α − ε)σn√

2
< y1 +

n∑
i=2

yi <
2vσn√

2

}
.

In Figure 1, the origin of the plane is the tagged codeword. The large ball centered at 0 and
passing through point A is that with radius nσ(α − ε)/

√
2. Point V is that with coordinate

xn(v) = (vσn/
√

2, 0, . . . , 0). The region R(n) is depicted by the union of the dashed region
and the grey region. The volume V (n) is that of the grey region.

The volume V (n) of this basic region is the same as that of{
yn = (y1, . . . , yn) ∈ R

n+ : (α − ε − v)σn√
2

<

n∑
i=1

yi <
vσn√

2

}
,
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0 V A

Figure 1: The Matérn case with white symmetric exponential noise.

namely, 2−n times the volume of the L1 ball of center 0 and radius vσn/
√

2 deprived of the
L1 ball of center 0 and radius (α − ε − v)+σn/

√
2, that is,

V (n) = 2−n

(
(
√

2vσ)n
nn

n! − (
√

2(α − ε − v)+σ)n
nn

n!
)

.

Hence,

1

n
ln

(
sup

{xn : |xn|1=vσn/
√

2}
W(xn, v)

)
≥ 1

n
ln(2n−1V (n)) → ln(

√
2veσ) as n → ∞.

But, from (30),

1

n
ln

(
sup

{xn : |xn|1=vσn/
√

2}
W(xn, v)

)
≤ 1

n
ln

(
volBn

1

(
0,

vσn√
2

))
→ ln(

√
2veσ) as n → ∞.

This completes the proof of (31).
The error exponent associated with this sequence of Matérn point processes thus satisfies

the bound
π(Mat, L(
), α, 
) ≥ inf

v>0
b(v) + a(v),

with a(v) = v − ln(v) − 1 (stemming from e−vn(vn)n/v�(n)), and

b(v) =
{

∞ if 0 < v < α̃/2,

(ln α̃ − ln v)+ if α̃/2 < v

(stemming from min(1, λn sup{xn : |xn|1=vσn/
√

2} W(xn, v)) in (29)). For more details on this
derivation, see the long version of this paper [2] and, in particular, the analytical arguments for
the AWGN case. This leads to the following expurgated exponent for symmetric exponential
white noise:

π(Mat, L(
), α, 
) ≥

⎧⎪⎪⎨⎪⎪⎩
α − ln(α) − 1 for α ≤ 2,

ln(α) + 1 − 2 ln(2) for 2 ≤ α ≤ 4,
α

2
− ln(α) − 1 + 2 ln(2) for α ≥ 4.
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8.1.2. White uniform noise. Let D be uniform on [−√
3σ, +√

3σ ], which is centered and with
variance σ 2. The differential entropy is h(D) = ln(2

√
3σ) and

E(f (D)−θ ) = (2
√

3σ)θ ,

so that G(θ) = θ ln(2
√

3σ) and

I (u) =
{

∞ if u 	= ln(2
√

3σ),

0 if u = ln(2
√

3σ),
(32)

which is a good and convex rate function.
From Lemma 1,

J (u) =
{

−∞ for u < ln(2
√

3σ),

ln(2
√

3σ) for u ≥ ln(2
√

3σ).
(33)

It follows from (33), (32), and (15) that

π(Poi, L(
), α, 
) ≥ F(ln(2
√

3σ)) = ln(α).

The right-hand side of the preceding equation is the random coding exponent for white
uniform noise.

8.2. Colored Gaussian noise

The CGN case is that where {
k} is a stationary and ergodic Gaussian process with spectral
density function g(β), i.e.

E(
0
k) = 1

2π

∫ π

−π

eikβg(β) dβ

for all k. It is well known (see, e.g. [10]) that the differential entropy rate of such a stationary
process exists and is given by

h(
) = 1

4π

∫ π

−π

ln(2eπg(β)) dβ. (34)

The conditions for the validity of the Gärtner-Ellis theorem hold with

G(θ) = θ

2
ln(2π) − 1

2
ln(1 − θ) + θ

2

(
1

2π

∫ π

−π

ln(g(β)) dβ

)
,

when θ < 1 and G(θ) = ∞ for θ > 1. This yields

I (u) =

⎧⎪⎪⎨⎪⎪⎩
∞ if u≤(1/4π)

∫ π

−π
ln(2πg(β)) dβ,

u − h(
)

−1

2
ln

(
2u − 1

2π

∫ π

−π

ln(2πg(β)) dβ

)
otherwise,

(35)

with h(
) as in (34). This is a good, convex, and continuous rate function.
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From (35) and (13) we obtain

J (u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∞ if u≤(1/4π)

∫ π

−π
ln(2πg(β)) dβ,

1

4π

∫ π

−π

ln(2πeg(β)) dβ

+1

2
ln

(
2u − 1

2π

∫ π

−π

ln(2πg(β)) dβ

)
otherwise.

