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AN EXISTENCE THEOREM FOR AN OPTIMAL CONTROL
PROBLEM IN BANACH SPACES

EVGENIOS P. AVGERINOS AND NlKOLAOS S. PAPAGEORGIOU

In this paper we prove the existence of an optimal admissible state-control pair for a
nonlinear distributed parameter system, with control constraints of feedback type and
with an integral cost criterion. An example is also worked in detail.

1. INTRODUCTION

The purpose of this note is to establish the existence of optimal solutions for a

large class of nonlinear, distributed parameter control systems.

The optimal control problem is the following:

rb

J(x,u)= / L(t,x(t),u(t))dt ->inf
Jo

( + ) [where x(t) + A(i, x{t)),u(t) = 0 a.e.]

x(0) = x0

u(t)£U{t,x{t)) a.e.

We prove that under very mild hypotheses, this infinite dimensional optimisation
problem has a solution. Our existence results extends significantly earlier ones by
Vidyasagar [14], Joshi [8] and Papageorgiou [10]. In these papers either the system
was finite dimensional, or the hypotheses on the data were more restrictive.

The mathematical setting is the following. Let H be a separable Hilbert space
and X a subspace of H carrying the structure of a separable, reflexive Banach space.
We assume that the embedding of X in H is continuous, dense and compact. By
identifying H with its dual, we have X-—>H<—*X* and all embeddings are continuous,
dense and compact. By (•,•) we will denote the duality brackets for the pair (X, X*),

and by (•, •) the inner product in H. The two are compatible in the sense that if
x € X C H and h £ H C X*, {x,h) = (x,h). Let Y be another separable Banach
space (the control space). Finally the time horizon is finite, that is T = [0,6]. Then A €
L(Y,X*) = {bounded linear operators from Y into X*} and U: T x X -+ 2 y \{0} is a
multifunction representing the control constraint set. Note that the control constraints
are of feedback type. More detailed hypotheses on the data of ( • ) will be made in
Section 3.
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2. PRELIMINARIES

Let ( n , S ) be a measurable space and Z be a separable Banach space. By Pf^(Z)

we will denote the set of nonempty, closed, (convex) subsets of Z. A multifunction
F: SI —> Pf(Z) is said to be measurable if, for all z G Z,

u> -» d(z, F(u)) = in{{\\z - x\\ : x G F(u)}

is measurable. If there is a complete a -finite measure fi(-) on ($7,£), then the above
definition of measurability is equivalent to saying that GrF = {(u>,x) G fi x Z: x G
F(u)} G S x B(Z), B(Z) being the Borel a -field of Z (graph measurability of F(-)).
In general however, while measurability implies graph measurability, the converse is not
true. By SF we will denote the set of selectors of F(-) that belong to the Lebesgue-
Bochner space I>(Z); that is SF = {/ G LX(Z): f(w) G F(u)fi - a.e.}. It is easy
to check using Aumann's selection theorem, that SF is nonempty if w —• \F(u)\ =
sup{||a;|| : x G F(w)} belongs to L\ .

Let E, H be HausdorfF topological spaces and G: E —» 2H\{0} be a multifunc-
tion. We say that G(-) is upper semicontinuous (u.s.c.) if for all V C H open, the set
G+(V) = {yeE: G{y) C V} is open in E.

Let W be a separable metric space and B(W) its Borel <r-field. By M(W)
we will denote the space of bounded measures on (W,B(W)), and by M+(W) the
probability measures on W. A transition probability is a function A: ilxB(W) —> [0,1]
such that, for all A G B(W), u —> \(w,A) is S-measurable while for every w G fi,
A(w, •) G A/+(Vy). When W is compact the above definition of transition probability is
equivalent to saying that A is (£, J?(M|(VF))) -measurable. Recall that on M .̂(W") we
can define the weak (narrow) topology, which in this case is compact and metrisable (see
Dellacherie and Meyer [5]). Finally, note that when W is a compact metric space, then
M(W) = [<?(W)]* (Riesz representation theorem) and so M(W) is a separable dual
Banach space, hence has the Radou-Nikodym property (R.N.P.). Therefore Theorem
1, p.98 of Diestel and Uhl [4] tells us that L°°{M{W)) = [L\C{W))Y.

Finally, we recall that if W is a metric space, a function f: fl x W —>i2isa
Caratheodory function if for all x G W w —t f(u>,x) is measurable and for all w £ Q,
x —> f(w,x) is continuous on W. If W is compact and |/(w,:c)| < (̂t*>) /i—a.e. with
<j>{-) G I\, then by associating with every /(•, •) the map (w —> /(w,-)), we see that
the space of L1 -bounded Caratheodory functions can be identified with JD1(C(H^)).

