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Abstract. The behaviour of Hecke polynomials modulo p has been the subject of
some studies. In this paper we show that if p is a prime, the set of integers N such that the
Hecke polynomials TN,χ

�,k for all primes �, all weights k ≥ 2 and all characters χ taking
values in {±1} splits completely modulo p has density 0, unconditionally for p = 2 and
under the Cohen–Lenstra heuristics for p ≥ 3. The method of proof is based on the
construction of suitable dihedral modular forms.

2000 Mathematics Subject Classification. Primary 11F33; secondary 11F25,
11R29.

1. Introduction. Let N and k be positive integers and let � and p be prime numbers.
We will let Sk(�0(N), χ ) be the space of holomorphic cusp forms of integer weight k
for the congruence subgroup �0(N) and the Dirichlet character χ of modulus N, and
we will define TN,χ

�,k to be the characteristic polynomial of the Hecke operator T� acting
on Sk(�0(N), χ ). We will call this polynomial the Hecke polynomial.

We recall that for modular forms in characteristic 0, there is a well-known
conjecture (Maeda’s conjecture) which says that the characteristic polynomials of
the Hecke operators acting on modular forms for the full modular group SL2(�) are
irreducible.

CONJECTURE 1 (Maeda’s Conjecture). Let k be a positive integer and let � be a
prime number. The Hecke polynomial T1,1

�,k ∈ �[X ] is irreducible with Galois group Sn,
where n is the dimension of Sk(SL2(�)) as a complex vector space.

This conjecture lends itself to numerical verification. Methods introduced in [5]
prove that certain Hecke polynomials are irreducible and have full Galois group, and
results such as those in [1, 2, 7] show that if a certain T1,1

�,k is irreducible, then other T1,1
r,k

must be irreducible also.
In the characteristic p case, however, things are obviously different. The paper [9],

using methods developed in [7], gives a list of spaces of modular forms for which one
can prove that all of the Hecke polynomials TN,1

�,k split into linear factors modulo p.
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It is then asked whether these are all such spaces. In this paper we will give at least a
partial answer to this question, which depends for odd primes p on the Cohen–Lenstra
heuristics on class groups of imaginary quadratic fields.

THEOREM 2. Let p be a prime; if p ≥ 3, then assume the Cohenheuristics. Then the
set of integers N, such that the Hecke polynomials TN,χ

�,k for all primes �, all weights k ≥ 2
and all characters χ : (�/N�)× → {±1} ⊆ �×

p split completely modulo p, has density 0.

It should be pointed out that for given p and given level N, the weight of an
eigenform over �p can always be adjusted to lie between 2 and p2 − 1.

It should also be noted that a natural generalization of Maeda’s conjecture in
characteristic 0 to congruence subgroups cannot be true in general; in [10], a Hecke
eigenform of weight 2 on �0(63) is exhibited such that for a set of primes � of positive
density, the characteristic polynomial of the Hecke operator T� acting on the span of
all the Galois conjugates of the form is reducible. In other words, the �th coefficient
does not generate the whole coefficient field for a set of primes � of positive density.
This phenomenon is due to the existence of a nontrivial inner twist. Even in the absence
of nontrivial inner twists, numerical evidence suggests that there should exist examples
where the set of such � is still infinite, although of density 0.

Theorem 2 will be proved in Section 3 for p = 2 and in Section 4 for odd p. It
will be derived from a statement on the class groups of imaginary quadratic fields that
implies the existence of dihedral modular forms mod p whose coefficient fields are not
the prime field �p (see Section 2).

One can imagine other ways for constructing mod p eigenforms with q-expansions
not in �p. For instance, one could use families of hyperelliptic curves of genus greater
than 1 whose Jacobians are of GL2-type in order to treat those primes p that have a
nontrivial residue degree in the endomorphism algebra of the Jacobian tensored with �

(which is the coefficient field of the corresponding holomorphic eigenform). However,
it does not seem obvious how to obtain the desired density 1 statement on the levels.

Moreover, techniques of level raising and the like, as they are for instance used
in [8], also easily yield mod p Hecke eigenforms having a nontrivial coefficient field.
However, the levels will always contain at least a square, excluding a density 1 statement.

