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ON THE STRUCTURE OF A CLASS
OF EQUIVARIANT MAPS

M.J. FIELD

Let G be a compact Lie group and M be a compact G-manifold.
We investigate the class of equivariant diffeomorphisms of M

covering the identity map on the orbit space M/G .

Introduction

Let H Dbe a closed subgroup of the compact Lie group G . Denote the
normaliser and centraliser of H in G by WN(H) and C(H) respectively.
If we let h, n(h) and c¢(h) denote the Lie algebras of H, N(H) and
C(H) it is an elementary and well known result that n(h) = h + ¢(h) . An

immediate consequence is that every element in the identity component

IV(H)O of N(H) can be written, not necessarily uniquely, as a product

ch , where ¢ € C(H)O , h € Ho . The main aim of Section 1 is to provide

an alternative, differential geometric proof, of this result. In Section 2
we show how our techniques may be used to give information about G-equi-

variant diffeomorphisms covering the identity map on the orbit space.

We should point out that the techniques and results used in this paper
are elementary. In particular, in Section 2, we make no serious use of
homotopy theory and stop short of using any of the deeper results of smooth

invariant theory as developed by Schwarz in [9].

1. Centralisers and normalisers
Let G be a group. Recall that the semi-direct product structure on
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G X G is defined by

(a, b).(c, d) = (ac, bada™) , (a, b), (e, d) €Cx¢C .

We have an action of G X G on (G defined by

(a,b)=baga-l,(a,b)€GXG, €G.
g g

From now on we suppose G 1is a compact Lie group. Using Haar measure
on G X G , we may average any riemasnnian metric for G over G X G to
obtain a G X G-equivariant riemannian metric on G . Let d{ , ) denote

the corresponding distance function on & . Note that if x, y € G we

have
(A) dlgz, gy) = dlz, y) , g €G,
(B) dlgzg ™, gyg V) = diz, y) , g €G-

Indeed, these relations follow immediately from the G X G-invariance of

the metric d .
LEMMA 1. If U is an open d-disc, centre e , in G , then

gUg_l=U, g €G.

Proof. Immediate from Property (B) of d . Compare Bredon [2Z,
Chapter 0, Proposition 1-10]. a

LEMMA 2. Let H be a closed subgroup of G . Then there exists an
open d-disc U, centre e , in G and smoth map ¥ : U+ U such that:
(1) xlg) eg, ge€eU;

(2) dle, gi) = d(e, x(g)) and x(g) is the wnique point in gH
satisfying this relation;

(3) x(rgh™) = mx(gn™t, nen, gev;
(4) xlg) e c(H) , if g € N(H) n U .

Proof. For all g € G, gH is a submanifold of G . Choose a
sufficiently small open d-disc neighbourhood U of the identity in G
such that for every g € U there.exists a unique minimising geodesic
between e and gH (see Bishop and Crittenden {1] and note that our
statement amounts to choosing a tubular neighbourhood of H in &G,
relative to the metric d ). Property (A) of d implies that
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d(e, gd) = d(H, gH) , g €U . Define x(g) to be the unique point in gH
minimising distance between e and gH . Note that ¥(g) € U and that
X(g) depends smoothly on g , g € U . By Property (B) of d we have

dle, gi) = dle, hgih™) = dle, hx(g)n™) , h€G .

But dfe, thh_l) = dfe, (hgh-l)(hﬂh_l)) and so if h € H we see that
dle, hgih™) = dle, hgh™'#) and so dle, ax(g)n™Y) = dle, x(hgh™1)) . By
uniqueness of X , it follows that

x(hgh™) = mx(gn™ , e, geu.

Now if g € N(H) n U , hgh—lH = gH and so

(Rt =x(g) , held, gemu nv,
proving (&4). 0O

COROLLARY TO LEMMA 1. The identity component of N(H) is generated
by the identity components of H and C(H) . Moreover, C(H) meets H

trangversally at e , in N(H) .
Proof. Immediate from (L) of Lemma 2. a
LEMMA 3. Iy Hy, «-0s Hp are closed subgroups of G then there

erists an open d-disc U, centre e , in G such that for all
g €U n IV[HJ.) s d =1, ..., p, there exiets a unique ¥X(g) € gHj n C(Hj)

minimising distance between e and gHJ. . Moreover, if k € G,

-1 -1 -1 -1 .
g e€v nzv(aj) » kx(g)k™" € (kgk )[kHJ.k ] n C[kHJ.k ] nU and is the
wnique point minimising distance between e and kgHJ.k-1 .

Proof. The first part follows by choosing a sufficiently small disc

at e which works for Hl, ey Hp . The second part is immediate from

Property (B) of the metric together with the invariance of U under the
adjoint action (Lemma 1). D

REMARK. Let Y denote the cut locus of the exponential map of
4
h cn(h) in G (see Bishop and Crittenden [!, pp. 237-241]). It is well
known that I is always a sphere (topologically) though £ may have
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singularities. Two questions naturally arise. Are the singularities of I

always rational? To what extent can we regard the singularities of L as

obstructions to expressing IV(H)0 as a product of #° and C(H)O and how
might these singularities relate to cohomological invariants of this

extension problem?

2. Structure of equivariant diffeomorphisms which are trivial mod ¢

Let M be a compact G-manifold. Throughout this section we assume
M is connected and G acts smoothly on M ("smooth" will always mean
C‘m ). We follow the notation of Bredon [2] (see also Field [3, Section
1]). Thus if x € ¥, G(x) will denote the G-orbit through x and Gx

the isotropy subgroup of G at zx . We partition M into points of the

same G-orbit type and write

LN

where all points in M‘L have the same G-orbit type and if there exists

xEM , yGMJ. such that Gx?Gy then 7 < J . We refer to M, as

N
the principal G-orbit type and remark that MIV is open and dense in M

and MN/G is connected.

Let Fr(M) denote the group of cr equivariant diffeomorphisms of M
satisfying flz) € G(z) for all xz € M . Give F (M) the ¢* topology.
We say that a Cr map X : M> G is ¢’ skew G-equivariant if

x(gz) = gx(x)g_l , g€G, €M .

Denote the set of (¥ skew equivariant maps of M into G by S (M) .

Observe that SP(M) has the structure of a group with composition defined
by

(x1 %) (&) = x; (R)xs(2) 5

Xy Xo € SP(M) , x € M . We have a natural group homomorphism
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Y : SU(M) > F'(M) defined by
Y(x)(x) = x(z}x , = €M.

In future we write Y(X) = X , X € 5 (M) and set T (M) = y(s" (M)

LEMMA 1. T7(M) is a normal subgroup of F (M)

Proof. Let X € S (M) , f € F(M) . Then

FRA (=) = x(f=)z ., = en.
Defining B € S (M) by B(x) = x(f()) , ve see that
£ =8 erfm

end so (M) is normal in F (M) . O

We let Fg(M) denote the subgroup of F (M) consisting of

diffeomorphisms which are CP equivariantly isotopic to the identity

(through elements of F (M) ). set I‘g(M) = Fg(M) o T (M)

The main aim of this section is to investigate the group E’p(M)/Fr(M)

and, in particular, find conditions which allow us to assert that an

element of FP(M) actually lies in Fr(M) . PFirst, however, we shall

prove a useful technical lemma and then give some examples.

LEMMA 2. Let G be a finite group and f be a homeomorphiem of the
compact G-manifold M (we do not assume f is equivariant). Suppose

flz) € G(x) forall x €M . Fix z €M, and suppose f(z) = ga , some

gr forall x €M.

g €G. Then f(x)

Proof. Let X = {x ¢ M : f(x) = gz} . Obviously X is a closed,

non-empty, subset of M . Since ¢ 1is finite and f is continuous

f(:x:) = gx for all x in some open neighbourhood of 2z contained in MIV .
Therefore X n MIV is open and closed in MIV and so X n MN is a union of
connected components of MIV . If MIV is connected it follows that X DO MN
and so, since MN is dense in M , X =M . Suppose MIV is not connected

https://doi.org/10.1017/50004972700005682 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700005682