3. AN EXISTENCE THEOREM

Let T - [0,6] and let (X,H,X*), Y be the spaces introduced in Section 1. We
will make the following hypotheses concerning the data of our optimal control problem
(*):

H( A): A: T x X -» L(Y,X*) is a map such that:
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(a) t —» A(t, x) is measurable;

(b) (x, u) —• A(t,x)u is sequentially continuous from Xw x W into
X«, for all t £ T , where Xu, is the Banach space X with the
weak topology and W is a nonempty 10-compact convex set in
Y with the weak topology;

(c) x —» ^4(<,x)« is monotone for all u 6 VT;

(d) ||A(<,a;)u|L ^ cC1 + 11*11) a-e- for all it € W and with c > 0;
(e) (A(t,x)u,x) ^ c' | |z| |2 a.e. for all u 6 W and with c' > 0.

H(L): I i T x f f x F - » f i = flU {+00} is an integrand such that

(a) (t,x,u) —> i(<,a;,w) is measurable;
(b) (x,w) —» £(<,«,«) is sequentially l.s.c. from H x Yw into .#,

convex in u;
(c) £(*,Z,M) > 4>(t) a.e. for all x £ # and all u 6 U(t,x).

B{U): U:T x # -)• i"/c(K) is a multifunction such that:
(a) (t,x) —> f7(f,;c) is measurable;
(b) a; —> ?7(<,x) is u.s.c. from H into Yw;
(c) J7(i,x) C Ŵ  a.e. with W being the nonempty, w-compact,

convex subset of Y introduced in hypothesis H( A)(b).

By hypothesis H( A ) and using Theorem 4.2 of Barbu [3, p.167], we know that given
u(-) e Sly = {v E ^(Y): v(t) 6 W a.e.} , the evolution equation x(t)+A(t, x(t))u(t) -
0, a;(0) = x0 has a unique solution belonging in W{T) - {x(-) 6 L2(T,X): x(-) 6
L2(T,X*)} C C{T,H) (see Lions [9]).

By an admissible pair for the system ( *), we mean a control function «(•) £ L^{Y)
and a state function x(-) £ C(T,H) such that #(•) is the solution of the evolution
equation with «(•) as the control and u(t) £ U(t,x(t)) a.e. We will denote the set of
admissible state-control pairs by P(XQ) and in order for our problem to have content,
we will make the following hypothesis:

Ha : P(xo) is nonempty and, for some (x,u) £ P(xo), J{x,u) < 00 (that
is, system ( + ) has admissible state-control pairs which have finite cost).

THEOREM. If hypotheses H(A), H(L), H(U ) and Ha hold, and x0 € X , then
there exists (x,u) £ P{XQ) such that

J{x,u) = M{J(x',u'): (x',u') £ P{x0)} = m

(that is, problem (+) has an optimal solution).

PROOF: Let {(in,«n)}n>i be a minimising sequence of admissible state-control
pairs; that is, (xn,un) £ P(x0) and J(xn,un) J. m.
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From [13], we know that {sJn}n>i Q C(T,XW) and is relatively sequentially com-
pact. Also {«n}n>i Q $lv a n ( l by Proposition 3.1 of [11], Sjp- is to-compact in ^(Y)

and so by the Eberlein-Smulian theorem is weakly sequentially compact. So, by passing
to a subsequence if necessary, we may assume that xn —> x in C(T,XW) and un —> u

in L*(Y). Our claim is that (x,u) £ P(x0).
First note that from Theorem 3.1 of [12] we have:

u(t) E conv w — lim{un(<)}tl>i C convw — lim U(t,xn(t)) a.e.

But note that xn(t) —+ x(t) in X, and, since X embeds compactly into H, we
have x(t) —* x(t) in H. Now by hypothesis H({/)(b), ?7(t,-) is u.s.c. from H into
Fu,. So we have w — lim U(t,xn(t)) C [/•(£, s(t)) a.e. (see Delahaye and Denel [4]).
Thus u(t) 6 conv U(t,x{t)) = U{t,x(t)) a.e.

