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Abstract

Clique-width is a well-studied graph parameter owing to its use in understanding
algorithmic tractability: if the clique-width of a graph class G is bounded by a con-
stant, a wide range of problems that are NP-complete in general can be shown to be
polynomial-time solvable on G. For this reason, the boundedness or unboundedness of
clique-width has been investigated and determined for many graph classes. We survey
these results for hereditary graph classes, which are the graph classes closed under tak-
ing induced subgraphs. We then discuss the algorithmic consequences of these results,
in particular for the Colouring and Graph Isomorphism problems. We also explain
a possible strong connection between results on boundedness of clique-width and on
well-quasi-orderability by the induced subgraph relation for hereditary graph classes.

1 Introduction

Many decision problems are known to be NP-complete [84], and it is generally believed
that such problems cannot be solved in time polynomial in the input size. For many of these
hard problems, placing restrictions on the input (that is, insisting that the input has certain
stated properties) can lead to significant changes in the computational complexity of the
problem. This leads one to ask fundamental questions: under which input restrictions can
an NP-complete problem be solved in polynomial time, and under which input restrictions
does the problem remain NP-complete? For problems defined on graphs, we can restrict
the input to some special class of graphs that have some commonality. The ultimate goal
is to obtain complexity dichotomies for large families of graph problems, which tell us
exactly for which graph classes a certain problem is efficiently solvable and for which it
stays computationally hard. Such dichotomies may not always exist if P�= NP [129], but
rather than solving problems one by one, and graph class by graph class, we want to discover
general properties of graph classes from which we can determine the tractability or hardness
of families of problems.

1.1 Width Parameters

One way to define a graph class is to use a notion of “width” and consider the set of
graphs for which the width is bounded by a constant. Though it will not be our focus, let
us briefly illustrate this idea with the most well-known width parameter, treewidth. A tree
decomposition of a graph G = (V,E) is a tree T whose nodes are subsets of V and has the
properties that, for each v in V , the tree nodes that contain v induce a non-empty connected
subgraph, and, for each edge vw in E, there is at least one tree node that contains v and w.
See Figure 1 for an illustration of a graph and one of its tree decompositions. The sets of
vertices that form the nodes of the tree are called bags and the width of the decomposition
is one less than the size of the largest bag. The treewidth of G is the minimum width of its
tree decompositions. One can therefore define a class of graphs of bounded treewidth; that
is, for some constant c, the collection of graphs that each have treewidth at most c. The
example in Figure 1 has treewidth 2. Moreover, it is easy to see that trees form exactly the
class of graphs with treewidth 1. Hence, the treewidth of a graph can be seen as a measure
that indicates how close a graph is to being a tree. Many graph problems can be solved in
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Figure 1: A graph, and a tree decomposition of the graph.

polynomial time on trees. For such problems it is natural to investigate whether restricting
the problem to inputs that have bounded treewidth still yields algorithmic tractability. An
approach that often yields polynomial-time algorithms is to apply dynamic programming
over the decomposition tree. A disadvantage of this approach is that only sufficiently sparse
graphs have bounded treewidth.

We further discuss reasons for focussing on width parameters in Section 1.2, but let
us first note that there are many alternative width parameters, each of which has led to
progress in understanding the complexity of problems on graphs.

Clique-width, the central width parameter in our survey, is another well-known exam-
ple, which has received significant attention since it was introduced by Courcelle, Engelfriet
and Rozenberg [56] at the start of the 1990s. Clique-width can be seen as a generalisation of
treewidth that can deal with dense graphs, such as complete graphs and complete bipartite
graphs, provided these instances are sufficiently regular. We will give explain this in Sec-
tion 3, where we also give a formal definition, but, in outline, the idea is, given a graph G, to
determine how it can be built up vertex-by-vertex using four specific graph operations that
involve assigning labels to the vertices. The operations ensure that vertices labelled alike
will keep the same label and thus, in some sense, behave identically. The clique-width of G
is the minimum number of different labels needed to construct G in this way. Hence, if the
clique-width of a graph G is small, we can decompose G into large sets of similarly behaving
vertices, and these decompositions can be exploited to find polynomial-time algorithms (as
we shall see later in this paper).

We remark that many other width parameters have been defined including boolean-
width, branch-width, MIM-width, MM-width, module-width, NLC-width, path-width and
rank-width, to name just a few. These parameters differ in strength, as we explain below;
we refer to [95, 111,116,164] for surveys on width parameters.

Given two width parameters p and q, we say that p dominates q if there is a func-
tion f such that p(G) ≤ f(q(G)) for all graphs G. If p dominates q but not the reverse,
then p is more general than q, as p is bounded for larger graph classes: whenever q is
bounded for some graph class, then this is also the case for p, but there exists an infi-
nite family of graphs for which the reverse does not hold. If p dominates q and q dom-
inates p, then p and q are equivalent . For instance, MIM-width is more general than
boolean-width, clique-width, module-width, NLC-width and rank-width, all of which are
equivalent [42, 114, 151, 154, 164]. The latter parameters are more general than the equiv-
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alent group of parameters branch-width, MM-width and treewidth, which are, in turn,
more general than path-width [59, 155, 164]. To give a concrete example, recall that the
treewidth of the class of complete graphs is unbounded, in contrast to the clique-width.
More precisely, a complete graph on n ≥ 2 vertices has treewidth n− 1 but clique-width 2.
As another example, the reason that rank-width and clique-width are equivalent is because
the inequalities rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1 hold for every graph G [151]. These two
inequalities are essentially tight [150], and, as such, the latter example also shows that two
equivalent parameters may not necessarily be linearly, or even polynomially, related.

1.2 Motivation for Width Parameters

The main computational reason for the large interest in width parameters is that many
well-known NP-complete graph problems become polynomial-time solvable if some width
parameter is bounded. There are a number of meta-theorems which prescribe general,
sufficient conditions for a problem to be tractable on a graph class of bounded width. For
treewidth and equivalent parameters, such as branch-width and MM-width, one can use
the celebrated theorem of Courcelle [51]. This theorem, slightly extended from its original
form, states that for every graph class of bounded treewidth, every problem definable in
MSO2 can be solved in time linear in the number of vertices of the graph.1 In order to use
this theorem, one can use the linear-time algorithm of Bodlaender [17] to verify whether a
graph has treewidth at most c for any fixed constant c (that is, c is not part of the input).
However, many natural graph classes, such as all those that contain graphs with arbitrarily
large cliques, have unbounded treewidth.

We have noted that clique-width is more general than treewidth. This means that
if we have shown that a problem can be solved in polynomial time on graphs of bounded
clique-width, then it can also be solved in polynomial time on graphs of bounded treewidth.
Similarly, if a problem is NP-complete for graphs of bounded treewidth, then the same holds
for graphs of bounded clique-width. For graph classes of bounded clique-width, one can
use several other meta-theorems. The first such result is due to Courcelle, Makowsky and
Rotics [58]. They proved that graph problems that can be defined in MSO1 are linear-time
solvable on graph classes of bounded clique-width.2 An example of such a problem is the
well-known Dominating Set problem. This problem is to decide, for a graph G = (V,E)
and integer k, if G contains a set S ⊆ V of size at most k such that every vertex of G− S
has at least one neighbour in S.3

1.3 Focus: Clique-Width

As mentioned, in this survey we focus on clique-width. Despite the usefulness of bound-
edness of clique-width, our understanding of clique-width itself is still very limited. For

1MSO2 refers to the fragment of second order logic where quantified relation symbols must have arity
at most 2, which means that, with graphs, one can quantify over both sets of vertices and sets of edges.
Many graph problems can be defined using MSO2, such as deciding whether a graph has a k-colouring (for
fixed k) or a Hamiltonian path, but there are also problems that cannot be defined in this way.

2MSO1 is monadic second order logic with the use of quantifiers permitted on relations of arity 1 (such
as vertices), but not of arity 2 (such as edges) or more. Hence, MSO1 is more restricted than MSO2. We
refer to [55] for more information on MSO1 and MSO2.

3Several other problems, such as List Colouring and Precolouring Extension are polynomial-time
solvable on graphs of bounded treewidth [113], but stay NP-complete on graph of bounded clique-width; the
latter follows from results of [113] and [20], respectively; see also [88].
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example, although computing the clique-width of a graph is known to be NP-hard in gen-
eral [77],4 the complexity of computing the clique-width is open even on very restricted
graph classes, such as unit interval graphs (see [107] for some partial results). To give
another example, the complexity of determining whether a given graph has clique-width
at most c is still open for every fixed constant c ≥ 4. On the positive side, see [49] for a
polynomial-time algorithm for c = 3 and [75] for a polynomial-time algorithm, for every
fixed c, on graphs of bounded treewidth.

To get a better handle on clique-width, many properties of clique-width, and relation-
ships between clique-width and other graph parameters, have been determined over the
years. In particular, numerous graph classes of bounded and unbounded clique-width have
been identified. This has led to several dichotomies for various families of graph classes,
which state exactly which graph classes of the family have bounded or unbounded clique-
width. However, determining (un)boundedness of clique-width of a graph class is usually a
highly non-trivial task, as it requires a thorough understanding of the structure of graphs
in the class. As such, there are still many gaps in our knowledge.

A number of results on clique-width are collected in the surveys on clique-width by
Gurski [95] and Kamiński, Lozin and Milanič [116]. Gurski focuses on the behaviour of
clique-width (and NLC-width) under graph operations and transformations. Kamiński,
Lozin and Milanič also discuss results for special graph classes. We refer to a recent survey
of Oum [150] for algorithmic and structural results on the equivalent width parameter
rank-width.

1.4 Aims and Outline

In Section 2 we introduce some basic terminology and notation that we use throughout
the paper. In Section 3 we formally define clique-width. In the same section we present
a number of basic results on clique-width and explain two general techniques for showing
that the clique-width of a graph class is bounded or unbounded. For this purpose, in the
same section we also list a number of graph operations that preserve (un)boundedness of
clique-width for hereditary graph classes.

A graph class is hereditary if it is closed under taking induced subgraphs, or equivalently,
under vertex deletion. Due to its natural definition, the framework of hereditary graph
classes captures many well-known graph classes, such as bipartite, chordal, planar, interval
and perfect graphs; we refer to the textbook of Brandstädt, Le and Spinrad [34] for a
survey. As we shall see, boundedness of clique-width has been particularly well studied
for hereditary graph classes. We discuss the state-of-the-art and other known results on
boundedness of clique-width for hereditary graph classes in Section 4. This is all related
to our first aim: to update the paper of Kamiński, Lozin and Milanič [116] from 2009
by surveying, in a systematic way, known results and open problems on boundedness of
clique-width for hereditary graph classes.

Our second aim is to discuss algorithmic implications of the results from Section 4. We
do this in Section 5 by focussing on two well-known problems. We first discuss implications
for the Colouring problem, which is well known to be NP-complete [133]. We focus on
(hereditary) graph classes defined by two forbidden induced subgraphs. Afterwards, we
consider the algorithmic consequences for the Graph Isomorphism problem. This prob-
lem can be solved in quasi-polynomial time [7]. It is not known if Graph Isomorphism

4It is also NP-hard to compute treewidth [4] and parameters equivalent to clique-width, such as NLC-
width [98], rank-width (see [110,149]) and boolean-width [159].
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can be solved in polynomial time, but it is not NP-complete unless the polynomial hier-
archy collapses [160]. As such, we define the complexity class GI, which consists of all
problems that can be polynomially reduced to Graph Isomorphism and a problem in GI
is GI-complete if Graph Isomorphism can be polynomially reduced to it. The Graph
Isomorphism problem is of particular interest, as there are similarities between proving
unboundedness of clique-width of some graph class and proving that Graph Isomorphism
stays GI-complete on this class [161].

Our third aim is to discuss a conjectured relationship between boundedness of clique-
width and well-quasi-orderability by the induced subgraph relation. If it can be shown
that a graph class is well-quasi-ordered, we can apply several powerful results to prove
further properties of the class. This is, for instance, illustrated by the Robertson-Seymour
Theorem [157], which states that the set of all finite graphs is well-quasi-ordered by the
minor relation. This result makes it possible to test in cubic time whether a graph belongs
to some given minor-closed graph class [156] (see [112] for a quadratic algorithm). For the
induced subgraph relation, it is easy to construct examples of hereditary graph classes that
are not well-quasi-ordered. Take, for instance, the class of graphs of degree at most 2, which
contains an infinite anti-chain, namely the set of all cycles.

If every hereditary graph class that is well-quasi-ordered by the induced subgraph rela-
tion also has bounded clique-width, then all algorithmic consequences of having bounded
clique-width would also hold for being well-quasi-ordered by the induced subgraph relation.
However, Lozin, Razgon and Zamaraev [142] gave a negative answer to a question of Dali-
gault, Rao and Thomassé [69] about this implication, by presenting a hereditary graph class
of unbounded clique-width that is nevertheless well-quasi-ordered by the induced subgraph
relation. Their graph class can be characterized only by infinitely many forbidden induced
subgraphs. This led the authors of [142] to conjecture that every finitely defined heredi-
tary graph class that is well-quasi-ordered by the induced subgraph relation has bounded
clique-width, which, if true, would still be very useful. All known results agree with this
conjecture, and we survey these results in Section 6. In the same section we explain that the
graph operations given in Section 3 do not preserve well-quasi-orderability by the induced
subgraph relation. However, we also explain that a number of these operations can be used
for a stronger property, namely well-quasi-orderability by the labelled induced subgraph
relation.

In Section 7 we conclude our survey with a list of other relevant open problems. There,
we also discuss some variants of clique-width, including linear clique-width and power-
bounded clique-width.

2 Preliminaries

Throughout the paper we consider only finite, undirected graphs without multiple edges
or self-loops.

Let G = (V,E) be a graph. The degree of a vertex u ∈ V is the size of its neighbourhood
N(u) = {v ∈ V | uv ∈ E}. For a subset S ⊆ V , the graph G[S] denotes the subgraph
of G induced by S, which is the graph with vertex set S and an edge between two vertices
u, v ∈ S if and only if uv ∈ E. If F is an induced subgraph of G, then we denote this by
F ⊆i G. Note that G[S] can be obtained from G by deleting the vertices of V \S. The line
graph of G is the graph with vertex set E and an edge between two vertices e1 and e2 if
and only if e1 and e2 share a common end-vertex in G.

An isomorphism from a graph G to a graph H is a bijective mapping f : V (G)→ V (H)
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K+
1,t (t = 5 shown) K++

1,t (t = 5 shown)

Figure 2: The graphs K+
1,t and K++

1,t .

such that there is an edge between two vertices u and v in G if and only if there is an edge
between f(u) and f(v) in H. If such an isomorphism exists then G and H are said to be
isomorphic. We say that G is H-free if G contains no induced subgraph isomorphic to H.

Let G = (V,E) be a graph. A set K ⊆ V is a clique of G and G[K] is complete if there
is an edge between every pair of vertices in K. If G is connected, then a vertex v ∈ V
is a cut-vertex of G if G[V \ {v}] is disconnected, and a clique K ⊂ V is a clique cut-set
of G if G[V \ K] is disconnected. If G is connected and has at least three vertices but
no cut-vertices, then G is 2-connected . A maximal induced subgraph of G that has no
cut-vertices is a block of G. If G is connected and has no clique cut-set, then G is an atom.

The graphs Cn, Pn and Kn denote the cycle, path and complete graph on n vertices,
respectively. The length of a path or a cycle is the number of its edges. The distance
between two vertices u and v in a graph G is the length of a shortest path between them.
For an integer r ≥ 1, the r-th power of G is the graph with vertex set V (G) and an edge
between two vertices u and v if and only if u and v are at distance at most r from each
other in G.

If F and G are graphs with disjoint vertex sets, then the disjoint union of F and G is
the graph G+F = (V (F )∪V (G), E(F )∪E(G)). The disjoint union of s copies of a graph G
is denoted sG. A forest is a graph with no cycles, that is, every connected component is a
tree. A forest is linear if it has no vertices of degree at least 3, or equivalently, if it is the
disjoint union of paths. A leaf in a tree is a vertex of degree 1. In a complete binary tree
all non-leaf vertices have degree 3.

Let S and T be disjoint vertex subsets of a graph G = (V,E). A vertex v is (anti-
)complete to T if it is (non-)adjacent to every vertex in T . Similarly, S is (anti-)complete
to T if every vertex in S is (non-)adjacent to every vertex in T . A set of vertices M is
a module of G if every vertex of G that is not in M is either complete or anti-complete
to M . A module of G is trivial if it contains zero, one or all vertices of G, otherwise it is
non-trivial . We say that G is prime if every module of G is trivial.

A graph G is bipartite if its vertex set can be partitioned into two (possibly empty)
subsets X and Y such that every edge of G has one end-vertex in X and the other one in Y .
If X is complete to Y , then G is complete bipartite. For two non-negative integers s and t,
we denote the complete bipartite graph with partition classes of size s and t, respectively,
by Ks,t. The graph K1,t is also known as the (t + 1)-vertex star . The subdivision of an
edge uv in a graph replaces uv by a new vertex w and edges uw and vw. We let K+

1,t

and K++
1,t be the graphs obtained from K1,t by subdividing one of its edges once or twice,

respectively.

A graph is complete r-partite, for some r ≥ 1, if its vertex set can be partitioned into r
independent sets V1, . . . , Vr such that there exists an edge between two vertices u and v
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diamond = 2P1 + P2 gem = P1 + P4 house = P5 domino

Sh,i,j Cn Kn Pn

((h, i, j) = (1, 2, 3) shown) (n = 5 shown) (n = 5 shown) (n = 5 shown)

Figure 3: Some common graphs used throughout the paper.

if and only if u and v do not belong to the same set Vi. Note that a non-empty graph is
complete r-partite for some r ≥ 1 if and only if it is (P1 + P2)-free.

Let G = (V,E) be a graph. Its complement G is the graph with vertex set V and an
edge between two vertices u and v if and only if uv is not an edge of G. We say that G
is self-complementary if G is isomorphic to G. The complement of a bipartite graph is a
co-bipartite graph.

The graphs K1,3, 2P1 + P2, P1 + P4, and P5 are also known as the claw , diamond ,
gem, and house, respectively. The latter three graphs are shown in Figure 3, along with
the domino. The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, denotes the subdivided claw , which is
the tree with one vertex x of degree 3 and exactly three leaves, which are of distance h, i
and j from x, respectively. Note that S1,1,1 = K1,3, S1,1,2 = K+

1,3 and S1,1,3 = K++
1,3 . See

Figure 3 for an example. We let S be the class of graphs every connected component of
which is either a subdivided claw or a path on at least one vertex. The graph Th,i,j with
0 ≤ h ≤ i ≤ j denotes the triangle with pendant paths of length h, i and j, respectively.
That is, Th,i,j is the graph with vertices a0, . . . , ah, b0, . . . , bi and c0, . . . , cj and edges a0b0,
b0c0, c0a0, apap+1 for p ∈ {0, . . . , h − 1}, bpbp+1 for p ∈ {0, . . . , i − 1} and cpcp+1 for
p ∈ {0, . . . , j − 1}. Note that T0,0,0 = C3 = K3. The graphs T0,0,1 = P1 + P3, T0,1,1, T1,1,1

and T0,0,2 are also known as the paw , bull , net and hammer , respectively; see also Figure 4.
Also note that Th,i,j is the line graph of Sh+1,i+1,j+1. We let T be the class of graphs that
are the line graphs of graphs in S. Note that T contains every graph Th,i,j and every path
(as the line graph of Pt is Pt−1 for t ≥ 2).

Let G = (V,E) be a graph. For an induced subgraph F ⊆i G, the subgraph comple-
mentation operation, which acts on G with respect to F , replaces every edge in F by a
non-edge, and vice versa. If we apply this operation on G with respect to G itself, then we
obtain the complement G of G. For two disjoint vertex subsets S and T in G, the bipartite
complementation operation, which acts on G with respect to S and T , replaces every edge
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T0,0,1 = paw T0,1,1 = bull T1,1,1 = net T0,0,2 = hammer

Figure 4: Examples of graphs Th,i,j .

with one end-vertex in S and the other one in T by a non-edge and vice versa. We note
that applying a bipartite complementation is equivalent to applying a sequence of three
consecutive subgraph complementations, namely on G[S ∪ T ], G[S] and G[T ].

Let G be a graph class. Denote the number of labelled graphs on n vertices in G by gn.
Then G is superfactorial if there does not exist a constant c such that gn ≤ ncn for every n.

Recall that a graph class is hereditary if it is closed under taking induced subgraphs. It
is not difficult to see that a graph class G is hereditary if and only if G can be characterized
by a unique set FG of minimal forbidden induced subgraphs. A hereditary graph class G
is finitely defined if FG is finite. We note, however, that the set FG may have infinite size.
For example, if G is the class of bipartite graphs, then FG = {C3, C5, C7, . . .}. If F is a
set of graphs, we say that a graph G is F-free if G does not contain any graph in F as an
induced subgraph. In particular, this means that if a graph class G is hereditary, then G
is exactly the class of FG-free graphs. If F = {H1, H2, . . .} or {H1, H2, . . . , Hp} for some
p ≥ 0, we may also describe a graph G as being (H1, H2, . . .)-free or (H1, H2, . . . , Hp)-free,
respectively, rather than F-free; recall that if F = {H1} we may write H1-free instead.

Observation 2.1. Let H and H∗ be sets of graphs. The class of H-free graphs is contained
in the class of H∗-free graphs if and only if for every graph H∗ ∈ H∗, the set H contains
an induced subgraph of H∗.

Suppose H and H∗ are sets of graphs such that for every graph H∗ ∈ H∗, the set H
contains an induced subgraph of H∗. Observation 2.1 implies that any graph problem that
is polynomial-time solvable for H∗-free graphs is also polynomial-time solvable for H-free
graphs, and any graph problem that is NP-complete for H-free graphs is also NP-complete
for H∗-free graphs.

We define the complement of a hereditary graph class G as G = {G | G ∈ G}. Then G
is closed under complementation if G = G. As FG is the unique minimal set of forbidden
induced subgraphs for G, we can make the following observation.

Observation 2.2. A hereditary graph class G is closed under complementation if and only
if FG is closed under complementation.

Let G be a graph. The contraction of an edge uv replaces u and v and their incident
edges by a new vertex w and edges wy if and only if either uy or vy was an edge inG (without
creating multiple edges or self-loops). Let u be a vertex with exactly two neighbours v, w,
which in addition are non-adjacent. The vertex dissolution of u removes u, uv and uw, and
adds the edge vw. Note that vertex dissolution is a special type of edge contraction, and it
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is the reverse operation of an edge subdivision (recall that the latter operation replaces an
edge uv by a new vertex w with edges uw and vw).

Let G and H be graphs. The graph H is a subgraph of G if G can be modified into H
by a sequence of vertex deletions and edge deletions. We can define other containment
relations using the graph operations defined above. We say that G contains H as a minor
if G can be modified into H by a sequence of edge contractions, edge deletions and ver-
tex deletions, as a topological minor if G can be modified into H by a sequence of vertex
dissolutions, edge deletions and vertex deletions, as an induced minor if G can be mod-
ified into H by a sequence of edge contractions and vertex deletions, and as an induced
topological minor if G can be modified into H by a sequence of vertex dissolutions and
vertex deletions. Let {H1, . . . , Hp} be a set of graphs. If G does not contain any of the
graphsH1, . . . , Hp as a subgraph, then G is (H1, . . . , Hp)-subgraph-free. We define the terms
(H1, . . . , Hp)-minor-free, (H1, . . . , Hp)-topological-minor-free, (H1, . . . , Hp)-induced-minor-
free, and (H1, . . . , Hp)-induced-topological-minor-free analogously. Note that graph classes
defined by some set of forbidden subgraphs, minors, topological minors, induced minors, or
induced topological minors are hereditary, as they are all closed under vertex deletion.

Example 2.3. A graph is planar if it can be embedded in the plane in such a way that
any two edges only intersect with each other at their end-vertices. It is well known that
the class of planar graphs can be characterized by a set of forbidden minors: Wagner’s
Theorem [165] states that a graph is planar if and only if it is (K3,3,K5)-minor-free.

We will also need the following folklore observation (see, for example, [90]).

Observation 2.4. For every F ∈ S, a graph is F -subgraph-free if and only if it is F -
minor-free.

A k-colouring of a graph G is a mapping c : V → {1, . . . , k} such that c(u) �= c(v)
whenever u and v are adjacent vertices. The chromatic number of G is the smallest k such
that G has a k-colouring. The clique number of G is the size of a largest clique of G.

A graph G is perfect if, for every H ⊆i G, the chromatic number of H is equal to the
clique number of H. The Strong Perfect Graph Theorem [45] states that G is perfect if
and only if G is (C5, C7, C9, . . .)-free and (C7, C9, . . .)-free. A graph G is chordal if it is
(C4, C5, C6, . . .)-free and weakly chordal if it is (C5, C6, C7, . . .)-free and (C6, C7, . . .)-free. A
graph G is a split graph if it has a split partition, that is, a partition of its vertex set into two
(possibly empty) sets K and I, where K is a clique and I is an independent set. It is known
that a graph is split if and only if it is (C4, C5, 2P2)-free [78]. A graph G is a permutation
graph if line segments connecting two parallel lines can be associated to its vertices in such
a way that two vertices of G are adjacent if and only if the two corresponding line segments
intersect. A graph G is a permutation split graph if it is both permutation and split, and G
is a permutation bipartite graph if it is both permutation and bipartite. A graph G is
chordal bipartite if it is (C3, C5, C6, C7, . . .)-free. A graph G is distance-hereditary if the
distance between any two vertices u and v in any connected induced subgraph of G is the
same as the distance of u and v in G. Equivalently, a graph is distance-hereditary if and
only if it is (domino, gem, house, C5, C6, C7, . . .)-free [9]. A graph is (unit) interval if it has
a representation in which each vertex u corresponds to an interval Iu (of unit length) of the
line such that two vertices u and v are adjacent if and only if Iu ∩ Iv �= ∅.

We make the following observation. A number of inclusions in Observation 2.5 follow
immediately from the definitions and the Strong Perfect Graph Theorem. For the remaining
inclusions we refer to [34].
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perfect

bipartite weakly-chordal

permutationchordal bipartite chordal distance-hereditary

bipartite permutation split interval

unit intervalsplit permutation

Figure 5: The inclusion relations between well-known classes mentioned in the paper. An
arrow from one class to another indicates that the first class contains the second.

Observation 2.5. The following statements hold:

1. every split graph is chordal,
2. every (unit) interval graph is chordal,
3. every chordal graph is weakly chordal,
4. every (bipartite or split) permutation graph is weakly chordal,
5. every distance-hereditary graph is weakly chordal,
6. every weakly chordal graph is perfect,
7. every bipartite permutation graph is chordal bipartite, and
8. every (chordal) bipartite graph is perfect.

The containments listed in Observation 2.5 (and those that follow from them by tran-
sitivity) are also displayed Figure 5. It is not difficult to construct counterexamples for the
other containments. Indeed, for pairs of classes above for which we have listed the minimal
forbidden induced subgraph characterizations, these characterizations immediately provide
such counterexamples.

We now introduce the notion of treewidth formally. Recall from Section 1 that treewidth
expresses to what extent a graph is “tree-like”. A tree decomposition of a graph G is a pair
(T,X ) where T is a tree and X = {Xi | i ∈ V (T )} is a collection of subsets of V (G), such
that the following three conditions hold:

(i)
⋃

i∈V (T )Xi = V (G)

(ii) for every edge xy ∈ E(G), there is an i ∈ V (T ) such that x, y ∈ Xi and

(iii) for every x ∈ V (G), the set {i ∈ V (T ) | x ∈ Xi} induces a connected subtree of T .

The width of the tree decomposition (T,X ) is max{|Xi| − 1 | i ∈ V (T )}, and the
treewidth tw(G) of G is the minimum width over all tree decompositions of G. If T is
a path, then (X,T ) is a path decomposition of G. The path-width pw(G) of G is the
minimum width over all path decompositions of G.
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A quasi order ≤ on a set X is a reflexive, transitive binary relation. Two elements
x, y ∈ X in ≤ are comparable if x ≤ y or y ≤ x; otherwise they are incomparable. A set of
pairwise (in)comparable elements in ≤ is called an (anti)-chain. A quasi-order ≤ is a well-
quasi-order if every infinite sequence of elements x1, x2, x3, . . . in X contains a pair (xi, xj)
with xi ≤ xj and i < j, or equivalently, if ≤ has no infinite strictly decreasing sequence
and no infinite anti-chain. A partial order ≤ is a quasi-order which is anti-symmetric, that
is, if x ≤ y and y ≤ x then x = y. If we consider two graphs to be “equal” when they
are isomorphic, then all quasi orders considered in this paper are in fact partial orders. As
such, throughout this paper “quasi order” can be interpreted as “partial order”.

For an arbitrary set M , we let M∗ denote the set of finite sequences of elements of M . A
quasi-order ≤ on M defines a quasi-order ≤∗ on M∗ as follows: (a1, . . . , am) ≤∗ (b1, . . . , bn)
if and only if there is a sequence of integers i1, . . . , im with 1 ≤ i1 < · · · < im ≤ n such that
aj ≤ bij for j ∈ {1, . . . ,m}. We call ≤∗ the subsequence relation.

The following lemma is well known and very useful when dealing with quasi-orders.

Lemma 2.6 (Higman’s Lemma [109]). Let (M,≤) be a well-quasi-order. Then (M∗,≤∗)
is a well-quasi-order.

3 Clique-Width

In this section we give a number of basic results on clique-width. We begin by giving
a formal definition.5 The clique-width of a graph G, denoted by cw(G), is the minimum
number of labels needed to construct G using the following four operations:

1. Create a new graph with a single vertex v with label i. (This operation is written i(v).)
2. Take the disjoint union of two labelled graphs G1 and G2 (written G1 ⊕G2).
3. Add an edge between every vertex with label i and every vertex with label j, i �= j

(written ηi,j).
4. Relabel every vertex with label i to have label j (written ρi→j).

We say that a construction of a graph G with the four operations is a k-expression if
it uses at most k labels. Thus the clique-width of G is the minimum k for which G has
a k-expression. We refer to [57, 106, 108] for a number of characterizations of clique-width
and to [115] for a compact representation of graphs of clique-width k.

Example 3.1. We first note that cw(P1) = 1 and cw(P2) = cw(P3) = 2. Now consider a
path on four vertices v1, v2, v3, v4, in that order. Then this path can be constructed using
the four operations (using only three labels) as follows:

η3,2(3(v4)⊕ ρ3→2(ρ2→1(η3,2(3(v3)⊕ η2,1(2(v2)⊕ 1(v1)))))).

Note that at the end of this construction, only v4 has label 3. It is easy to see that a
construction using only two labels is not possible. Hence, we deduce that cw(P4) = 3. This
construction can readily be generalized to longer paths: for n ≥ 5 let E be a 3-expression
for the path Pn−1 on vertices v1, . . . , vn−1, with only the vertex vn−1 having label 3, then

5The term clique-width and the definition in essentially same form we give here were introduced by
Courcelle and Olariu [59] based on operations and related decompositions from Courcelle, Engelfriet and
Rozenberg [56]; see also [55]. Although we consider only undirected graphs, the definitions of [59] also
covered the case of directed graphs. Other equivalent width parameters have also been studied for directed
graphs. For example, Kanté and Rao [118] considered the rank-width of directed graphs.
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η3,2(3(vn) ⊕ ρ3→2(ρ2→1(E))) is a 3-expression for the path Pn on vertices v1, . . . , vn, with
only the vertex vn having label 3. Therefore cw(Pn) = 3 for all n ≥ 4. Moreover, by
changing the construction to give the first vertex v1 on a path Pn (n ≥ 3) a unique fourth
label, we can connect it to the last constructed vertex vn of Pn (the only vertex with label 3)
via an edge-adding operation to obtain Cn. Hence, we find that cw(Cn) ≤ 4 for every n ≥ 3.
In fact cw(Cn) = 4 holds for every n ≥ 7 [145].

A class of graphs G has bounded clique-width if there is a constant c such that the
clique-width of every graph in G is at most c. If such a constant c does not exist, we say
that the clique-width of G is unbounded . A hereditary graph class G is a minimal class
of unbounded clique-width if it has unbounded clique-width and every proper hereditary
subclass of G has bounded clique-width.

The following two observations, which are both well known and readily seen, give two
graph classes of small clique-width. In particular, Proposition 3.3 follows from Example 3.1
after observing that a graph of maximum degree at most 2 is the disjoint union of paths
and cycles. For more examples of graph classes of small width, see, for instance, [26, 27].

Proposition 3.2. Every forest has clique-width at most 3.

Proof. Let T be a tree with a root vertex v. We claim that there is a 3-expression which
creates T such that, in the resulting labelled tree, only v has label 3. We prove this by
induction on |V (T )|. Clearly this holds when |V (T )| = 1. Otherwise, let v1, . . . , vk be the
children of v and let T1, . . . , