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Abstract

Short-crested waves are defined as propagating surface gravity waves which are doubly-
periodic in the horizontal plane. Linearly, the short-crested wave system we consider
occurs when two progressive wavetrains of equal amplitude and frequency are propagat-
ing at an angle to each other.

Solutions are calculated via a computer-generated perturbation expansion in wave
steepness. Harmonic resonance affects the solutions but Pade approximants can be used
to estimate wave properties such as maximum wave steepness, frequency, kinetic energy
and potential energy.

The force exerted by waves being reflected by a seawall is also calculated. Our results
for the maximum depth-integrated onshore wave force in the standing wave limit are
compared with experiment. The maximum force exerted on a seawall occurs for a steep
wave in shallow water incident at an oblique angle. Results are given for this maximum
force.

1. Introduction

Short-crested waves are defined as propagating surface gravity waves which are
doubly-periodic in the horizontal plane. We shall consider the short-crested wave
system found when two progressive wavetrains of equal amplitude and frequency
propagate at an angle to each other. The limiting cases in this family are the less
complex two-dimensional progressive waves (where the wavetrains propagate in
the same direction) and two-dimensional standing waves (where the wavetrains
propagate in opposite directions).
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104 T. R. Marchant and A. J. Roberts [21

Short-crested waves occur in many situations, one of the most important being
reflection of incoming waves off a seawall, jetty or depth discontinuity. Other
situations in which short-crested waves occur include diffraction behind an object
such as an island or man-made breakwater, or the arrival of swell from two
different storm centres.

The short-crested wave problem has been studied using perturbation expan-
sions by various authors. Fuchs [8] obtained a second order solution and
Chappelear [3] calculated a third order solution. Both solutions were in dimen-
sional form using an expansion parameter related to the ratio of the waveheight
to the wavelength parallel to the wall. This does not allow the standing wave limit
to be calculated. Hsu, Tsuchiya and Silvester [10] calculated a third order solution
in non-dimensional form using an expansion parameter related to the ratio of the
waveheight to the wavelength of the incident wave, thus allowing them to
calculate the standing wave limit.

Roberts [16] investigated the infinite depth case in great detail. He computed
solutions via a perturbation expansion of 27th order in wave steepness. He found
that the phenomenon of harmonic resonance occurs at some angles causing the
magnitude of some higher order coefficients to increase rapidly and concluded
that the perturbation series has an everywhere zero radius of convergence. By
using Pad6 approximants he was able to obtain convergent solutions for the
frequency, potential energy and kinetic energy nearly up to the maximum wave
steepness which was estimated from the Pade approximants. Numerical schemes
have also been used by Bryant [2] and Roberts and Schwartz [15]. Bryant
considered the two-dimensional Korteweg-de Vries equation which models two
progressive wavetrains propagating obliquely to each other in shallow water. His
numerical scheme is accurate to 0{a/d) where a is wave amplitude and d is the
water depth. Roberts and Schwartz's method is for arbitrary depth and they
present results for deep water.

The standing wave problem has been investigated to third order by Tadjbakhsh
and Keller [19] and to fourth order by Goda [9]. Goda calculated the wave
pressures acting on the wall due to fully reflected waves and obtained good
agreement with experiment. Fenton [7] examined the short-crested wave problem
to third order and obtained expressions valid in deeper water for the depth
integrated wave force and moment exerted on the wall. One of his main findings
was the non-intuitive result that the maximum force per unit length is caused by
obliquely incident waves rather than standing waves.

The aim of this work is to generalize the results of Roberts [16] to arbitrary
depth. In Section 2 the mathematical formulation of the problem is given and in
Section 3 a procedure is described for the calculation of the coefficients of a
perturbation expansion to general order N. Coefficients are computed up to
N = 35. The phenomenon of harmonic resonance is discussed in Section 4. In
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131 Short-crested waves in finite depth 105

Section 5 Padd approximants are used to calculate wave properties such as
maximum waveheight, frequency and energies although accurate estimates are
difficult to obtain for shallow water. The force exerted by waves on a ssawall is
an important design criterion. In Section 6 the force exerted on the wall by fully
reflected waves striking the wall at arbitrary angle and depth is calculated, hence
extending the results of Fenton [7] to shallow water. Our results for the maximum
depth-integrated onshore force are compared with experiment in the standing-wave
limit. Results are presented for the maximum depth-integrated onshore and
offshore forces.