166 M.J. Field

and denote a connected component of MIV contained in X by M;zv . Set

I@ = f(l‘f;v) . By considering f_l we see that Mx is also a connected

component of MIV . Since MIV is not connected there exist orbit types MP
of codimension one in M . Denote the union of the codimension 1 orbit

types by P . Let yGPnHJ

v and denote the other connected component of

MN whose closure contains Yy by va . Locally, at y , Gy acts as
reflections in P . Let r € Gy denote such an element which acts as a
local reflection in P . Choose a slice U for the G-action at y .
Since y € X and f 1is continuous we may find x € MICV n U such that
flx) € g(U) . Either f(x) =gx or flz) = grx . But if f(x) = grx we

must have f(x) € M?V , contrary to the bijectivity of f . Hence

flx) = gx and so x € X . Therefore ﬂfvc X . It follows that X:’MN
and so X =M. O

EXAMPLE 1. Let G be a finite group acting smoothly on the compact
manifold M . Denote the principal orbit type of M by MIV . Since G

is finite G.'x: is independent of & € MIV and ve set H = Gx , X € MIV .
Note that H is a normal subgroup of G . For g € G we let [G, g]

denote the set {h—lg—lhg : h € G}. Define p= {gec: [6,glcH . 1¢

is easily verified that f’ is a subgroup of (G containing H as a normal
subgroup. Set P = P/H . We claim that [v'r(M) ~% P, O0=<pr =<, and that
F (M)

f'a(x) =ox, x €M . Since a € P , it is clear that fa is equivariant.

(M) , 0<r<w . Suppose o € P . Define fy € F (M) by

Moreover, since H C Gx for all = € M , fa depends only on the class of
00
o in P . Hence we have defined a map of P into F (M) which is
0 .
clearly a group homomorphism. Next suppose f € T (M) . Fix =z € MIV .

Then f(2) = gz for some g € ¢ . Since G is finite and f is
continuous, Lemma 2 implies that f(z) = gr for all x € M . Since f is

equivariant it follows easily that g ¢ P and so we have constructed a map
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of FO(M) into P . This map is obviously the inverse of the homomorphism

constructed above and so F (M) = I‘O(M)N P , proving our assertions.

EXAMPLE 2. Let Sl = [0, 2m1]/0 = 27 act on € in the standard way

as multiplication by eze . Suppose f € Fr(C) . Incase r =

Schwartz' theorem on smooth invariants [8] allows us to write

f(z) = g(IZIZ)z for some smooth map g : R+~ C . Since |g[l2|2)| =1
for all z € C , we may define X € 57(C) by x(z) = g(lz]2) and then
f =X . Thus we have proved that Fr(C) = T"(C) in case r = . This

result is definitely false if »r < « ., For example, if we define

. 2
f(z) = exp(¢/]2]%)2 , 2 #0,
=0, 8=0,
we see that f € FO(C) but that f is not Cl . Clearly f ¢ FO(C)
Similar examples show that Fr(C) # I(C) , 0=r<ew,

EXAMPLE 3. Parametrize the torus 7 = st x st by

(6, v) € [0, 2n] x [0, 27] and take the Sl-action on 7 defined by

eio(e, ) = (6, Y+20) , mod 27 .

Define f : T° + T° by

f(6, ¢) = (8, Y+6) , mod 2m .

Clearly f € fw(Tz) but f f FE(T2] . Notice that we cannot write f = %

for some ¥ € Sm(Te) since f(0, ¥) = ete/2(6, Y) . In fact it is not

hard to verify that Fm(Tz) /I‘w(Tz) EZQ (the isotropy group of the

Sl-action) and Fw(Tz)/P:(Tz] =~7Z (the first cohomology group of the orbit
space) .’
EXAMPLE 4. Regard SU(2) as the group of complex matrices

a b
_ , a, bec,

b a
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subject to |a|2 + |b|2 =1 , and take the corresponding matrix
representation of SU(2) on . Let A4 € End(C2] be scalar
mgitiplication by eie ,O @ € (0, 2m) . Certainly A is an SU(2)-
equivariant map; indeed A4 € FP(®2) . Let us try to find a skew SU(2)-

equivariant map ¥ : ¢ » SU(2) such that A =X . If we fix

z = (zl, 32] # 0 and solve

Q
o

A(z) (2)

)
Q|

for a and b we find

a(z) = [P0z, 2702 |2]/||z||2 ,
A 1 2
_ - .18 -18 2
b(z) = [zlzz(e -e )]/Hz” .
vhere |zl = Izl|2 + |22|2 . Suppose O # T . If we define
a(z) b(z)
x(z) = —|s 2#0,
-b{z) a(z)

we see that the resulting uniquely determined skew S8U(2)-equivariant map

O (2]
X does not extend continuously to c? . Consequently F (CZ]/F (02) is
infinite. Let us examine what happens if we use the polar blowing-up
construction described in Field [4]. Recall that the polar blowing-up of

