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ON THE STRUCTURE OF A CLASS
OF EQUIVARIANT MAPS

M.J. FIELD

Let G be a compact Lie group and M tie a compact ff-manifold.

We investigate the class of equivariant diffeomorphisms of M

covering the identity map on the orbit space Ml G .

Introduction

Let H be a closed subgroup of the compact Lie group G . Denote the

normaliser and centraliser of H in G by N(H) and C{H) respectively.

If we let h, n(h) and c(h.) denote the Lie algebras of H, N(H) and

C(H) it is an elementary and well known result that n(h) = h + a(h) . An

immediate consequence is that every element in the identity component

N(H) of N(H) can be written, not necessarily uniquely, as a product

ah , where e € C(H) , h € H . The main aim of Section 1 is to provide

an alternative, differential geometric proof, of this result. In Section 2

we show how our techniques may be used to give information about G-equi-

variant diffeomorphisms covering the identity map on the orbit space.

We should point out that the techniques and results used in this paper

are elementary. In particular, in Section 2, we make no serious use of

homotopy theory and stop short of using any of the deeper results of smooth

invariant theory as developed by Schwarz in [9].

1. Centralisers and normalisers

Let G be a group. Becall that the semi-direct product structure on
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162 M .J - F i e l d

G x G is defined by

(a, b).{a, d) = [ac, bada'1) , (a , b), (a, d) € G * G .

We have an action of G x G on G defined by

(a, b)g = baga'1 , (a, &) € G x £ , g I G .

From now on we suppose G is a compact Lie group. Using Haar measure

on G x G , we may average any riemannian metric for G over G *• G to

obtain a G x G-equivariant riemannian metric on G . Let d{ , ) denote

the corresponding distance function on G . Note that if x, y £ G we

have

(A) d(gx, gy) = d(x, y) , g € G ,

(B) d{gxg~ , gyg~ ) = d(x, j/) , g $ G .

Indeed, these relations follow immediately from the G x G-invariance of

the metric d .

LEMMA 1. If U is an open d-disa, centre e 3 in G 3 then

gUg'1 = U , g € G .

Proof. Immediate from Property (B) of d . Compare Bredon [2,

Chapter 0, Proposition 1-10]. D

LEMMA 2. Let H be a closed subgroup of G . Then there exists an

open d-disc U a centre e , in G and smooth map x : V •*• U such that:

(1) x(ff) € 0ff > 9 6 U i

(2) d{e, gH) = d[e, x(g)) and x(#) ^8 the unique point in gH

satisfying this relation;

(3) x[hgh~X) = hxigfr'1
 t h € B , g 6 U ;

(U) x(g) € C{H) , if g € N(B) n U .

Proof. For al l g € G , gH is a submanifold of G . Choose a

sufficiently small open d-disc neighbourhood U of the identity in G

such that for every g € U there, exists a unique minimising geodesic

between e and gH (see Bishop and Crittenden [I] and note that our

statement amounts to choosing a tubular neighbourhood of H in G ,

relative to the metric d ). Property (A) of d implies that
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St ruc tu re of e q u i v a r i a n t maps 163

d(e, gH) = d{H, gH) , g € U . Define x(g) to b« the unique point in gH

minimising distance between e and gH . Note tha t xiff) € U and that

depends smoothly on g , g € U . By Property (B) of d we have

d{e, gH) = d{e, hgHh'1) = d{e, hx(g)h~X) , h € G .

But d[e, hgHh'1) = d[e, (fcgfc"1) (&H7T1) ) and so i f ft € ff we see that

d{e, hgHh'1) = d{e, hgh'h) and so d(e, hx^h'1) = d{e, xfrgh'1)) . By

uniqueness of X i i t follows that

h'1xihgh'1) = hxlgW1 , h i H , g € £/

Now if ^ € N(H) " W , hgh~XH = gH and so

= X(g) , h IH , g € tf(ff) n y ,

proving (U). D

COROLLARY TO LEMMA 1. The identity component of ff(ff) is generated

by the identity components of H and C{H) . Moreover, C(H) meets H

transversally at e 3 in N(H) .

P r o o f . I m m e d i a t e f rom (U) o f Lemma 2 . D

LEMMA 3. If /if , ..., H are closed subgroups of G then there

exists an open d-disc U , centre e , in G such that for all

g € U n N{H.) , 3=1, ..., p , there exists a unique x(g) € gH. " C[H .)
3 3 3

minimising distance between e and gH. . Moreover, if k € G ,
3

g € U n N(H .) , kxKg)k~X € [kgkT1) YkH .k'1] n c\kH .k"1] n y and is the
3 \ 3 ) \. 3 )

unique point minimising distance between e and kgH .k
3

Proof. The first part follows by choosing a sufficiently small disc

at e which works for H , ..., H . The second part is immediate from

Property (B) of the metric together with the invariance of U under the

adjoint action (Lemma 1). D

REMARK. Let E denote the cut locus of the exponential map of

k c n{h) in G (see Bishop and Crittenden [?, pp. 237-2U1]). It is well

known that £ is always a sphere (topologically) though Z may have
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164 M.J. Field

singularities. Two questions naturally arise. Are the singularities of Z

always rational? To what extent can we regard the singularities of £ as

obstructions to expressing N(H) as a product of H and C(H) and how

might these singularities relate to cohomological invariants of this

extension problem?

2. Structure of equivariant diffeomorphisms which are trivial mod G

Let M be a compact ff-manifold. Throughout this section we assume

M is connected and G acts smoothly on M ("smooth" will always mean

C ). We follow the notation of Bredon [2] (see also Field [3, Section

1]). Thus if x € M , G(x) will denote the G-orbit through x and G

the isotropy subgroup of G at x . We partition M into points of the

same G-orbit type and write

N
M = U M. ,

where all points in M. have the same G-orbit type and if there exists

x € M. , y € M. such that G
x ^

 G then i < j . We refer to M as

the principal G-orbit type and remark that M is open and dense in M

and M/G is connected.

Let r[M) denote the group of C equivariant diffeomorphisms of M

satisfying f{x) Z G{x) for all x (. M . Give ^(M) the (f topology.

We say that a CT map \ : M -*• G is (j skew G-equivariant if

X(#x) = g\kx)g , g € G , x € M •

Denote the set of (f skew equivariant maps of M into G by

Observe that S^iM) has the structure of a group with composition defined

by

X-i » Xp * S^Af) . x € M • We have a natural group homomorphism
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Y : ^(M) •* f{M) defined by

Y(X)(«) = X(x)x , x € M .

In future we wri te y(x) = X , X € ^{M) and set Tr(W) =

LEMMA 1. r^CM) is a norrra.1 subgroup of

Proof. Let X € ̂ (AO , f € F^Af) . Then

))* , x € AT .

Defining 6 € S^M) by B(x) = x{f(x)) , we see that

fXXf = B € Tr(M)

and so rr(Af) is normal in f(M). D

We let ^T(W) denote the subgroup of lr{M) consisting of

diffeomorphisms which are (T equivariantly isotopic to the identity

(through elements of f {M) ) . Set I^(M) = fQ(M) n r
r(W) .

The main aim of this section is to investigate the group Tr (M)/T (M)

and, in particular, find conditions which allow us to assert that an

element of IT (M) actually lies in T {M) . First, however, we shall

prove a useful technical lemma and then give some examples.

LEMMA 2. Let G be a finite group and f be a homeomorphiem of the

compact G-manifold M (we do not assume f is equivariant). Suppose

fix) € G{x) for all x € M . Fix z € Af and suppose f(z) = gz , some

g € G . Then f(x) = gx for all x € Af .

Proof. Let X = {x € M : f(x) = gx} . Obviously X is a closed,

non-empty, subset of M . Since G is finite and / is continuous

fix) = gx for all x in some open neighbourhood of z contained in #„ .

Therefore X n M,, is open and closed in Af,, and so X n M is a union of

connected components of M., . If Af., is connected it follows that X 3 Af

and so, since Af is dense in Af , X = M . Suppose Af is not connected
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166 M . J. Field

and denote a connected component of M contained in X by Ml . Set

AC = .fl̂ yJ • By considering f we see that M is also a connected

component of M~ . Since A/., is not connected there exist orbit types Mp

of codimension one in M . Denote the union of the codimension 1 orbit

types by P . Let y € P n Mt and denote the other connected component of

M whose closure contains y by ATI . Locally, at y , G acts as

reflections in P . Let r € G denote such an element which acts as a
y

local reflection in P . Choose a slice U for the <7-action at y .