2. Dihedral Galois representations and Hypothesis Hp.

DEFINITION 3. Let p be a prime number. An abelian group C is called p-suitable if
G has a cyclic quotient of order h such that p � h and h � (p2 − 1).

The condition of p-suitability is equivalent to the existence of a cyclic quotient H
of G such that H is isomorphic to a subgroup of �

×
p but not to a subgroup of �×

p2 .
We now prove the following results about p-suitable groups.

PROPOSITION 4. Let G be a p-suitable abelian group and let H be a cyclic quotient
of G of order h such that H ⊂ �

×
p without being isomorphic to a subgroup of �×

p2 . Then
the group

D =
〈(

0 1
1 0

)
,

(
x 0
0 x−1

)
| x ∈ H

〉
⊆ GL2(�p)

is isomorphic to the dihedral group Dh of order 2h and not all the traces of elements of D
lie in �p.
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Proof. Let x ∈ H. One just needs to observe that conjugation by ( 0 1
1 0 ) maps ( x 0

0 x−1 )
to ( x−1 0

0 x ) in order to see that D is actually isomorphic to Dh. Suppose that x + x−1 =
a ∈ �p. Then x is a root of the polynomial X2 − aX + 1 ∈ �p[X ], and consequently,
x ∈ �p2 . The assumption excludes that this happens for all x ∈ H. �

PROPOSITION 5. Let K/� be an imaginary quadratic field of discriminant d and let
C be its class group. If C is p-suitable, then there exists an irreducible odd dihedral Galois
representation ρ : Gal(�/�) → GL2(�p) of conductor |d| such that not all its traces lie
in �p.

Proof. Let H and h be as in Proposition 4. Note that Gal(K/�) acts on C
and, hence, also on H by inversion. We now view H as an unramified character
χ : Gal(�/K) → �

×
of order h. We choose σ to be a lift to Gal(�/�) of the

nontrivial element of Gal(K/�). Then we have that χ (στσ−1) = χ (τ−1) = χ (τ )−1 for
any τ ∈ Gal(�/K). This means that we can identify the group D from Proposition 4 in
a natural way with the image of the irreducible Galois representation IndGal(�/�)

Gal(�/K)
(χ ).

This Galois representation is odd, since complex conjugation plays the role of σ

and, consequently, has determinant −1. Moreover, a well-known formula gives the
conductor. For more details, see [16]. �

If M ⊂ N are two sets of natural numbers, then we say that M has density α =
	(M, N) in N if the limit for x → ∞ of

#{m ∈ M| m ≤ x}
#{m ∈ N| m ≤ x}

exists, and is equal to α.
We will also introduce some notation for class groups. We denote by CL(�(

√−d))
the class group of the imaginary quadratic field �(

√−d).
Let p be a prime. We consider the following Hypothesis, which we denote by (Hp).

HYPOTHESIS (Hp). The density of the set

{N ∈ � | ∃ d ∈ � squarefree, d ≡ 3 mod 4, d | N, CL(�(
√−d)) is p-suitable}

exists and is 1.

We will establish (H2) by a result on the exponent of class groups. Unfortunately,
we do not know of any way of proving (Hp) for odd p, but we shall show that (Hp) is a
consequence of the Cohen–Lenstra heuristics.

PROPOSITION 6. Assume Hypothesis (Hp). Then the conclusion of Theorem 2 is true.

Proof. Let N ∈ � such that there is a squarefree d ≡ 3 mod 4 with d | N for which
CL(�(

√−d)) is p-suitable. It suffices to show that there is a cuspidal Hecke eigenform
f modulo p of level N, quadratic Dirichlet character and some weight such that it has
some coefficient an(f ) in its q-expansion that does not lie in �p.

Let us take such an N and d. By means of Proposition 5, there is an odd dihedral
Galois representation ρ : Gal(�/�) → GL2(�p) of conductor d such that not all its
traces lie in �p. By work of Hecke, ρ is known to be modular of level d, weight 1
for the quadratic Dirichlet character belonging to �(

√−d). This means that there is
a holomorphic Hecke eigenform f in the specified level, weight and character whose
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coefficients of the standard q-expansion a�(f ) at primes � reduce modulo a suitable
prime lying above p to the trace of a Frobenius element at �. In particular, there is a
prime � such that the Hecke polynomial at � is not completely split modulo p. Noting
that via the degeneracy maps, f gives rise to a form in level N settles the claim for odd p.