2 at O 1is the principal SU(2)-manifold s3 xR together with the

C
projection T : S3 x R > e defined by m(u, t) = tu (we regard

2
S3 c C2 . Note that here we take m(u, t) = tu rather than t u as was

3 3

done in Field [4]). The map 4 1lifts to A:8 xRS xR where

Alu, t) = eteu, t) . Therefore if u = (zl, 32) € S3 we see that

alu) blu)
] u), t
-b(u) alw)

where alu), b(u) are as constructed explicitly above. But a, b

Alu, t) = [
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: 3 1 @3
restrict to smooth maps on S~ and so we see that 4 €T LS x R) . If we

write 4 =1 , M€ SwLS3 x R] , then we may define a skew SU(2)-

equivariant map ¥ : ¢ SuU(2) by
x(z) = nuly) ,

where y 1is any point in n—l(y) . Although the map X is not continuous

(at O ) nevertheless we do have A4 = &\.

THEOREM 1. et G be a compact Lie group acting smoothly on the
compact differential manifold M . Suppose that all G-orbits are of the

same dimension. Then

(1) ) = ), Osrpse.

o

X
(2) F(M)/T"(4) Ds independent of r, O<p=w,

IR

) F (o)

DA

ISF (M) x Ff;(M) ,

where ISF' (M) denotes the group of isotopy classes of c equivariant
diffeomorphisms in F (M) (isotopies through elements of F (M) ).
The proof of this result will be broken into a number of lemmas.

LEMMA A, Given any open neighbourhood U of the identity in G and

0 = pr <>, there exists an open netghbourhiood N of the identity in

FY(M) such that if f € N there exists a C* map Y : M~> G such that
for all x € M we have f(x} = y(x)x .

Proof. Using slices we may reduce the proof of Lemma A to the case

when M= G XH D , where D 1is a closed disc, centre 0 in an H-

representation V and all H-orbits in V have dimension zero. The proof

of this special case may be found in Field [6, Lemma B].

REMARK. 1If the dimension of G-orbits varies, Lemma A will only be

valid for r =2 r_ , where r

0 o is some positive integer less than the

number of distinct G-orbit types of M . This may easily be seen using
the blowing-up techniques of Field [4] together with the method of proof of

Lemma A. In general we cannot take ry = 0 - the Sl—action of Example 3
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provides a suitable counterexample.
LEMMA B. There exists a neighbourhood N of the identity in

F'(M) , 0sp=w, such that if f € N there exists X € S (M) such
that f =% .

Proof (ef. Field [6, Lemma C]). As in Section 1 we take the semi-
direct product structure on G X G and a G X G-equivariant riemannian
metric d on G . Fix an equivariant riemannian metric on M . Let

x € M and set Gx = H . Then G(x) has an open tubular neighbourhood W
smoothly equivariantly diffeomorphic to & XH V where V is the
orthogonal complement of TxG(x) in TxM . In future we regard W as

identified with G XH V . Since all G-orbits are assumed to have the same

dimension every orbit of the action of H on V is finite. Let HO
.

denote the identity component of H . If y € V then HO [ Hy C H and so

there exist only finitely many distinct isotropy groups for the action of

H on V say H=K Cees KP , where KP denotes the principal isotropy

l,

group of the action of H on V¥V . As in Section 1 we may find for

I3

1 =7 =P a closed neighbourhood Uj of the identity in G such that for
g € Uj there exists a unique minimising geodesic between e and gKJ. .
Clearly vwe may assume Ul = ... = Up = U and that U is a closed d-disc
neighbourhood of the identity in ¢ . For g € U,

d(e, gKJ.) = d(e, kj(g)) for a unique kJ.(g) 4 ng n U . Since the groups

Kj have common identity component HO it is clear that we may require U
chosen sufficiently small so that kl = ... 0= kP = k , say. The map

k : U> U is clearly smooth. By Lemma A, there exists a neighbourhood NW

of the identity in FP(M) and a CT map Y : M > U such that
f(z) =y(2)z forall fE€N,, 2 € M. We define ;(x : V> G by

XW(y) = k(Y(y)) , y € V. Certainly ;(W is €' and, by Section 1, ;(W

is skew H-equivariant. Extending. ;(W equivariantly to W we have shown
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that f|W = ')\( for some X, € Sp(W) . Now take a finite cover of M by

W

G-tubular neighbourhoods Wl’ cees Wm . Set XWi = x,l’ , NW-L = Ni s

3

1=1, ..., m. Let N =

n o

) IVi . Given y ¢ Wi nWj s, f €N , suppose
1=1
fly) = gy . Since Xi(y) is characterised as being the unique point in

gHy minimising distance between Hy and gHy it follows that

Xi(y) = xj(y) . Hence we may define X € ST(M) by xIWi =X »

2=1, ..., m. Clearly f=X. a

LEMMA C. Let 7f € [«'S(M) , r=0 . Then there exists X € s (M)
such that f =% .

Proof. Follows easily from Lemma B and we omit details (see the proof
of Lemma D in Field [6]). O

Proof of Theorem 1. Suppose f € Fg(M) . Then by Lemma C there

exists X € ST(M) such that f = % . Hence FS(M) c Fg(M) . Since the
reverse inclusion is obvious we have proved statement (1) of the theorem.
Statement (3) follows by observing that if f, f' € F'(M) determine the

same element of ISFr(M) then f’f—l € Fg(M) . Statement (2) follows from

(3) once we have shown that the group ISFP(M) is independent of r . For

this it is enough to show that every element of ISF'r(M) can be
represented by a smooth equivariant diffeomorphism. The proof of this
assertion is easily accomplished by localising using an equivariant
partition of unity, applying Wassermann's approximation theorem [10] and
using the fact that G-orbits all have the same dimension. We omit the
tedious details. |

We now analyse the structure of the groups FF(M), I‘r(M) a little
more closely. We continue to assume that all G-orbits have the same

dimension.
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LEMMA 3. Let f € F (M) and suppose that for some z € My s

£lz) €n(e)’(z) . mhen flz) €n8(6)’x) forall zenm.

Proof. Using Lemma 2 it follows easily that f(x) € N(Gx)o(x) for

all x € MIV . The result now follows from Lemma E of Field [6]. a

For r >0 , set P (M) = {f € FF(M) : flx) € N(Gx]o(x), all z € M}
and f‘P(M) =T »n FO(M) . It is easily verified that %’r(M), (M) are
normal subgroups of E'r(M), FP(M) respectively.

PROPOSITION 1. The group F (M)/F(M) is finite and independent of

r 2 0 . It has order less than or equal to the order of nia)/a.0(a)°

where H denotes any principal isotropy group of the action of G on M.

In particular, 1f G is abelian

) /F ) =~ /.6,
where K denotes the principal isotropy group of the action of G on M.

Proof. First observe that if 2z € M then N(Gz](z) = IV(Gz]/Gz .

Moreover, since (N(G )/G )0 ~ N (G )O/G nN(G }O we have
i 2" "z a4 3 z

0 0 , .
N(Gz) (z) = (IV(GZ)/GZ] . Suppose f, f' € F'(M) . If there exists
z € My, such that f(z), f'(2) ©belong to the same connected component of
IV(GZ)(Z) then f’f'—l(z) € N(Gz)o(z) and so, by Lemma 3,
f'f'l(x) € N(Gx]o(x) for all x € M . It follows immediately that

F (M) /FF(M) is finite with order bounded by the order of

[IV(H)/H]/[IV(H)/H]O , where H denotes any principal isotropy group of the

action of G on M . But

weay/a)/ (e /m)° =~ weaym) s wenra o wm®) ~ (wm)/a) /(@0 °/a)
N IV(H)/H.IV(H)O .

The assertion about the independence of r of the quotient group follows
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using Wassermann's approximation theorem as in the proof of Theorem 1. We
leave the remaining statement to the reader. O

Let H denote a principal isotropy subgroup of the action of G on

IJI . . H>
M and denote the fixed point set of H . Let M denote the set
of points in M with isotropy group # and ITJ{ denote the closure of
&Y ~

M . Observe that Itf, ﬁ/i have the structure of compact N(H)-manifolds
and that ;!H is a union of connected components of Itf (see Schwartz [9,
Theorem 11.6]). We let SP(IT[]] denote the group of *  skew N(H)-
equivariant maps of ;JI into N(H)/H .