Since y € X and / is continuous we may find x € M' n U such that

f(x) € g(U) . Either f{x) = gx or f(x) = grx . But if f(x) = grx we

must have f(x) € frf , contrary to the bijectivity of / . Hence

/(x) = gx and so x € X . Therefore tf c X . It follows that X 3 M

and so * = M . D

EXAMPLE 1. Let G be a finite group acting smoothly on the compact

manifold M . Denote the principal orbit type of M by M~ . Since G

is finite G is independent of x € M and we set H = G , x € M

Note that I is a normal subgroup of G . For g € G we let [G, #]

denote the set {h^g^hg : h € G}. Define P = ig € G : [G, g] c #} . I t

is easily verified that P is a subgroup of G containing H as a normal

subgroup. Set P = P/H . We claim that ^(M) «* P , 0 5 r 5 °° , and that

F^Af) = ^(M) , 0 < r i « . Suppose a € P . Define fa € F°(M) by

/ (x) = ax , x € M . Since a € P , it is clear that f is equivariant.

Moreover, since H c G for all x € ftf , f depends only on the class of

a in P . Hence we have defined a map of P into F (M) which is

clearly a group homomorphism. Next suppose / € T (M) . Fix a € Af_ .

Then f(z) = gz for some g € G . Since G is finite and f is

continuous, Lemma 2 implies that f(x) = gx for all x € Af . Since / is

equivariant it follows easily that g € P and so we have constructed a map
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of F (M) in to P . This map i s obviously the inverse of the homomorphism
oo Q

constructed above and so F (M) = T (M) *** P , proving our assertions.

EXAMPLE 2. Let S1 = [0, 2TT]/0 = 2TT act on <D in the standard way

as multiplication by e . Suppose / € F (C) . In case r = <*> ,

Schwartz' theorem on smooth invariants [S] allows us to write

f(z) = g[\z\ )z for some smooth map g : R -»• <C . Since | ̂  (121 ) | = 1

for all z € C , we may define x € S°°(C) by x(3) = g{\z\ ) and then

/ = X • Thus we have proved that F^(C) = r (C) in case r = °° . This

result is definitely false if r < <=° . For example, if we define

f{z) = exp[i/\z\2)z , a * 0 ,

= 0 , 3 = 0 ,

we see that / € F°(C) but that / is not C1 . Clearly / f r°(C) .

Similar examples show that £"*"(£) # I^CC) , 0 5 r < «> .

EXAMPLE 3. Parametrize the torus T2 = S1 x S1 by

(6, if)) € [0, 2ir] x [0, 2TT] and take the ^-action on T defined by

eW(6, i|») = (6, i|H-2a) , mod 2TT .

Define / : T •+ T2 by

f(6, ̂ ) = (6, ip+6) , mod 2TT .

Clearly / € ̂ (T2) but f ^ f o ^ * N o t i c e t h a t w e c a n n o t write f = X

for some x € 5°°(r2) since /(6, i|>) = e (6, tjj) . In fact it is not

hard to verify that F°[T ) /T°[T^) ^ 2 2 (the isotropy group of the

51-action) and r°°(T2) /r"(3T) s Z (the first cohomology group of the orbit

space).

EXAMPLE 4. Regard SU(2) as the group of complex matrices

a b)

_ , a, b € C ,
-b a)
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subject t o \a\ + \b\ = 1 , and take the corresponding matrix

represen ta t ion of SU{2) on C . Let A € End(<C ) be scalar

mul t ip l i ca t ion by e , 9 € (0 , 2TT) . Certainly A i s an SU(2)-

equivar iant map; indeed A € F [t J . Let us t ry to find a skew SU(2)-

equivar iant map X : ^ "*" SU(2) such tha t A = x • If we fix

z = [z z ) / 0 and solve

A{z) =
-b a

for a and b we find

a(z) = •£01 12 - i 9 i 123 I z J +e |z 2 |

where * \* Suppose 9 # IT . I f we define

a(z) b{z)
0 ,

. b(a) a(a;

we see tha t the r e s u l t i n g uniquely determined skew SU(2)-equivariant irf&p