2. System of equations

For convenience the same variables and notation are used as by Roberts [16]
and Hsu et al [10]. As shown in Figure 1, the x-axis is along the reflecting wall,
the z-axis is perpendicular to the wall and the y-axis is vertically up. We assume
two successive wavefronts (represented by the dashed lines) separated by the
wavelength L strike the wall at an angle 0 to the z-axis and are perfectly
reflected. Then the wavelength in the x-direction Lx is L/sin0 and the wave-
length in the z-direction Lz is L/cos0. In the limit 8 -» 0° we get the two-dimen-
sional standing wave and in the limit 0 -* 90° we get the two-dimensional
progressive wave. We assume the fluid is incompressible and inviscid and the
fluid motion is irrotational. Thus we look for a velocity potential 4>(x, y, z, t)

Figure 1. Definition sketch of the short-crested wave system.
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such that

V24> = 0 , y<ii(x,z,t), (2.1)

where TJ is the surface elevation.
We shall non-dimensionalize the variables and equations with respect to the

reference length 1/k (where k is the wave number 2ir/L) and the reference time
(gk)~1/2. The non-dimensiona! wave numbers in the x and z directions are p and
q respectively where

/? = sin0, q = cos6. (2.2)

Therefore we define

X = px-ut, Z = qz, (2.3)

and look for <J>(X, y, Z) and TJ(X, Z), periodic in both X and Z with period 2m.
The full problem in the new non-dimensional co-ordinates is then

P24>xx + $yy + fazz = 0, y < 7)(X, Z), (2.4)

with the kinematic boundary condition, which means that no fluid crosses the free
surface,

-<oVx+p2UVx-V+q2WVz = 0, (2.5)

and the constant pressure condition which, via Bernoulli's equation, is

-o>U + y + $(p2U2 + V2 + q2W2) = C, (2.6)

where C is a constant chosen so that the mean water level is y = 0. pU, V and
qW are the x, y and z fluid velocity components respectively at the surface
y = 7}(X,Z), that is

(2.7)

Also there is the condition of zero vertical velocity on the fluid bed

4>y = 0 o n y = -d. (2.8)

3. The perturbation expansion

Non-linear problems rarely yield exact solutions. To obtain solutions for this
problem a perturbation procedure is used. The perturbation parameter we use is a
non-dimensional waveheight h defined by

* = ih (0 ,0 ) - i , ( f f , 0 ) ] , (3.1)

where TJ(O, 0) and TJ(W, 0) are the peak and trough of the wave respectively.
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I s 1 Short-crested waves in finite depth 107

We expand the quantities </>, 17, w, C, U, V and W as power series in the
parameter h

= £ *'*„ I? = £ ^ « = £ *r«r,
r - l r - 1 r - 1

00 00 00

^ E ^ , ^= E *'*;. w=Y.hrw
/ • = 1 r = l r = l

r - 1
\-J'''J

Substituting the above power series into the set of equations (2.4)-(2.8) we obtain
the following set of equations at each order in h, which shall be solved succes-
sively:

<>ryy + i \ Z Z = 0

4>ry = 0 on y = -d

+ K = A
r = 1 ,2 ,3 , . . . , (3.3)

where

r - 1

A = V* f- n + D2U + a2u> n
^=1

r - 1 r 1

We consider first the leading order linear problem

P2<$>IXX + <t>lyy + 92</>lZZ = °>

<t>iy — 0 o n y = -d,

O3Q1\\X ~^~ 'r'ly = 0 on y = 0,

- « , j ^ l j t + rjj = 0 on >> = 0,

and try for a solution of the form

TJ = COS(A-)COS(Z),

(3-4)

Laplace's equation and the fluid bed condition require /(.y) to be of the form

while the two free surface boundary conditions result in

o\ = tanh(rf) and ^ = \
«c

(3.6)

(3.7)
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Therefore the first order solution can be written as

t}1 = cos(A r )cos(Z) ,

^ L L - > , (3,)

<4 = tanh( d).