PROPOSITION 2. Let M be a compact G-manifold and suppoge that all
G-orbits have the same dimension. Then for r = 0 we have canonical

1somorphisms
) ~ () ~s7(f)

where FP(IT[]) denotes the set of ¢’ N{H)-equivariant diffeomorphisms of

ra covering the identity map of the orbit space.

Proof. Suppose, U € SP(F/I) . Then wu(nmx) = nu(x)n_l for all

z €M , neNH) . Define }‘u N Y }u(x) = uw(z)x . Certainly

}‘u is ¢ . Moreover, }‘U is N(H)-equivariant since for &z EX/I .

n € N(H) we have
}"u(nm = u(nx)nx

nu(:x:)n_lnx = np(x)x

n}‘u(x)

Suppose gx = hy , x,yéiﬁ, g> h € G . Then h-lgEN(H) . Now

g}‘u(x) = hh—lg}‘u(x) = h}‘u (h—lgx] = h;“u(y) . Hence we may extend }U to a
& equivariant diffeomorphism fu of M by setting fu(gx) =g}‘u(x) .

x € FJ{ », g € G . Obviously flJ € F'(M) and so we have constructed a
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homomorphism M > _fu of Sr(;f]] into F'r(M) which factors through

Fr(ﬁq] . Conversely, suppose f € FP(M) . Denote the restriction of f

to 171 by }' Thus }'(Fr(ijl) For a:EM(H), }' determines a

H)

unique ¢’ skew N(H)-equivariant map vy, : M + N(H)/H Dby
f

}‘(a:) = vy {x)x . We claim 7Y, extends uniquely to ;/1 as a C° skew
f f

N(H)-equivariant map. Fix & € 1‘/.1 and choose a slice § at X . Let
flx) = gz , some g € N(H) . Then g-l}'(x) = x and g_l} M

covers the identity map on the orbit space V/N(H) . Choose a C° local
section w of N(H) over some open neighbourhood U of the identity

coset in N(H)/N(H)x . Shrinking S if necessary we may assume that

W((8) > () . Fix =z eu® s owow g ) € w(v) (W0H) (2)

1f g 'F(z) £ w(U)(2) , choose k € N(H)_ so that kg™ F(z) € w()(2) .

As in the proof of Lemma 2 it then follows that kg_l?(y) € w(U)(y) for
all y € S . Hence, by the implicit function theorem, there exists a Cr
map T : S + N(H) such that kg-l}(y) =7m(yly , y €S . Regarding T as
a map into N(H)/H , we see that m = Yf on M(H> n S . Extending w

(H)

N(H)-equivariantly to N(H)(S) , we see that Y,|M n N(H)S extends to a
J

¢’ N(H)-skew equivariant map from M(H)S to N(H)/S . Since x € el was
chosen arbitrarily we have shown that Yf extends to all of Itﬁ as a 6'1,7
skew N(H)-equivariant map. Clearly fr— Yf is the inverse of the map
u > fll constructed above. 0

Continuing with our assumption that H is a principal isotropy group
of the action of & on M we note that, in general, N(H#) # C(H).H . 1t

is true, however, that WN(H) D C(H).H and IV(H)o = 6'(11)0.117o , the latter
statement following from Section 1. We let a : C(H) + N(H)/H ,

B : C'(H)0 - IV(H)O/H n IV(H)0 denote the associated projection maps and
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remark that @ is generally not onto whilst B8 1is always onto. We have
an N(H)-action on C(H} (_or C’(H)o) defined by ¢ +— ncn_l , ¢ €C(H) ,

n € N(H) . We say that a map ¢ : ;/1 > C(H) (or C(H)0 ) is N(H)-skew
equivariant if ¢ is N(H)-equivariant relative to the N(H)-actions on
P and C(H) (or (,‘(117)0 ) Suppose f € FF(M) . We say that

Yf : T N(H)/H 1lifts to C(H) if there exists a ¢ map

'}\'f : l'ﬁ + C(H) such that oz?f = Yf . Even if Yf lifts to Qf it need

not generally be true that §f is N(H)-equivariant and so we cannot

assert that the lifting of Yf is a sufficient condition for f +to lie in

I‘r(M) . It is, however, obviously a necessary condition. Suppose now that

feF) . men vp: W+ (e /m)° . since
(N(H)/H]O ~ IV(H)O/H n IV(H)0 we may regard Yf as a map into

0 0 . 0o . . Cl’
N(H) /H n N(H) . Ve say Yf lifts to C(H) if there exists a -map
~ ;]1 0 s . s 0
Yf : + C(H) such that BYf = Yf . Again the lifting of Yf to C(H)

is obviously a necessary condition for f +to lie in I‘r(M) .