X does not extend continuously to C . Consequently F (C ] / r (C ) i s

i n f i n i t e . Let us examine what happens i f we use the polar blowing-up

const ruct ion described in Field [4] . Recall tha t the polar blowing-up of

<C2 a t 0 is the p r inc ipa l SU{ 2)-manifold S 3 x R together with the

pro jec t ion I : S x R + C defined by TT(M, t) = tu (we regard

S c C . Note t ha t here we take TT(M, t) = tu ra ther than t u as was

done in Field [4 ] ) . The map A l i f t s to A : S 3 x R -c S 3 x R where

(u, t ) = (e1" M, t) . Therefore if u = (2 , , 2 ) € S we see that

A(u, t) =

where a(u), b[u) are as constructed explicitly above. But a, b

£ OT)UK ')
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restrict to smooth maps on S ajid so we see that A € T [s * RJ . If we

write A = V , U € S [s x R) , then we may define a skew SU(2)-

2
equivariant map x : ̂  "*" SU(2) by

where y i s any point in IT (y) . Although the map X i s n o t continuous

(at 0 ) nevertheless we do have A = X*-

THEOREM 1. Let G be a compact Lie gr^bup acting smoothly on the

compact differential manifold M . Suppose ~that all G-orbits are of the

same dimension. Then

(1) T^(M) = F*(M) , 0 < r <

i(2) FP{M)/Yr'{M) %S independent of r , 0 2 r < <*> ,

rT(
U

denotes the group of isotopy classes of (f equivariant

diffeomorphisms in F^iM) [isotopies through elements of 1T(M) ) .

The proof of this result will be broken into a number of lemmas.

LEMMA A. Given any open neighbourhood U of the identity in G and

0 < r S °° , there exists an open neighbourhood N of the identity in

F^iM) such that if f € N there exists a (f map y •• M •*• G such that

for all x € M we have fix) = yix)x .

Proof. Using s l i ces we may reduce the proof of Lemma A to the case

when M = G x D , where D i s a closed d i sc , centre 0 in an H-
ti

representat ion V and a l l ff-orbits in V have dimension zero. The proof

of t h i s special case may be found in Field [6, Lemma B] .

REMARK. I f the dimension of G-orbits va r i e s , Lemma A wi l l only be

valid for r ± r , where r i s some pos i t ive in teger l ess than the

number of d i s t inc t &-orbit types of M . This may eas i ly be seen using

the blowing-up techniques of Field [4] together with the method of proof of

Lemma A. In general we cannot take *• = 0 - the S -ac t ion of Example 3
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provides a suitable counterexample.

LEMMA B. There exists a neighbourhood N of the identity in

0 < r £ °° , such that if f € H there exists x € S^iM) such

that f = x •

Proof (of. Field [6 , Lemma C]). As in Section 1 we take the semi-

d i r e c t product s t ruc tu re on G x G and a G x G-equivariant riemannian

metric d on G . Fix an equivariant riemannian metric on M . Let

x € M and set G = H . Then G(x) has an open tubular neighbourhood W

smoothly equivar iant ly diffeomorphic to G x V where V i s the
ti

orthogonal complement of T G(x) in T M . in future we regard W as
x x

i d e n t i f i e d with G x V . Since a l l <7-orbits are assumed to have the same
ti

dimension every o rb i t of the action of H on V i s f i n i t e . Let H

denote the iden t i t y component of H . I f y € V then H c H <= ff a n a so

t h e r e ex i s t only f i n i t e l y many d i s t inc t isotropy groups for the action of

H on V say H = K , . . . , X_ , where #_ denotes the pr inc ipa l isotropy

group of the action of H on V . As in Section 1 we may find for

1 5 j £ P a closed neighbourhood £/• of the iden t i ty in G such that for
3

g € U. there ex i s t s a unique minimising geodesic between e and gK . .
3 3

Clearly we may assume U = . .. = U = U and tha t U i s a closed d-disc

neighbourhood of the iden t i ty in G . For g € U ,

d[e, gK .) = d[e, k -(g)) for a unique k .(g) € gK. " U . Since the groups
3' 3 3 3

K . have common iden t i t y component H i t i s c lear tha t we may require U
3

chosen su f f i c i en t ly small so tha t k. = . . . = kp = k , say. The map

k : U -*• U i s c lear ly smooth. By Lemma A, there ex is t s a neighbourhood !?„

of the iden t i ty in F(M) and a Cr map y : M ->• U such tha t

f{z) = y{z)z for a l l / € Ny , z € M . We define \ x : V ->• G by

= k[Y(y)) , y € V . Certainly X^ i s (f and, by Section 1, Xw

i s skew fl-equivariant. Extending. Xw equivariantly to W we have shown
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that f\w = Xy for some Xy € ^ ( f / ) . Now take a f i n i t e cover of M by