Next let {^«n(.)(-)}n>i be the Dirac transition measures associated to the functions
{un(-)}n>i . Note that since Y is separable, W with the weak topology is metrisable
and compact. From now, this will be the topology on W. Note that {£Un(.)(-)}n>i
is a bounded subset of L°°{M(W)) = [L1(C(Wr))]* and L1(C(Wr)) is separable. So

Theorem 1 of Dunford and Schwartz [7] tells us that {^Un(.)(")}n>i ' s w*-sequentially

compact. So by passing to a subsequence if necessary, we may assume that 6Un —» A in

L°°{M{W)). Then for every z £ X, we have:

0 = (z,xn(t) -xQ)+ (z, A(s,xn(s))un(s)ds)

- (z,xn(t) - x0) + lz, I A(s,xn(s))vSUn{,)(dv)ds)

= (z,xn(t)-x0)+ / (z,A(s,xn(s))v)SUni,)(dv)ds.
t/0 JW

Recalling that W is compact and using hypothesis H(yl) (b), we have:

sup|(z,A(s,a;n(a))t; - A(s,x(s))v)\ = \(z,A{z,xn(s))vn - A(a, x(s))vn)\, vn € W.

By passing to a subsequence if necessary, we may assume that vn -̂ + v in Y. Then
by hypothesis H(.A) (b) we have:

\(z, A(a, xn(s))vn - A(s, x(s))vn)\ —> 0 as n —» oo.

So if we set An(z)(s,v) — (z,A(s,xn(s))v) and A(z)(s,v) = (z,A(s,x(s))v) then
An(z)(-, •) and A(z)(-,-) are Caratheodory functions on T x W and we just saw that
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An(z)(t, •) —> A(z)(t,-) in C(W), for all t E T. Invoking the dominated convergence

theorem we get An(z)(-, •) A A(z)(-, •) in Ll(T, C(W)). So we deduce that:

/ An{z){t,v)6Un{t)(dv)ds = f {z,A(s,xn(s)))un(s)ds
o Jw Jo

-> [ [ A(z)(t,v)X(s)(dv)ds = f f {z,A(s,x(s))v)X(s){dv)ds.
Jo Jw Jo Jw

So we have that for all z G X:

fz,x(t)-xo+ f f A(s,x{s))v\(s)(dv)ds) = 0.

Since X'—*X* densely, we get that:

x(t)-xo+ I I A(s,x(s))v\(s)(dv)ds -0
Jo Jw

=> x(t) + I A(s,x(s))v\(s)(dv) = 0 a.e., x(0) = x0.
Jw

Recalling that un Z u in L^Y) and 6Un ^ X in L°°(M(W)), we have for all A G
B(T):

/ un(s)ds — I v6Un(,)(dv)ds -> I u(s)ds = v\(s)(dv)ds.
JA JAJW JA JAJW

Since A 6 B(T) was arbitrary, we get that:

u(t) = / vX(t)(dv) a.e.
Jw

So

/ A(t,x(t))vX(t)(dv) = A(t,x(t)) f vX(t)(dv)
Jw Jw

= A(t,x(t))u(t) a.e.

Therefore, we conclude that x(t) + A(t,x(t))u(t) = 0 a.e., x(0) = x0 , and we already
know that u(t) € U(t,x(t)) a.e. Hence (x,u) is an admissible state-control pair for

( * ) •

From Lemma 2 of Balder [2] we know that we can find Lm: T x H x W —* R

Caratheodory integrands such that Lm(t, x, v) "f L(t, x,v) as m —> oo. Then, as before,
we can show that for every m ^ 1, we have:

/ / Lm(t,xn(t),v)SUn^(dv)da -> / / Lm(t,x(s),v)X(s)(dv)ds as n
Jo Jw Jo Jw

oo.
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On the other hand, from the monotone convergence theorem, we have:

f I Lm(t,x(s),v)\(s)(dv)ds^ f [ {t,x(s),v)\(s)(dv)d
Jo Jw Jo Jw

sssra-t oo.

Hence by a diagonalisation process, we have:

/ Lk(n){a,xn{s),un(a))da -> / / L(t,x(a),v)\{a){dv)da.
Jo Jo Jw

But recall that {(j!n)iin)}n>i is a minimising sequence of admissible state-control pairs.
So

lim / Lk(n)(a,xn(a),un(s))d3 = / / L(t,x(a),v)X(a)(dv)da
Jo Jo J iv

^ lim J(xn,un) = m.

On the other hand by hypothesis H(L) (b) L(t,x,-) is convex. So through Jensen's

inequality, we get that:

o Jw
L(s,x{s),v)\{s)(dv)ds> f L(S,X{S), f vX(s)(dv))ds

Jo V Jw )
fb

= / L(s,x(s),u(s))ds — J(x,u).
Jo

Therefore J(x,u) < m. Since (x,u) G P{xo), we deduce that J(x,u) — m and so
(x,u) is the desired optimal state-control pair for problem ( + ). |

4. AN EXAMPLE

In this section we present a nonlinear distributed parameter control system on

which our result applies.