The form of this first order solution results in the rth order solution having the
form

Z - / ,,\ / ~\ cosh[am_( v + d)\
mn brmnMmX)cos(nZ) ^Jmnd) , ^

Vr = E arffl,cos(ml)cos(«Z),

where a^,n = (pm)2 + (qn)2. A further restriction on the solution is the triangu-
lar symmetry of the wave

i)(X,Z)=r,(Z,X), (3.10)

which restricts m and n to be both even or both odd.
A complication arises in the calculation of Ur, Vr and Wr as they are the

derivatives of <pr evaluated on the free surface y = j]{X, Z), which is itself
expressed as a series in h. An efficient method of computing them, outlined in
Roberts [16], is to expand exp[arj(X, Z)] in a Taylor series in h. Let

exp[«7,(X,Z)] = E hrEr(X,Z,a), (3.11)
r-0

then
r

and upon defining

G(X Z a)= e x p ( a ^ £ (X Z a) + ^ H ( z £ ^ i £ ( ^ z _a)

°°S " °OS " (3.13)
r"/v T \ exp(a^) „ i v ^ x expjj-ad) , .
G'r(X,Z,a) = —y, ,\Er(X, Z,a) f--—f Er(X, Z,-a),

cosh(a</) cosh(aJ)

then

t/r=^(z,0,z) + t7r,
Vr=<l>ry(X,0,Z) + Vr, (3.14)
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17 ] Short-crested waves in finite depth 109

where

r

Ur= E E mbsmncos(mX)co$(nZ)Gr_s(X, Z,amn),
m,n s = l

s{X,Z,amn), (3.15)
l

r

E nbsmnsm(mX)sm(nZ)Gr_s(X,Z,amn).
m,n s — 1

Substituting (3.14) into equations (3.3) gives

"forxx + try = AT-Vr- a0BrX - o>2
0UrX on y = 0. (3.16)

Equation (3.16) is used to solve for the coefficients brmn. For odd r, a term of the
form sin(A')cos(Z)cosh(j> + d)/cosh(d) will be found on the right hand side of
(3.16). Now the fundamental sin(Ar)cos(Z)cosh(>' + d)/cosh(d) is a solution of
the associated homogeneous differential equation, forcing unallowable secular
terms into the solution. Since the coefficient of this term is of the form (a + 2ur_ t )
where wr_j is unknown, wr_x can be set to eliminate this secular term. Then 7jr
can be found from the last of equations (3.3).

A program to do these calculations was written in FORTRAN and uses
computer time like N1 and store like W4 where # is the highest order calculated.
The program takes 75 minutes to calculate double precision coefficients up to
order iV = 35 on a VAX 11/780. The expansions obtained agree in the infinite
depth limit with Roberts' [16] coefficients and also agree with Fenton's [7] third
order coefficients over a range of depths. A more indirect confirmation of
accuracy can be seen later in Section 6 when results for the maximum depth-in-
tegrated onshore wave force are compared with Goda's [9] experimental values.

4. Harmonic resonance

For various angles 0, depending on the depth d, a division by zero occurs in
the calculation of some coefficients at particular orders. In the region near these
particular angles, division by a small number causes these coefficients to increase
rapidly with the order. This phenomemon is indicative of the occurrence of
harmonic resonance.
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110 T. R. Marchant and A. J. Roberts [8 ]

The equation which relates the depth d and the angle 6 for which harmonic
resonance occurs with respect to the {m, n)th harmonic, namely
sin(mAr)cos(nZ)cosh[amn(j> + </)]/cosh(amnd), is

amntanh(amn<i) = (4.1)

These divisions by zero occur because the (m, «)th harmonic is a homogeneous
solution of the tinear differential equation and at some order it occurs in the right
hand side of (3.16). Physically, the fundamental sin(Ar)cos(Z)cosh(_y +
d)/cosh(d) excites the harmonic which travels at the same phase speed. Over a
long time scale the resonance allows continual redistribution of energy between
the fundamental and the resonant harmonic.