G-tubular neighbourhoods W , ... , W . Set xt7 = X,- . N
TJ = "»• >

X ™ IT • T' VI * %
1* 1r

m
i = 1, . . . , m . Let N = fl tf. . Given y d W. n W. , f € tf , suppose

i l * J
in= SJ/ • Since X/(jy) i s characterised as being the unique point

gH minimising distance between H and gH i t follows tha t

X^(y) = XAy) • Hence we may define X

•t = 1, . . . , 777 . Clearly f = X • D

LEMMA C. Let f € f£(M) , r > 0 . Then there exists x €

such that f = x •

Proof. Follows eas i ly from Lemma B and we omit de ta i l s (see the proof

of Lemma D in Field [6 ] ) . D

Proof of Theorem 1. Suppose / € F^{M) . Then by Lemma C there

exists X € ^(M) such that f = X • Hence F^(M) c T*{M) . Since the

reverse inclusion is obvious we have proved statement (l) of the theorem.

Statement (3) follows by observing that if / , / ' € F^iM) determine the

same element of ISF^(M) then / ' / " € FT(AC) . Statement (2) follows from

(3) once we have shown that the group ISIr{M) is independent of r . For

this i t is enough to show that every element of ISF (M) can be

represented by a smooth equivariant diffeomorphism. The proof of this

assertion is easily accomplished by localising using an equivariant

partition of unity, applying Wassermann's approximation theorem [JO] and

using the fact that G-orbits a l l have the same dimension. We omit the

tedious details . D

We now analyse the structure of the groups F{M) , T (AC) a l i t t l e

more closely. We continue to assume that a l l G-orbits have the same

dimension.
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LEMMA 3 . Let f 6 F^iM) and suppose that for some z € M 3

f(z) i N[G )°(Z) . Then f{x) € N(G ) ° ( X ) for all x (. M .

Proof . Using Lemma 2 i t follows e a s i l y t h a t / ( x ) € N[G )°{X) fo r

a l l x € A/., . The r e s u l t now follows from Lemma E of F ie ld [ 6 ] . •
N

For r 2 0 , set ¥"{M) = if d F^iM) : f(x) € N[GX)°(X), al l x € M\

and ?r(M) = Tr(M) n ^(A/) . I t is easily verified that ViM) , fr(M) are

normal subgroups of 1T{M) , T (A?) respectively.

PROPOSITION 1. The group FV(M)/FI'{M) is finite and independent of

)r > 0 . It has order less than or equal to the order of N(H)/H-

where H denotes any principal isotropy group of the action of G on M .

In particular, if G is abelian

G/K.G° ,

where K denotes the principal isotropy group of the action of G on M .

Proof. First observe that if z € M then N{G^{Z) ^N(GZ)/GZ .

Moreover , s i n c e (N[GZ)/GZ)° *» N(Gz)°/Gg r, N{GZ)0 , we have

N[GZ)°(Z) S [N[GZ)/GZ)° . Suppose f,f'lf(M). I f t h e r e e x i s t s

z € Mj, such that f{z), f'(z) belong to the same connected component of

N[Gz)(z) then f'f~X{z) € N[GS)°(Z) and so, by Lemma 3,

f'f~X{x) € N(G ) ° (X) for a l l x £ M . I t follows immediately that

Ir(M)/lr(M) is finite with order bounded by the order of

[N(H)/H)/ [N(H) ZH) , where H denotes any principal isotropy group of the

action of G on M . But

[N(H)/H)/(N(H)/H)° <* {N(.H)/H)/[N(H)°/H n N(H)°) » (N(H)/H) / {H.N(H)°/H)

« N(H)/H.N{H)° .

The assertion about the independence of r of the quotient group follows
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using Wassermann's approximation theorem as in the proof of Theorem 1. We

leave the remaining statement to the reader. •

Let H denote a principal isotropy subgroup of the action of G on

R (H)

M and ft? denote the fixed point set of H . Let M denote the set

of points in M with isotropy group H and ft? denote the closure of

M . Observe that AT, ft? have the structure of compact tf(fl)-manifolds

and that AT is a union of connected components of ftf (see Schwartz [9,

Theorem 11.6]). We le t ^(M) denote the group of (f skew N(H)-

equivariant maps of ft? into N(H)/H .