PROPOSITION 3. Suppose M is a compact G-manifold with all
G-orbits of the same dimension and H 1i8 a prinecipal isotropy subgroup of
the action of G on M . Assume that N(H) <is connected and H 1is

finite. Let f ¢ F(M) . Then vy, lifts to cn)® if and only if
el .

Proof. Let fEFP(M) and suppose Yf lifts to C(H)0 . Fix

)
x € M(H . Por all n € N(H) we have f(nx) = nf{x) and so

§f(nx)nx = n;f(x)x . Therefore §f(z:)_ln-l§f(nx)n € # . The connectedness
of N(H) together with the finiteness of H now implies that
;f(x)-ln-l§f(nx)n = e . Hence \?f is skew N(H)-equivariant. The

convers=2 is trivial.
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1
EXAMPLE. Let M be a compact S -manifold with all isotropy groups
finite. Denote the principal isotropy group of the action by K . Let

f €F (M) . Then f €TIT(M) if and only if Yp: Mo s*/k 1ifts to ST .

In particular, Fr(m /¥ (M) ~x .
REMARK |. Using the above ideas it is now easy to show that if
f € FP(M) is sufficiently Co-close to the identity then f € FT(M)

Indeed, if [ is CO close to the identity so is Yf and so Yf lifts

to C(H)o . But now we can lift §f to e¢(h) and average over N(H) to

obtain a skew WN(H)-equivariant lifting of Yf' .

REMARK 2. Let k(M) = {x € sU(M) : X = identity} . Then K (M) is
a closed subgroup of sS(M) , »r20 . By Proposition 2, Fr (M) ~ SP(;/{) .
But Sr(;aﬂ] is the space of (¢’ N(H)-equivariant maps of i to N(H)/H
where we take the WN(H)-action on WN(H)/H defined by k +— nkn ™t .

n € IV(J;E) , k € N(H)/H . 1In particular, taking » = ® , we see that Sr(iﬁ)
has the structure of a Fréchet Lie group (see Field [3] or Palais [7] for
background on differential structures on spaces of smooth equivariant
maps). Using the remarks preceding Proposition 3 together with the
argument of the proof of Proposition 3 it is easily verified that T'm(M)
has the structure of a closed Fréchet Lie subgroup of Fw(M) . Since
Sw(M) may be represented as a space of smooth G-equivariant maps we see
also that Sw(M) has the structure of a Fréchet Lie group with closed
Fréchet Lie subgroup Kw(M) . It now follows straightforwardly that the

sequence

1 7(m) >SSy B > 1,

p(x) = X , is a short exact sequence of Frechet Lie groups. Lemma B

implies that p admits local smooth sections.

We now turn to the case where the dimension of G-orbits varies.
Recall from Field [4] that associated to any compact G-manifold M we

]N—l

have a compact G X W2 -manifold M (the "resolution" of M ) and
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projection w : Y satisfying:
(1) the action of G on M is principal;

(2) 7™ is equivariant in the sense that

(g, Y)z) = gnz) , geG, ve @),

-

(3) for » = N-1 , there exists a continuous homomorphism

¢ : Difri(M) > pirel H*L

o~z,)

p-1 (M

such that 7¢(f) = fr, f ¢ Difflg(M)

THEOREM 2. Let f ¢ Fg(M) . Then there exists a skew G-equivariant
mp U € S(M) such that

1) o(f)

~

o,

(2) flz) =uly)x, = €M and y any point in 7 1(z)

Proof. If f € F (M) then o(f) € F (M) . Since all G x (22]”'1

orbits have the same dimension, Theorem 1l implies that there exists
u € S (M) such that o(f) =h . Now md(f) = fr and so if w(y) =z we
have flx) = u(ylz . O

REMARK. Theorem 2 may be strengthened. If we let g denote the
number of orbit types of M with G-orbits having the same dimension as

the principal G-orbit type then we need only blow up M (N-g)-times to
obtain a G x EZz]N_q—manifold with all G-orbits of the same dimension.
Using Property (3) of the resolution we see that the theorem is valid for
f € Eg;q+l(M) rather than FS(M) . Of course, we can apply Theorem 1 to

each orbit type to find a skew G-equivariant map Y : M > ¢ such that
= % . But this approach tells us nothing about the singularities of ¥ .