Let W be an open domain in Rn with smooth boundary dW — Y and let T =

[0, b]. On T X W we consider the following nonlinear control system:

^ £ (-l)^Aa(t,z,k(x(t,z)))u{t,z) = O, where
|a|$m-l

k{x) = {Dax: | a |<m- l} ;

[D0x = 0 on T x T, \j3\Sm-2 and 2m > n;]

a;(0, z) = xo{z) on {0} x W;

\u(t,z)\ < <j>(t,x{t,z)) a.e. with <f>(t,y) ^ M.
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We will make the following hypotheses:

(1) (t,z) -> A(t,z,r) is measurable ( r = ( r 0 , . . . , r m _ i ) ) ;

(2) r —* A(t,z,r) is continuous;

(3) \A{t, z, r)v\ < g(z) + c • \r| for all v £ R with g £ L2{W);

(4) E (Aa{t,z,r)v-Aa(t,z,r')v,ra-r'a)>0{oiaHveR;
|a|Sm-l

(5) £ Aa(t,x,r)ra>c'\r\2.
\a\<m-l

Consider the Dirichlet form corresponding to the differential operator in divergence
form in our problem (++). So we have:

?»(',*,</)= J2 I Aa(t,z,k(x(z))u(z)D^(z))dz.

Then for t £ T, let Au(t): W™'2(W) -> W~m'2(W) be defined by (Au(t)x,y) =

Since u —» Au(t)x is continuous, linear on L2(W), we can write A(t, x)u.
We will show that (x,u) —* A(t,x)u is sequentially weakly continuous from

W™'2(W) x L2(W) into W-m'2{W). So let xn -^ x in W™'2(W) and wn Z u
in L2(W^). Since W^2{W)^>W^~ia{W) compactly (see Adams [1]), we get that
xn -^ x in W™~1>2(W). Also hypotheses (1), (2), (3) and Krasnoselski's theorem tell
us that the Nemitsky operator Aa corresponding to Aa is continuous from W™~ ' (W)
into L2(W). So we have Aa(t,xn) A Aa(t,x) in L2{W) and since un ^ u in L2{W),
we get that Aa(t,xn)un —> ^ ( ^ z j u in ^(W). Recall that since 2m > n, from the
Sobolev embedding theorem we have that W™'2(W)^->C(W) and so

/ Aa(t,z,xn(z))un(z)v(z)dz-> / Aa(t,z,x(z))u(z)v(z)dz.
Jw Jw

Therefore (x,u) —* A(t,x)u is sequentially weakly continuous as claimed.
Furthermore, by the Pettis measurability theorem, (see Diestel and Uhl [6]), it is

easy to check that t —• A(t,x) is measurable. Also from hypothesis (3), (4) and (5) we
have that for u £ K = {v £ L2(W): \\v\\2 ^ MX(W)^}, x -• A(t,x)u is monotone,

and
(A(t,x)u,x)w-m,2 > C2 \\xfwm,2 .

Set U(t,x) = {v £ L2(W): \v{z)\ < <f>(t,x(z)) a.e.}. If we assume that 4>{t,-) is
continuous, we can easily check that (t,x) —*• U(t,x) is measurable, while x —> U(t,x)
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is an u.s.c. set valued mapping from L2(W) into L2(W)W. Furthermore U(t,x) C K
and the latter is weakly compact in L2(W) .

We are also given an integral cost functional to be minimised over the admissible

state-control pairs of (*+). This has the following form:

( * * ' ) / / L(t,z,x(t,*),«(*, z))dzdt.
Jo Jw

Here L: TxWxRxR—>R is an integrand such that:

(6) (t,z,r,u) —* L(t,z,r,u) is l.s.c. and convex in u;
(7) L(t,z,r,u) ^ X(t,z) a.e. for all (r,u) & R x R with A(-,-) 6 L2(T x W).

Let L: T x L2(W) x L2{W) -> R be denned by:

L(t,x,u) = f L{t,z,x{z),u{z))dz.
Jw

Because of (6) and (7) above, it is easy to check that L{-, •, •) satisfies hypothesis

H( L) of Section 3.

So the full optimal control problem with cost criterion (•*-*•)' and constraint (•*-*•),

can have the following abstract formulation:

fb -
J(x,u)= / L(t,x(t),u(t))di -* inf

z(O) = :co, u(t) e U{t,x(t)) a.e.

If we take X = W™'2(W), H = L2(W) and X* = W~m'2{W), we see that
( * • *) is equivalent to (+) and so we can apply the Theorem of Section 3 and get
optimal solutions, provided there exist admissible state-control pairs with finite cost
and xo € W0

m'2(W).
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