(36)

This function is continuous.
Theorem 4, (35), and (36) yield

π(Poi, L(
), α, 
) ≥ inf
u

{(
ln(α) − 1

2
ln

(
2u − 1

2π

∫ π

−π

ln(2πg(β)) dβ

))+

+ u − 1

4π

∫ π

−π

ln(2πeg(β)) dβ

− 1

2
ln

(
2u − 1

2π

∫ π

−π

ln(2πg(β)) dβ

)}
.

Making the substitution

v =
√

2u − 1

2π

∫ π

−π

ln(2πg(β)) dβ,

we find that the last infimum is

inf
v≥0

{
(ln(α) − ln(v))+ + v2

2
− 1

2
− ln(v)

}
,

and, hence, we obtain the same function to optimize as in the AWGN case. So the random
coding exponent is that of (39).

8.3. White Gaussian noise

The AWGN case is a special case of WN where f is Gaussian with mean 0 and variance σ 2.
In this case, the differential entropy of f is h(D) = 1

2 ln(2πeσ 2), and we have

I (u) =
{

+∞ for u ≤ 1
2 ln(2πσ 2),

u − 1
2 ln(2eπσ 2) − 1

2 ln(2u − ln(2πσ 2)) otherwise,
(37)

which is a good and convex rate function.
It immediately follows from Lemma 1 that

J (u) =
{

−∞ for u ≤ 1
2 ln(2πσ 2),

1
2 ln(2πeσ 2) + 1

2 ln(2u − ln(2πσ 2)) otherwise.
(38)

We therefore recover the following result, first obtained by Poltyrev for the AWGN case
in [16] and revisited in [1]:

π(Poi, L(AWGN), α,AWGN) ≥
{

1
2α2 − 1

2 − ln α if 1 ≤ α <
√

2,
1
2 − ln 2 + ln α if

√
2 ≤ α < ∞.

(39)
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This follows from (15), as we will now show. (In fact, we can show that this lower bound
is tight; see [16].) Using (37) for I and (38) for J in (15) and using the substitution v =√

2(u − (1/2) ln(2πσ 2)), we obtain the following equivalent optimization problem:

Minimize a(v) + b(v) over v ≥ 0, with a(v) = v2

2
− 1

2
− ln(v) and b(v) = (ln α − ln v)+.

This is precisely the optimization problem analyzed in [1]. This gives ( 1
2α2) − 1

2 − ln α when
1 < α <

√
2 and 1

2 − ln 2 + ln α when α >
√

2.
The next discussion is centered on the expurgated exponent based on the Matérn I process.

Fix ε > 0. Consider a sequence of Matérn I processes μ̃n. The point process μ̃n is built
from a Poisson process μn of rate λn = enR, where R = 1

2 ln(1/2πeα2σ 2) for α > 1, and has
exclusion radius (α − ε)σ

√
n. The intensity of this Matérn I point process is

λ̃n = λne−λnV n
B ((α−ε)σ

√
n),

and it is easy to see that λ̃n/λn → 1 as n → ∞, with λ̃n < λn for all n.
Let π(Mat, L(AWGN), α,AWGN) denote the error exponent (11) associated with this

family of Matérn point processes. We prove below that

π(Mat, L(AWGN), α,AWGN) ≥ α2

8
for all α ≥ 2. (40)

Take an exclusion radius of (α − ε)σ
√

n. From (19),

pe(n) ≤
∫

v∈R+
min(1, λnvol(Bn(0, (α − ε)σ

√
n))c ∩ Bn(yn(v), (vσ

√
n)))

× gn
1 (v

√
n)

√
n dv,

with yn(v) = (vσ
√

n, 0, . . . , 0). We prove below that

vol(Bn(0, (α − ε)σ
√

n))c ∩ Bn(yn(v), (vσ
√

n)) ≤ V n
B(c(v)σ

√
n), (41)

with

c(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 0 < v < α̃/2,√(

v2 −
(

v − α̃2

2v

)2)
if α̃/2 < v < α̃/

√
2,

v if α̃/
√

2 < v.

(42)

with α̃ = α − ε. If v < α̃/2 then

Bn(yn(v), vσ
√

n) ⊂ Bn(0, α̃σ
√

n)),

so c(v) = 0 in (41).
For α̃/2 < v < α̃/

√
2, we have to find an upper bound on the volume of the portion of the

ball of radius vσ
√

n around the point at distance vσ
√

n from the origin (along some ray) that
is outside the ball Bn(0, ασ

√
n) (this is depicted by the shaded area in Figure 2). A first upper

bound on this volume is the portion of the former ball cut off by the hyperplane perpendicular
to the ray and at a distance dσ

√
n from it (i.e. a distance of (v+d)σ

√
n along this ray from the

origin), where d = α2/2v − v by elementary geometry. The latter portion is in turn included
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X0 d

cv

Figure 2: The Matérn case with white Gaussian noise.

in a ball of radius σ
√

n
√

v2 − d2 (which is depicted by the dashed circle in Figure 2). In this
figure, the large ball centered on the origin is the exclusion ball of the Matérn construction
around the tagged codeword. Its radius is (α − ε)σ

√
n. The point X is the location of the noise

added to the tagged codeword. Its norm is vσ
√

n. The ball centered on X with radius vσ
√

n

is the vulnerability region in the Poisson case. In the Matérn case, the vulnerability region is
the shaded lune depicted in the figure. This is the case with α/2 < v < α/

√
2. The area of

this lune is upper bounded by that of the ball of radius c = √
n(v2 − d2)σ , with d as above.

This ball is represented by the dashed line disc. Hence, c(v) = √
v2 − d2. This completes the

proof of (41) and (42).
By the same arguments as in the Poisson case (see [2, Section 10.3]),

π(Mat, L(AWGN), α,AWGN) ≥ inf
v>0

b(v) + a(v),

with a(v) = 1
2v2 − 1

2 − ln v and

b(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ if 0 < v < 1

2 α̃,

ln α − 1

2
ln

(
v2 −

(
v − α̃2

2v

)2)
if 1

2 α̃ < v < α̃/
√

2,

(ln α − ln v)+ if α̃/
√

2 < v.

Bound (40) follows when minimizing over v for each α̃ ≥ 2 and then letting ε tend to 0.
The lower bound on η(α) given in (39) and (40), namely,

π(α) ≥

⎧⎪⎨⎪⎩
1
2α2 − 1

2 − ln α if 1 ≤ α <
√

2,
1
2 − ln 2 + ln α if

√
2 ≤ α < 2,

1
8α2 if α ≥ 2,

was first obtained by Poltyrev [16] (see Equations (32) and (36) therein).
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9. Mismatched decoding

A scenario of interest in applications is that of mismatched decoding, where the decoder has
been designed for some noise 
 but the actual noise is in fact 
̃. In the next theorem, 
 and

̃ are real-valued, centered, stationary, and ergodic stochastic processes.

By the same arguments as in the matched case, we obtain the following result.

Theorem 8. For all stationary and ergodic point processes μn, all 
, and actual displacement
vectors governed by {
̃k}k (independent from point to point), the probability of error under ML
decoding, assuming that the law of the displacements is governed by the law of 
, satisfies

pe(n) ≤
∫

xn∈Rn

P
n
0((μn − ε0)(F (xn)) > 0)f̃ n(xn) dxn.

If μn is a Poisson process of intensity λn then

pe(n) ≤
∫

u∈R

(1 − exp(−λnW
n

(u)))ρn


̃
(du),

where ρn


̃
(du) is the law of the random variable −(1/n) ln(f̃ n(D̃n)) on R and Wn


 is the
log-likelihood level volume for 
.

The random coding exponent for mismatched decoding is given as follows.

Theorem 9. Assume thatμn is a Poisson process with normalized logarithmic intensity−h(
)−
ln(α) with α > 1 and that the decoder uses ML decoding under the assumption that the law of
the displacement vectors is that of 
, while the actual displacement vectors are governed by
{
̃k} (independent from point to point). Suppose that Assumption H-SEN holds for both 
 and

̃. Then the associated error exponent is bounded from below by

inf
u

{F(u) + Ĩ (u)},

where Ĩ (u) is the rate function of ρn


̃
and

F(u) = (ln(α) + h(
) − J (u))+,

where J (u) = sups≤u(s − I (s)) is the volume exponent for 
.
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