Table 1 shows the angles at which harmonic resonance occurs with respect to
the (m, «)th harmonic at depth d = 0.8 for N up to 35. If this table is compared

TABLE 1. Angles at which harmonic resonance occurs for d = 0.8 up to N = 35

n
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

m = 1
90.00°

90.00°

90.00°

90.00°

90.00°

90.00°

90.00°

90.00°

90.00°

90.00°

90.00°

90.00°

90.00°

90.00°

90.00°

90.00°

90.00°

m = 2

57.71°

70.90°

76.18°

79.12°

81.01°

82.33°

83.31°

84.01°

84.67°

85.16°

85.57°

85.91°

86.21°

86.46°

86.68°

86.88°

m = 3

35.17°

52.47°

60.76°

65.88°

69.41°

72.01°

74.01°

75.60°

76.90°

77.98°

78.90°

79.68°

80.36°

80.95°

81.48°

m = 4

29.55°

42.81°

50.56°

55.89°

59.85°

62.94°

65.43°

67.48°

69.20°

70.67°

71.94°

73.06°

m = 5

13.03°

30.28°

39.10°

45.16°

49.74°

53.38°

56.35°

58.85°

60.97°

62.81°

m = 6

5.26°

23.84°

32.22°

38.08°

42.60°

42.26°

m =

9.83

22.09
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[91 Short-crested waves in finite depth 111

to Tables 1 and 2 from Roberts [16] it is seen that at all depths the common
features of the distribution of harmonic resonances are: 1) an infinite number of
resonances at 6 = 90° (for m = 1); and 2) as N is increased the number of
resonances increases, in fact as N -» oo a zero-divisor will occur arbitrarily near
every angle between 0-0° and 6 = 90°. Therefore the perturbation series has an
everywhere zero radius of convergence.

Table 2 shows the depths at which harmonic resonance occurs for standing
waves, 0 = 0°, with respect to the (m, «)th harmonic. Due to the non-dispersive
nature of shallow water waves the number of resonances increases swiftly as the
depth decreases. The information contained in the perturbation expansion from a
point close to such a zero-divisor will be degraded due to the use of finite
precision arithmetic. So for shallow depths (say d < 0.5) accurate estimates of
wave properties such as maximum waveheight are difficult to obtain.

We wish to use the perturbation series to calculate such quantities as maximum
waveheight, frequency, kinetic energy, potential energy and pressure on the wall.
The series for a quantity f{h) will have the form

f ( h ) = a 0 + axh + a 2 h 2 + ••• + a n + m h " + m , (4.2)

where n + m = N, the highest order calculated. Now f(h) will converge only for
\h\ < \h*\ where h* is the location of the singularity nearest the origin. But if h*
corresponds to a weak singularity (which is typical if it is due to harmonic
resonance) then the series will be affected by stronger more distant singularities.
The [m/n] Pade approximant of the series /(/i) is

= Sb + V + M 2 +-+»„»" ( 4 3 )
c 0 + c x h + c 2 h 2 + ••• + c n h "

where the bt and c, are chosen so that the Maclaurin series of [m/n] is the same
as that of f(h) to order m + n. The Pade approximant places a simple pole (and
a nearby corresponding zero) at the singularities of f(h) which are due to
harmonic resonance. They will often converge to a solution of the original
equations for real h past h*.

Figure 2 shows the locations of pole singularities due to harmonic resonance at
2° intervals for d = 0.8 which appear consistently in the [17/18], [17/17], [16/17]
and [16/16] Pad6 approximants of the crest-curvature (the expansion of -q xx(0,0)).
As mentioned in Roberts [16] and Chen and Saffman [4] near these pole
singularities, due to harmonic resonance, in general three distinct solutions exist
(see Roberts [13]). So by crossing the lines of Figure 2 the derived solution will
jump from one branch of the solution to a different solution branch. However,
the "distance" between the different solution branches is typically very small,
being of the order of fl

max<-m'n)/3 when the jump is due to harmonic resonance
with the (w, «)th harmonic (see Roberts [13]).
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Short-crested waves in finite depth 113

-0 .2

Figure 2. Locations of pole singularities due to harmonic resonance (X) at 2° intervals for d = 0.8.
Also plotted (° ) are the angles at which zero-divisors occur (the straight lines are for visualisation
purposes only).