PROPOSITION 2. Let ft? be a compact G-manifold and suppose that all

G-orbits have the same dimension. Then for r 2 0 we have canonical

isomorphisms

where F^(ftj) denotes the set of u N{H)-equivariant diffeomorphisms of

ftr covering the identity map of the orbit space.

Proof. Suppose, u 6 Sr(Ar) . Then u(«x) = n\i(x)n for a l l

x € W , n € N(H) . Define / : tJ1 •*• 1? by f (x) = y(x)x . Certainly

/ is u . Mareover, f is N(H)-equivariant since for x € M ,

n € N(H) we have

f (nx) = ]i(nx)nx

= n\s(x)n~ nx = n\i(x)x

Suppose gx = hy , x, y € AT , g, h 6 G . Then h~ g € N(H) . How

gf (x) = hh~ gfAx) = hf [h~1gx) = hfAy) • Hence we may extend / to a

(f equivariant diffeomorphism / of ftf by setting f (gx) = gf (x) ,

x (. ft? , g € G . Obviously / € F^iM) and so we have constructed a
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homomorphism u i—*- / of S [M] into 1T(,M) which factors through

( . Conversely, suppose f € ?{M) . Denote the r e s t r i c t i o n of /

t o HP by f . Thus / i F*$*) • For x € M<H) , f determines a

unique <f skew #(#)-equivariant map yf : M -*• N(H)/H by

/ ( x ) = yJx)x . We claim Y~ extends uniquely to M as a t skew

ff(#)-equivariant map. Fix x € M and choose a s l i ce S a t x . Let

/ ( x ) = gtt , some g € ff(#) . Then g^fix) = x and g'1} : 1$ + Hi1

covers the i d e n t i t y map on the orbi t space M/N(H) . Choose a C local

sec t ion (i) of N(H) over some open neighbourhood U of the iden t i ty

coset in N(H)/N(H) . Shrinking S i f necessary we may assume tha t

u)(y)(S) 3 ( ?~1 / ) (S) . Fix x € M{H) n S . Now g'^fiz) € OJ(J/) [N{R)x{z)} .

I f g~X~f{z) t ^(£/)(3) . choose k € ff(fl) so tha t kg'^z) € <o(£/)(3) .

As in the proof of Lemma 2 i t then follows tha t kg~ f(y) € bi(U)(y) for

a l l y t S . Hence, by the implici t function theorem, there ex i s t s a (f

map ir : S ->• #(#) such tha t fe^~ f(y) = ir(i/)j/ , y i S . Regarding ir as

a map in to N{H)/H , we see t ha t IT = y~ on Af n 5 . Extending ir

iV(ff)-equivariantly to N(H)(S) , we see tha t Y J « ff r, N{H)S extends to a

(f N(H)-skev equivariant map from M(H)S to N(H)/S . Since x € W was

chosen a r b i t r a r i l y we have shown that Y^ extends to a l l of i f as a &

skew N(H)-equivariant map. Clearly f *—*• Yf i s t n e inverse of the map

p •* f constructed above. O

Continuing with our assumption tha t H i s a pr inc ipa l isotropy group

of the act ion of G on M we note t h a t , in general , N(H) 4 C(H) .H . I t

i s t r u e , however, t ha t N(H) 3 C(H) .H and N(H)° = C(H)°,H° , the l a t t e r

statement following from Section 1. We l e t a : C(H) -*• N(H)/H ,

g : C(H)° •* N(H)°/H n N(H)° denote the associated projection maps and
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remark tha t oc i s generally not onto whils t f? i s always onto. We have

an ff(#)-action on C(H) [^r C(H)° ) defined by c i—• nan'1 , a € C(H) ,

n € N(B) . We say tha t a map <j> : IP' + C{H) (or C(H)° ) i s ff(#)-skew

equivariant i f <}> i s N{H)-equivariant r e l a t i ve to the ff(ff)-actions on

HP and C{H) (or C(H)° ) . Suppose / € F^iM) . We say that

Y~ : « -»• N(H)/H l i f ts to C{H) if there exists a (f map

y-ia-*- C(H) such that cry~ = y~ . Even if y~ l i f ts to y~ i t need

not generally be true that Y* i s #(#)-equivariant and so we cannot

assert that the lifting of Yf is a sufficient condition for / to l ie in

F (M) . I t i s , however, obviously a necessary condition. Suppose now that

f € ^(M) . Then y - : iP •*• [N(H)/H)° . Since

{N{H)/H)0 ™ N(H)°/H " N{H)° we may regard Y^ as a map in to

N(H)°/H n N(H)° . We say Y^ l i f t s to C{H)° i f there ex is t s a C^-map

y* : fiP * C(H)° such tha t &y~ = Y^ • Again the l i f t i n g of Y^ to C(H)°

i s obviously a necessary condition for / to l i e in i{M) .

PROPOSITION 3. Suppose M is a compact G-nanifold with all

G-orbite of the same dimension and H is a principal isotropy subgroup of

the action of G on M . Assume that N(H) is connected and H is

finite. Let f € F^iM) . Then y~ lifts to C(H) if and only if

Proof. Let / € f{M) and suppose y l i f t s to C(H)° . Fix

(a)

x € M . For a l l n € N{H) we have f(nx) = nf(x) and so
^ ~ y\ —3_ — 1 ^

y~(nx)nx - nyJx)x . Therefore y Ax) n yJnx)n € H . The connectedness

of ff(fl) together with the finiteness of H now implies that

yjx)~ n~ yjnx)n = e . Hence y. is skew N(H)-eq,uivariant. The

converse is t r ivial .
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EXAMPLE. Let M be a compact 5 -manifold with a l l isotropy groups

f in i t e . Denote the principal isotropy group of the action by K . Let

/ € F^iM) . Then / € ^(M) i f and only if yf:M + SX/K l i f t s to S1 .

In part icular, Fr(M)/f(M) ^K .

REMARK I. Using the above ideas i t is now easy to show that if

f € F^iM) is sufficiently C -close to the identity then / € Fr(Af) .

Indeed, i f / is C close to the identity so is y~ and so Y« l i f t s

0 ~
to C(H) . But now we can l i f t Y^ "to o{h) and average over N(H) to

obtain a skew #(ff)-equivariant l if t ing of Y^ •

REMARK 2. Let }^(M) = {x € ^{M) : X = identity} . Then

a closed subgroup of ^(M) , v > 0 . By Proposition 2, f'(M)

But S^AT) is the space of (f tf(fl)-equivariant maps of ~$ to N(H)/H

where we take the W(fl)-action on N(H)/H defined by k t—* nkn~ ,

n € N(H) , k € N(H)/H . In particular, taking r = °° , we see that

has the structure of a Frechet Lie group (see Field [3] or Palais [7] for

background on differential structures on spaces of smooth equivariant

maps). Using the remarks preceding Proposition 3 together with the
CO

argument of the proof of Proposition 3 i t is easily verified that F (M)

has the structure of a closed Frechet Lie subgroup of F (M) . Since

5 (A?) may be represented as a space of smooth G-equivariant maps we see

also that S (M) has the structure of a Frechet Lie group with closed

Frechet Lie subgroup K (M) . I t now follows straightforwardly that the

sequence

1 •+ K°{M) ->• S°{M) -£+ T°°(M) -* 1 ,

p(x) = X > is a short exact sequence of Frechet Lie groups. Lemma B

implies that p admits local smooth sections.

We now turn to the case where the dimension of G-orbits varies.

Recall from Field [4] that associated to any compact G-manifold M we

have a compact G x yL } -manifold M (the "resolution" of M ) and
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projection IT : M -*• M satisfying:

(1) the action of G on M is principal;

(2) IT is equivariant in the sense that

ir((0, y)x) = fln(s) , g € G , y € ^ g ) ^ 1 ;

(3) for r > tf-1 , there exists a continuous homomorphism

$ : Diff£(Af) -Diff 2"-^ 1 (*)

such that TT<|>(/) = fir , / € Diff^(Af) .

THEOREM 2. Let / € ^O(W) • 2%e« tfcere exists a skew G-equivariant

map v € 5 (M) such that

(1) *(/) = y ,

(2) fix) = ]i(y)x , x € M and y any point in IT (X) .

Proof. If / € F™(#) then <)>(/) € F^Af) . Since all G * ̂ l ^ " 1

orbits have the same dimension, Theorem 1 implies that there exists

u € S°°(M) such that <\>(f) = y . Now TT<1>(/) = /*rr and so if TT(Z/) = a; we

have f(x) = \i(y)x . D

REMARK. Theorem 2 may be strengthened. If we le t q denote the

number of orbit types of M with G-orbits having the same dimension as

the principal G-orbit type then we need only blow up M (N-q)-times to

obtain a G x £Z_) ^-manifold with a l l G-orbits of the same dimension.

Using Property (3) of the resolution we see that the theorem is valid for

f € F* " (A?) rather than FAM) • Of course, we can apply Theorem 1 to

each orbit type to find a skew G-equivariant map y : M •*• G such that

f = X • But this approach t e l l s us nothing about the singularities of X •

One consequence of Theorem 2 and Example h is that we need to modify

the definition of G-structural s tabi l i ty for equivariant diffeomorphisms

given in Field [5].

DEFINITION. Let f € Diff^(W) . We say f is G-structurally stable
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i f we can find a neighbourhood if of / (c2* topology) such that for al l
j € N there exists an equivariant homeomorphism h of M and skew
G-equivariant map Q : M -»• G such that

Q[f(x))h{f(x)) = jh(x) , a l l x € M .

REMARK. In Field [5] we required Q to be continuous. By what we
have shown above i t is unrealistic to require Q to be continuous unless,
for example, a l l G-orbits have the same dimension. Note, however, that
Q ° h : M -*• M is always an equivariant homeomorphism even if Q is not
continuous.

We conclude with an analysis of S -manifolds with non-empty fixed
point se t . First an elementary technical lemma whose proof we include for
completeness.

LEMMA 4 . Let f : C x Rk -+ c be smooth and vanish at ( 0 , 0) .

Suppose there exists a smooth function a(z, t) defined on

(C x IRk)\{o, 0} such that f(z, t) = a(z, t)z , (z, t) * 0 . Then

extends smoothly to £ x R .

Proof. Fix N > 1 . By Taylor's theorem

/(a, *) =
N

U=l

3

'1=

a3. . . (t)z z4 , ,
i =0 V *

N+l 1—

where the a s are smooth C-valued functions. Dividing by z we see

that

where 4, a , . . . , a are smooth. We claim a = . . . = a = 0 . If

not, choose p , 1 5 p 5 iV , to be the smallest integer such that

a?{t) | 0 . Then

, t) , t) ,

where Q i s smooth. Fixing t ± 0 , we see that
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?-l
'/(«,*) aPU)zP R(z, t)+T(z, t)

where R and T are smooth functions on C x R . Letting z -*• 0 we see

that <r{t){zr/z") does not converge unless cr{t) = 0 . Since all the

other terms do converge to definite limits as z •*• 0 we see that

ar(t) = 0 , t t 0 . Since cr(t) is continuous on R we have therefore

shown that <r = 0 . Therefore a = ... = a = 0 . Consequently, for any

N 2 1 we may write

, > -ff+1

!&& ^ T , *) ,
where 4 and 5 are smooth on C x R . But the right hand side of this

equation is (7 on C x R Since N was chosen arbitrarily it

" k

follows that f(z, t)/z is smooth on C x R . D

THEOREM 3. Let M be a compact ^-manifold. Then F^(M) = r"(A/) .

Proof. Let / € F' (M) . By Theorems 1 and 2 there exists a skew

1 1 ~ "

S -equivariant map x : M ~* S such that f - X an<i X is smooth off the

fixed point set of the ^-action. We must show that we can require X to

be smooth on all of M . Let x be a fixed point of the s -action on

M . Choosing slices at x and f(x) we easily reduce to showing that if
k. _l °° ( k\

C is an ^-representation with no trivial factors and f (. F [€ ) then

/ = X for some x € S°°(C ) . By Theorems 1 and 2, we may find a smooth

skew £T equivariant map 9 : C x {o} -»• S^ such that

f[zv ..., sk) = (e(a)
 1a 1, ..., 6(3)

 feaj , z = [zv ..., afe) # 0 .

(Here the integers p , ..., p are just the orders of the irreducible

factors of the S -representation on C .) By Lemma h, Q extends to a

smooth map defined on all of £
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