One consequence of Theorem 2 and Example 4 is that we need to modify
the definition of G-structural stability for equivariant diffeomorphisms

given in Field [5].

DEFINITION. ILet f € DiffZ(M) . We say f 1is G-structurally stable
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if we can find a neighbourhocod N of §f (Cr topology) such that for all
J € N there exists an equivariant homeomorphism % of M and skew

G-equivariant map @ : M > G such that
QF=NK(f(x) = julzx) , all x €M .

REMARK. 1In Field [5] we required § to be continuous. By what we
have shown above it is unrealistic to require @ +to be continuous unless,
for example, all G-orbits have the same dimension. Note, however, that
@ ©h : M+ M is always an equivariant homeomorphism even if @ 1is not

continuous.

. . 1 . . R
We conclude with an analysis of S -manifolds with non-empty fixed
point set. First an elementary technical lemma whose proof we include for

completeness.

LEMMA 4. Let f : C x RE > ¢ be smooth and vanish at (0, 0) .

Suppose there exists a smooth function olz, t) defined on
(c x le)\{O, 0} such that f(z, t) =alz, t)z, (z, t) # 0. Then
extends smoothly to C x Rk .

Proof. Fix N = 1 . By Taylor's theorem

N J . i, -t N+1 1. N+l-17
1- N+1 1-
flz, t) = | Y y a‘Z: . ()2 7z M+ 5 a4, ya1ogp (2s )2 73 1
ji=1 li.=0 M9 ™ 2,=0 "1 1
1 1
where the aJ's are smooth C-valued functions. Dividing by 2z we see
that
N J,,.\=d N+1 =N+l
L(iit_)—_- A(z, t) + Z a (t)z + a (z’t)z ,
z . b4 a
Jg=1
where A4, al,'..., aN+l are smooth. We claim al = ... = aN =0 If

not, choose p , 1 =p =N, to be the smallest integer such that

ap(t) £0 . Then

f Pg b zptl
(ZZ t) = A(Z, t) +a ﬁ)z M zz Q(Z, t) >

where @ 1is smooth. Fixing ¢ # 0 , we see that
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b

aP-1 [f(z,t)] _ p ' aP(£)zP zP+1
;;Ejf p = (-1)"(p-1)! P + 7 R(z, t)+T(z, t)

k

where R and T are smooth functions on € xR . Letting 2 > 0 we see

that ap(t)(Ep/zp) does not converge unless aP(t) = 0 . since all the

other terms do converge to definite limits as 2 - 0 we see that

ap(t) =0, t#0 . Since ap(t) is continuous on Rk we have therefore

_ N _
shown that ap = 0 . Therefore al = .,..=a =0 . Consequently, for any

N =1 we may write

=N+1
Hzat) - gz, 1) + 2—5(a, 1),
where A and S are smooth on € X Rk . But the right hand side of this
. ) CN—l k . . . .
equation is on € xR . Since N was chosen arbitrarily it
follows that f(z, t)/z is smooth on € x Rk . 0

THEQGREM 3. Let M be a compact Sl—manifbld. Then Fg(M) = F:(M) .

Proof. Let f € Fz(M) . By Theorems 1 and 2 there exists a skew

Sl-equivariant map X : M~ Sl such that f = i and X 1is smooth off the
fixed point set of the Sl—action. We must show that we can require ¥ to

be smooth on all of M . Let & be a fixed point of the Sl-action on

M . Choosing slices at x and f(x) we easily reduce to showing that if
k . st . . .. o oK
€ is an -representation with no trivial factors and f € F (C ) then

f= i for some X € Sm(Ck) . By Theorems 1 and 2, we may find a smooth

k
skew Sl equivariant map 6 : € x {0} » Sl such that
Py Pk
f(zl, cees zk) = [e(z) s cees 8(z) Zf > 2= [zl, cees zk) £0 .
(Here the integers pl’ ey pk are just the orders of the irreducible
1 . k
factors of the S -representation on C .] By Lemma 4, 8§ extends to a

smooth map defined on all of Ck .
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