In order to treat the case p = 2, we use the well-known fact that there is a
congruence modulo a prime above 2 of f and another modular form of the same
level and the trivial Dirichlet character. �

3. Exponents of class groups and Proof of (H2). In this section, we will show
Hypothesis (H2). Let us call a positive integer d ≡ 3 mod 4 which is squarefree 2-
suitable if CL(�(

√−d)) is 2-suitable. In order to show that the set of positive integers
N having a 2-suitable squarefree positive divisor d ≡ 3 mod 4 has density 1, we first
need to rule out the possibility that the only cyclic quotients are of order 22 − 1 = 3.
To do this, we recall the following result on class groups with small exponent.

THEOREM 7 (Boyd–Kisilevksy [4], Weinberger [15]). There are only finitely many
negative fundamental discriminants d such that CL(�(

√
d)) has exponent 3.

We note that this result is ineffective because it relies on Siegel’s ineffective lower
bound for the size of the class group. A computation is reported in [13] which says that
the largest fundamental discriminant with absolute value less than 106 such that the
exponent is 3 is −4027; CL(�(

√−4027)) is isomorphic to C3 × C3; it is possible that
this is the largest such fundamental discriminant.

We now note by genus theory that if d ≡ 3 mod 4 is a prime number, then the
2-part of the class group of �(

√−d) is trivial, so this means that for all but finitely
many of these d both of the conditions of 2-suitability are satisfied. We will now use a
well-known theorem of Landau to show that the set of natural numbers N which are
divisible by such a d has density 1.

THEOREM 8 (Landau [11], pp. 668–669). Let {ai} be r distinct residue classes modulo
an integer A and let P be the set of prime numbers which are congruent to one of the ai

modulo A. If we let M(x) be the number of natural numbers less than x whose prime
factors are all in P , then

M(x) ∼ c · x

(log x)1− r
φ(A)

,

where c is a positive constant and φ is Euler’s φ-function. Note that r
φ(A) is the Dirichlet

density of the set P .

In particular, this means that the set of natural numbers whose prime factors are
all congruent to a restricted set of the possible residue classes for a prime number
modulo A has natural density 0, so the set of natural numbers with a prime factor d
which is 2-suitable has density 1, which is what we wanted to show. This means that
we have proved the following proposition.

PROPOSITION 9. The hypothesis (H2) is true, and therefore the conclusion of Theorem 2
is true if p = 2.

The technique used to prove this hypothesis is likely to only give a density 0 result;
we will now give some numerical data which suggests this.
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Using a computer algebra package such as MAGMA [3] one finds that there are
many quadratic imaginary fields whose class groups have trivial odd part; for instance,
if we consider quadratic imaginary fields with fundamental discriminant of absolute
value less than 4,000,000, there are 3,722 fields with class group of order 128,8,361
fields with class group of order 256 and 18,046 fields with class group of order 512. This
numerical evidence seems to suggest that there are an infinite number of imaginary
quadratic fields with class number a power of 2, as one can find fields with class number
a very high power of 2; for instance, it can be shown that �(

√−5000948753) has class
number 65,536. For more numerical results, see [12, Section 10] which gives tables
of the number of quadratic imaginary fields with small odd part with fundamental
discriminant between −500,000 and −1,000,000.

4. Cohen–Lenstra heuristics and Hypothesis (Hp). In this section we want to make
use of the Cohen–Lenstra heuristics [6] for class groups of imaginary quadratic fields.
We first recall their principal definitions and their fundamental heuristic assumption.
We will, however, specialize them directly to imaginary quadratic fields. We abbreviate
the words fundamental discriminant by f.d.

DEFINITION 10 (Cohen–Lenstra [6], Definition 5.1). (a) Let G be an abelian group.
Define

w(G) = (# Aut(G))−1
.

This will play the role of a weighting factor in the heuristics.
(b) Let A be a set of isomorphism classes of abelian groups and let f be a complex-

valued function on A. The (∞, 0, A)-average of f is defined as

M(∞,0,A)(f ) := lim
x→∞

∑
1≤a≤x

∑
G∈A,#G=a f (G)w(G)∑

1≤a≤x
∑

G∈A,#G=a w(G)
,

if this limit exists.

We introduce some notation. For sake of shortness, we write CL(−d) for
CL(�(

√−d)). Let S be a set of primes. We denote the prime-to-S-part of an abelian
group C by π (S)(C) and the S-part by π(S)(C). Moreover, if S = {p}, then we write
π (p)(C) and π(p)(C), respectively. In fact, we consider π (S) and π(S) as functions
on (isomorphism classes of) finite abelian groups. We write Ab(S) for the set of
isomorphism classes of finite abelian groups of order divisible only by primes in S.
Accordingly, we use the notation Ab(S) to stand for the set of isomorphism classes of
finite abelian groups of order coprime with any prime in S.

FUNDAMENTAL HEURISTIC ASSUMPTION 11 (Cohen–Lenstra [6], Fundamental
Assumptions 8.1). Let f be a function on Ab(2) taking values in {0, 1}. Let

F := {d ∈ � | − d is f.d.}

and define

Ff := {d ∈ F | f (π (2)(CL(−d))) = 1}.

Then the natural density 	(Ff ,F) of Ff in F exists and is equal to M(∞,0,Ab(2))(f ).
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PROPOSITION 12. Let S be a set of primes containing the prime 2 which has a
density strictly smaller than 1. Assume the Cohen–Lenstra heuristics, i.e. assume that
Fundamental Heuristic Assumption 11 is satisfied. Then the set

FS := {d ∈ F | #π (S)(CL(−d)) = 1}
has natural density 0 in the set F .

Proof. Let f be the function which sends the trivial abelian group to 1 and the
isomorphism class of any nontrivial abelian group to 0. The principal input for this
proof is [6, Proposition 5.6], which implies that

M(∞,0,Ab(2))(f ◦ π (S)) = M(∞,0,Ab(S))(f ).

It follows directly from Definition 10 that the right-hand side term is equal to

lim
x→∞

⎛
⎜⎜⎜⎝

x∑
a=1

∑
G∈Ab(S)

#G=a

w(G)

⎞
⎟⎟⎟⎠

−1

.

This limit is 0 because the sum is larger than

∑
p prime

p�∈S

1
p − 1

,

which is divergent. Under the Fundamental Heuristic Assumption 11, the meaning of

M(∞,0,Ab(2))(f ◦ π (S))

is the natural density of FS in F . �
For a subset A ⊆ �, we introduce the following shorthand notation:

A(x) := #{a ∈ A | a < x}.
We first prove a simple lemma on the natural density 	(A, B).

LEMMA 13. (a) Let A ⊆ B ⊆ C be subsets of � such that 	(A, B) = 	(B, C) = 1.
Then 	(A, C) = 1.

(b) Let A ⊆ B ⊆ C be subsets of � such that 	(A, C) > 0. Then 	(A, C) =
	(B, C) > 0 if and only if 	(A, B) = 1.

(c) Let n be any positive integer and let A ⊆ B be subsets of � such that 	(A, B) = 1.
Denote by nA = {na | a ∈ A} and similarly for nB. Then 	(nA, nB) = 1.

(d) Let A ⊆ B and C ⊆ B be subsets such that 	(A, B) = 1 and 	(C, B) = α > 0.
Then 	(A ∩ C, C) = 1.

(e) Let An ⊆ An+1 for all n ∈ � be subsets of a set B ⊆ � all having a natural
density 	(An, B). Assume that limn→∞ 	(An, B) = 1. Let A = ⋃

n∈� An. Then
	(A, B) = 1.

(f) Let A1 ⊆ B1 and A2 ⊆ B2 be subsets of � such that 	(Ai, Bi) = 1 for i = 1, 2.
Then 	(A1 ∪ A2, B1 ∪ B2) = 1.
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Proof. (a), (b) and (c) are clear.
(d) Choose 0 < δ < α. There is a bound D such that |C(x)

B(x) − α| ≤ δ for all x ≥
D. This implies (α − δ)B(x) ≤ C(x) for all x ≥ D. Note the trivial inequality C(x) −
(A ∩ C)(x) ≤ B(x) − A(x), which is valid for all x ∈ �. Now, let ε > 0 be given. By
assumption, there is a bound Eε such that for all x ≥ Eε we have

B(x) − A(x) ≤ ε(α − δ)B(x).

Putting the inequalities together we obtain

C(x) − (A ∩ C)(x) ≤ εC(x)

for all x ≥ max(Eε, D), and thus, the claim.
(e) Put an,x = An(x)

B(x) . For all x and all n we have an+1,x ≥ an,x. By assumption, for
fixed n, the limit limx→∞ an,x =: an exists, we have an+1 ≥ an for all n and limn→∞ an = 1.

Let ε > 0 be given. There exists a bound C such that for all n ≥ C we have
1 ≥ an ≥ 1 − 1

2ε. Moreover, there also exists a bound D such that for all x ≥ D we have
|aC,x − aC| ≤ 1

2ε. Hence, for all x ≥ D and all n ≥ C we have

1 − ε ≤ aC − 1
2
ε ≤ aC,x ≤ an,x ≤ 1.

The claim follows.
(f) Let A = A1 ∪ A2 and B = B1 ∪ B2. Note the following inequality which is valid

for all x ∈ �:

B(x) − A(x) ≤ B1(x) − A1(x) + B2(x) − A2(x).

Let ε > 0 be given. By assumption there exists a bound C such that for all x ≥ C
we have Bi(x) − Ai(x) ≤ 1

2εBi(x) for i = 1, 2. Moreover, for all x ∈ � we have the
inequality

B(x) ≥ max(B1(x), B2(x)) ≥ 1
2

(B1(x) + B2(x)).

Putting the inequalities together yields

B(x) − A(x) ≤ εB(x)

for all x ≥ C, and thus 	(A, B) = 1. �
The next lemma will be useful for deriving Hypothesis (Hp) from the Cohen–

Lenstra heuristics.

LEMMA 14. (a) Let B be the set of positive integers that are ≡ 3 mod 4 and
let A be the subset of those that are squarefree. Let AN := ⋃N

n=1(2n − 1)2A. Then
limN→∞ 	(AN, B) = 1.

(b) Let A be the set of positive integers that are ≡ 3 mod 4 and B the set of positive
integers that are ≡ 1 mod 4. Let CN = B \ ⋃N

i=1 piA, where p1, p2, . . . are the
prime numbers that are ≡ 3 mod 4. Then limN→∞ 	(CN, B) = 0.

(c) Let A be the set of positive integers that are not divisible by 4. Let CN =
� \ ⋃N

n=0 4nA. Then limN→∞ 	(CN, �) = 0.
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Proof. (a) The set AN is the subset of B of those integers that are divisible by some
odd square (2n − 1)2 for n ≤ N. It is well known that 	(A, B) = 8

π2 . Hence,

	(AN, B) = 	(A, B)
N∑

n=1

1
(2n − 1)2

N→∞−−−→ 8
π2

π2

8
= 1,

since n2A ∩ m2A = ∅ for n �= m. From this, the claim follows.
(b) The set CN is contained in the set of positive integers n that are ≡ 1 mod 4

and are not divisible by any of p1, p2, . . . , pN . The latter condition can be reformulated
to say that n is a unit in �/(p1, p2, . . . , pN)�. Thus, the density of CN in B is

N∏
i=1

pi − 1
pi

=
N∏

i=1

(
1 − 1

pi

)
=

(
N∏

i=1

(
1 − 1

pi

)−1
)−1

=

⎛
⎜⎜⎝

∞∑
n=1

condN

1
n

⎞
⎟⎟⎠

−1

with the condition condN that n is only divisible by the primes p1, p2, . . . , pN . It is well
known that the sequence aN := ∑∞

n=1, condN

1
n diverges, whence the claim follows.

(c) The set CN is the set of positive integers divisible by 4N+1, which obviously has
density 1/4N+1, whence the claim. �

PROPOSITION 15. Let p be an odd prime. Assume the Cohen–Lenstra heuristics, i.e.
Fundamental Heuristic Assumption 11. Then Hypothesis (Hp) is satisfied, and therefore
the conclusion of Theorem 2 is true for odd primes.

Proof. Let S be the set of primes dividing p(p2 − 1). Let F and FS be the sets in
Proposition 12. Let A = F \ FS.

The strategy of the proof is to extend the fact that A has natural density 1 in F to
all positive integers, by first extending it to the integers ≡ 3 mod 4, then to those ≡ 1
mod 4 and finally by multiplying by 2 and powers of 4 to all integers.

Define

B1 := {d ∈ � | d ≡ 3 mod 4, d squarefree } ⊂ F

and A1 := B1 ∩ A. By Lemma 13 (d), we have 	(A1, B1) = 1. Due to the statement on
finite unions, Lemma 13 (f), we have

	

(
N⋃

n=1

(2n − 1)2A1,

N⋃
n=1

(2n − 1)2B1

)
= 1.

Furthermore,

B2 := {n ∈ � | n ≡ 3 mod 4} =
∞⋃

n=1

(2n − 1)2B1

and by Lemma 14 (a) also

lim
N→∞

	

(
N⋃

n=1

(2n − 1)2B1, B2

)
= 1.
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By Lemma 13 (b), this immediately implies

lim
N→∞

	

(
N⋃

n=1

(2n − 1)2A1, B2

)
= 1,

whence Lemma 13 (e) yields

	(A2, B2) = 1 with A2 =
N⋃

n=1

(2n − 1)2A1.

We have achieved the first goal, namely, to extend the density one statement to the
integers that are ≡ 3 mod 4.

Next, we multiply the sets A2 and B2 by all the primes ≡ 3 mod 4 in order to
pass to the integers that are ≡ 1 mod 4. Let B3 := {n ∈ � | n ≡ 1 mod 4}. From
Lemma 14 (b), we obtain

lim
N→∞

	

(
N⋃

i=1

piB2, B3

)
= 1,

whence we get (using Lemma 13 (b) and (f))

lim
N→∞

	

(
N⋃

i=1

piA2, B3

)
= 1.

Setting A3 := ⋃∞
i=1 piA2, we obtain from Lemma 13 (e)

	(A3, B3) = 1.

Now we have also achieved our goal for the integers that are ≡ 1 mod 4. We get
those ≡ 2 mod 4 simply by multiplying those that we have treated so far by 2. Let

A4 := A2 ∪ A3 and B4 := B2 ∪ B3.

By Lemma 13 (f), it follows that 	(A4, B4) = 1. Moreover, the density of A5 := 2A4 in
B5 := 2B4 is 1 by Lemma 13 (a).

Finally, using the same procedure and Lemma 14 (c), we find

	(A6, �) = 1 with A6 :=
∞⋃

n=0

4nA5.

Now we note that the set A6 is precisely the set of n ∈ � such that there is a squarefree
d ∈ � such that d | n and d ≡ 3 mod 4 with the property that d �∈ FS. Directly from
the definition of p-suitability, it follows that such a d is p-suitable. �

REMARK 16. We remark that a straightforward generalization of [14, Corollary 3]
yields that for a given prime p, the set of d ∈ � such that −d is a fundamental
discriminant and the class group of �(

√−d) is a p-group that has density zero in �.
However, we were unable to extend this result to groups whose orders are only

divisible by primes in some finite set S. This would have sufficed to prove Hypothesis
(Hp) without assuming the Cohen–Lenstra heuristics.
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newform by a single Hecke eigenvalue, J. Théor. Nombres Bordeaux. 20(2) (2008), 373–384.

11. E. Landau, in Handbuch der Lehre von der Verteilung der Primzahlen. 2 Bände. 2d ed.
With an appendix by (Bateman P. T. Editor). (Chelsea Publishing Co., New York, 1953).

12. M. Rosen and J. H. Silverman, On the independence of Heegner points associated to
distinct quadratic imaginary fields, J. Number Theory 127(1) (2007), 10–36.

13. M. Schütt, CM newforms with rational coefficients. Ramanujan J. 19(2) (2009), 187–205.
14. K. Soundararajan, The number of imaginary quadratic fields with a given class number,

Hardy-Ramanujan J. 30 (2007), 13–18.
15. P. J. Weinberger, Exponents of the class groups of complex quadratic fields, Acta Arith.

22 (1973), 117–124.
16. G. Wiese, Dihedral Galois representations and Katz modular forms. Doc. Math. 9

(2004), 123–133.

https://doi.org/10.1017/S001708951000008X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951000008X