The physical relevance of these steady solutions near harmonic resonance is
determined by the behaviour in time of solutions to the original equations.
Roberts [16] suggested that the behaviour of these solutions is likely to be
qualitatively similar to the results of McGoldrick [11], [12]. McGoldrick studied
the behaviour of unsteady solutions near second and third resonance using the
method of multiple scales. He found that the fundamental and resonant harmonic
interact over a long timescale. Our problem is of a slightly different nature
though, and so more general interactions need to be studied before any conclu-
sions can be reached.

5. Results

5.1. Maximum waveheight estimates
As well as information about the pole singularities due to harmonic resonance

(which are matched by nearby zeros and hence are weak) the perturbation series
contains information about singularities resulting from physical limitations on the
waveheight. Hence the maximum waveheight can be estimated by calculating the
[m/m] and [m/m + 1] Pade approximants via continued fractions (see Bender
and Orszag [1]). These operations were applied to the series of t)xx(f), 0) which is

https://doi.org/10.1017/S0334270000005658 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005658


114 T. R. Marchant and A. J. Roberts

the curvature in the x-direction at the wave's peak (h positive) or the wave's
trough (h negative). The singularity which limits the waveheight is expected to be
due to a sharp crest at the peak of a wave of maximum waveheight which would
correspond to infinite curvature.

When inspecting the real poles and zeros of the Pade approximants we typically
find: 1) pole-zero pairs with small separation («£ 10~3) which are due to harmonic
resonance; and 2) unmatched poie singularities of which the smallest positive one
is taken to be an estimate of the maximum waveheight. To be considered, these
poles and zeros must be consistent from one Pade approximant to the next and
not just a quirk of any particular approximant.

The maximum wave height estimates are taken from the location of the poles of
[17/18], [17/17], [16/17] and [16/16] Pade approximants. The closest group of
three of these poles were taken to measure the waveheight and give an estimate of
its error. In Figure 3 we show the maximum waveheight estimates for d = 0.8 at
2° intervals. The maximum waveheight estimate for the progressive wave (d = 90°)
is taken from Cokelet [5] (the crosses in Figure 3 represent the e~d = 0.5 and
e~d = 0.4 maximum waveheight estimates in Cokelet's Table 3). In general we
obtain estimates with small error bars and which are consistent as 0 is varied.
Some difficulties were encountered in the region [0°, 30°] where complex con-
jugate pairs of poles which lay near the real axis were used to obtain estimates of

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

i 1 i l o
' ' ' • '

1
10 20 30 40 50 60

e
70 80 90

Figure 3. Estimates of maximum waveheights (with error bars) at 2° intervals for d = 0.8. Also
shown is the maximum waveheight for the progressive wave (X) from Cokelet (1977), and the height
to which frequencies are drawn in Figure 4( »).
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113] Short-crested waves in finite depth 115

the maximum waveheights. Estimates remain uncertain in the region [30°, 35°] as
the information is degraded due to the proximity of the strong (3,7) and (4,12)
harmonic resonances. Also the graph shows a sudden drop in maximum wave-
height in the regions 6 = 35° to 0 = 38° and 6 = 54° to 6 = 58°. These drops in
maximum waveheight are associated with the obtained solution being on a
different branch of solutions on crossing from one side to the other of the
singularities associated with the (3,7) and (2,4) resonances respectively. Similarly
the smaller jump in maximum waveheight in the region 8 = 70° to $ = 72° is
associated with the (2,6) resonance.

5.2 Estimates of frequency
To plot the frequency, a 17 term series in h2 from the 35th order expansion

was used. The average of the four [8/9], [8/8], [7/8] and [7/7] Pade approxi-
mants was taken, the worst result removed and then the average of the remaining
three results was plotted. An estimate of the error was taken as the sum of the
absolute deviations of the three results from their mean. When this estimated
error reached 4 X 10 "5 plotting was stopped. This waveheight which is shown on
Figure 3 usually represented a height of between 80% to 100% of the estimated
maximum waveheight, although between 6 = 30° and 6 = 40° plotting was
stopped lower than this.

0.9

0.8
0.1 0.2 0.3

Figure 4. Frequency of a short-crested wave as a function of waveheight squared for fixed 6 at
d = 0.8. The frequencies are plotted from 0 = 0° to 8 = 90° at 10° intervals in a counter-clockwise
direction.
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The frequencies from 6 = 0° to 8 = 90° at 10° intervals at depth d = 0.8 are
drawn in Figure 4. The 8 = 90° (the progressive wave limit) curve is taken from
Cokelet [5] (obtained by a linear interpolation of the e'd = 0.5 and e'd = 0.4
frequency curves in Cokelet's Figure 5). For 8 < 10° the frequency increased with
waveheight to a maximum below the maximum waveheight (in deeper water,
d > 1.05, this behavior is reversed and the frequency decreases with waveheight to
a minimum below the maximum waveheight). In the rest of the parameter range
8 > 10°, frequency was an increasing function of waveheight with no definite
evidence being found of a frequency maximum.

5.3 The free surface
In Figure 5, free surfaces are drawn for various 8 at depth d = 0.8. At small 8

(near the standing wave limit) the crest is sharply peaked in the z-direction but
well-rounded in the x-direction. In the middle range the wave exhibits the typical
characteristics of short-crested waves, namely a symmetric pattern of short steep
crests and flat troughs. As 8 -* 90° a pattern of long (but not infinite) flat peaks
and flat troughs appears; the so-called long-crested wave.

6. Wave forces on a vertical wall

The force exerted by waves being reflected from a seawall is an important
design criterion. The maximum force exerted by waves being reflected from a
seawall can be found by varying the parameters associated with this problem. The

Figure 5. Perspective drawings of a one wavelength rectangle of the short-crested wave's free-surface
for d = 0.8 and various 8 and h.

(a) B = 10°, h = 0.4
(b) 0 = 40°, h = 0.6
(c) 9 = 80°, h = 0.27
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Figure 5 (continued).

parameters are the waveheight (h), the water depth (d), the angle of incidence
(0), the wave number (k) and the phase of the wave motion (x). Goda [9]
investigated the standing wave problem (when 0 = 0°) to fourth order. Goda used
the usual perturbation expansion of <j>, TJ and u in a perturbation parameter
related to waveheight. He calculated the wall pressure using Bernoulli's equation
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and drew graphs of the pressure at the mean water level, at the water bottom and
of the depth integrated maximum onshore wave force. He then compared these
results with experiment and obtained good agreement. Fenton [7] examined the
short-crested wave problem to third order and obtained expressions for the depth
integrated wave force on the wall and the depth integrated wave moment about
the base of the wall. He compared his results in the standing wave limit with
Goda's experimental results and achieved a good fit only for deeper water
(d > 1.2). The reason for this is that as the water becomes shallower the
higher-order terms in the perturbation expansion grow in size (relative to the
lower-order terms) and hence become increasingly important.

The main limitation of previous work is that the wave force is not calculated in
the situation which subjects the wall to the greatest onshore wave force, i.e., the
obliquely incident wave in shallow water. The standing wave work of Goda is
valid in shallow water but only for normal approach to the wall (0 = 0°) while
the short-crested work of Fenton is valid only for d > 1.2. The present work
calculates the wall force caused by a short-crested wave system, valid for waves in
all but the shallowest depths and at all angles of incidence.

6.1 Derivation of equations
The situation is as described previously with a wall at z = 0. The depth-in-

tegrated force per unit length of the wall is given by

(6.1)

where Bernoulli's theorem gives

P = -pgy-p*,- ip |v</>|2 + c , (6.2)
where C is a constant added so that the mean water level is held at y = 0.
Nondimensionalising the equation and integrating gives the non-dimensional
force F' = k 2F/pg, where

P ^ { \ 2 ) y (Z = 0). (6.3)

The term \d2 gives the hydrostatic force that the wall is subjected to by an
undisturbed region of water. Let F" = F' — \d2 be the force due to the waves.
Then

\ f*X0)( \ 2 ) y (Z = 0). (6.4)

By substituting the series for IJ and </> into the above integral, the coefficients of
the series for F" can be calculated. The resultant expansion is of the form

F" = t h%, (6.5)
r-1
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where

Frmcos(mx).

The calculations for the coefficients of the series (6.5) were programmed in
FORTRAN and the results check against Fenton's third order results for the
tabulated case d = 2,6 = 36.87°).

6.2 Comparision with the standing wave limit
The theory can be compared in the standing wave limit to Goda's results. He

developed a fourth-order theory and also performed experiments to check his
results. Here we compare this theory with the results given in Figure 6 of Goda's
paper, which is a graph of the maximum depth-integrated onshore force (P/pgHd)
versus wave steepness (H/L) where H is half the crest to trough waveheight and
L is the wavelength.

Harmonic resonance occurs with respect to the (m,n)th harmonic for combina-
tions of depth, d, and angle, 6, given by (4.1). In the standing wave limit 8 -» 0
we get amn -* n so the equation becomes

tanh(rf)
= m2 (6.6)

_P
hd

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2
0.1 0.2 0.3 0.4

h

d =

x 0.33
(U5
0.62
0.80
1.26
1.95

0.5 0.6

Figure 6. Maximum onshore depth integrated force per unit length versus waveheight in the
standing wave limit. Shown is a comparison between present theory (lines) and the experimental work
of Goda (symbols).
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which is the uniqueness condition obtained by Concus [6]. Table 2 gives the
depths at which harmonic resonance occurs with respect to the (w, «)th harmonic
in the standing wave limit. Depths below d = 0.1 have been excluded from the
table as they are well outside the region of interest (d > 0.3). To obtain conver-
gence using Pade approximants, ten to twenty terms in the series were generally
used, more terms being required in shallow water than in deep water.

In order to make the comparison the non-dimensional waveheight, h and the
nondimensional water depth, d must be related to Goda's variables. The neces-
sary conversions are

h = 2w(H/L), d = 2TT(D/L). (6.7)

P/hd versus h is plotted in Figure 6 for Goda's chosen depths of d = 1.95, 1.26,
0.80, 0.62, 0.45 and 0.33. As can be seen from Figure 6 an excellent comparison is
obtained with the experimental results of Goda. One point of disagreement is for
d = 0.33. Goda obtained experimental results which were much higher than it
was possible to obtain solutions. One explanation for this is that the steep
standing waves in shallow water measured by Goda may not have been precisely
periodic. Another possible explanation is that, for standing waves, many harmonic
resonances occur near d = 0.33 (see Table 2) and these are degrading the
information contained in the perturbation series.

6.3 The maximum load
The variables which must be varied when searching for the situation which

results in the maximum load on the wall are 1) phase of the wave, 2) water depth,
3) waveheight, and 4) angle of incidence. By searching the parameter space, the
conditions under which both the maximum onshore and offshore force occur can
be found. It should be noted that we refer in the following section to the
depth-integrated force per unit length as derived in Section 6.1.

1) Variation with phase
Figure 7 shows a typical variation of force with phase, x- The maximum

onshore force in this case occurs under the crest x = 0 an(^ t n e maximum
offshore force occurs at the trough x = w- Figure 8 shows a case where the water
is deeper and the wave higher. In this case the maximum onshore force does not
occur at the crest, but the force increases from x = 0 to about x = 0.8 and then
rapidly deceases. Again the maximum offshore force occurs at x = ""•

In general an increase in 6 or a decrease in depth will move the maximum
onshore force towards the crest. An increase in wave steepness has the effect of
moving the maximum onshore force away from the crest. The maximum offshore
force always occurs at the trough.
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0.5 1.0 1.5 2.0 2.5 3.0
-0.2

Figure 7. Variation of depth integrated force per unit length with phase, x> f°r d — 0.8, 9 = 0° and
h = 0.16.

For standing waves the second harmonic term at second order in the series
expansion for the pressure does not decay with depth but remains finite down to
the fluid bed. So for near-standing waves in deep water the depth-integrated
onshore force contains a large second harmonic contribution at second order.
This results in secondary humps appearing on a plot of pressure versus phase (see
Goda [9]) and hence explains the result that the maximum onshore force can
occur away from the crest.

2) Variation with angle and depth
Figure 9 shows the maximum onshore and offshore wave force for d = 0.8 and

h = 0.16. The maximum onshore force occurs under the crest for all 6, and shows
a small gradual increase as 8 varies from 0° to 90°. The maximum offshore force
stays relatively constant between 6 = 0° and 8 = 50°, and then decreases to a
minimum. In fact there is a slight increase in force between 0 = 0° and about
8 = 30° but it is less than a 1% variation. The onshore force is greater than the
offshore force in this case. Figure 10 is for a wave with d = 5 and h = 0.28. This
wave in deeper water shows the same general trend as Figure 9 with the following
differences: 1) the maximum force does not occur under the crest for 8 < 15° but
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Figure 8. Variation of depth integrated force per unit length with phase, x. for d = 5.0, 6 = 10°
and h = 0.28.
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Figure 9. Variation of depth integrated force per unit length with 8 for d = 0.8 and h - 0.16.
Shown is the force at the crest and the trough.
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Figure 10. Variation of depth integrated force per unit length with 6 for d = 5.0 and h = 0.28.
Shown is the force at the crest (—), the trough ( ) and the intermediate maximum ( • • • ) .
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Figure 11. Maximum onshore depth integrated force per unit length versus waveheight near the
progressive wave limit (8 = 80°) for d = 0.32, d = 0.45 and d = 0.62.

at about x = 0-8; 2) the variation of force with 6 is more marked; 3) the
maximum offshore force occurs at 6 = 0°; and 4) the maximum offshore force is
now greater than the maximum onshore force. Figure 11 shows the force near the
progressive wave limit (6 = 80°) for d = 0.62, 0.45 and 0.32. The general trend is
that all forces increase as d decreases.

This leads to the conclusion that the maximum onshore force will occur for an
oblique wave in shallow water for a wave of large height (near the maximum
possible). As an indication of how much greater the onshore force can be, a wave
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approaching the wall with 0 = 80°, d = 0.32 and h = .07 will subject the wall to
a 21% greater force than a standing wave of the same height and depth. The
maximum offshore force will occur for a high wave in shallow water with 6 ~ 30°,
but the difference in force between this wave and the standing wave is negligible.
As the maximum offshore force is less than the maximum onshore force in
shallow water, the maximum onshore force is the main design criterion.

The result that the maximum onshore force is greater for a wave striking the
wall at an oblique angle rather than for a normal approach is not intuitively
expected and needs some explanation. The increase in force as 8 increases is due
to the term u<f>x in Bernoulli's equation. This term represents the local accelera-
tion of fluid particles at the wall. This increase in acceleration as 0 increases
seems to be due to the fact that the waves become slightly more peaked in the
Ar-direction as 6 increases.

6.4 The average force
So far we have considered the fluctuating forces on the wall; now we shall

compare these with the average force on the wall. Equation (6.5) becomes
00

F" = £ hrFr0 per unit length (6.8)
r = 2

as all the other terms are oscillatory. Observe that the average force is of order
two in waveheight while the fluctuating force is of order one. Therefore the
average force is much smaller than the fluctuating forces.

The average depth-integrated force is onshore, and the maximum occurs for the
standing wave case rather than for the oblique wave which was the case for
fluctuating forces. The reason that the maximum average force decreases as 6
increases is that the contribution from the dynamic term in Bernoulli's equation,
- !p |v#|2 , becomes larger in magnitude. Now

|V4>|2 = />¥* + </>*, (6.9)

and the average force contains only the phase independent terms so the magni-
tude of the above term grows due to increasing p as 6 increases. Physically, this is
due to the velocity in the x-direction increasing from zero as 6 increases from 0°.

7. Conclusion

Using a 35th order perturbation expansion we have made estimates of various
properties of short-crested waves in water of finite depth. For example, the
maximum wave height for d = 0.8 has beemestimated to an error of about 3%
except where harmonic resonance adversely affects the results.
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As a practical application the pressure exerted by waves being reflected by a
seawall is examined. It is found that the maximum force occurs in the case of a
steep wave in shallow water approaching the wall obliquely. As an example, a
wave with d = 0.32 and h = 0.07 that approaches the wall obliquely (0 = 80°)
exerts a 21% greater force than an equivalent standing wave.

Further investigation could be done into standing waves in finite depth since
little work has been done in this area. However, shallow water would certainly
present difficulties due to the large numbers of harmonic resonances that occur
for d < 0.5.
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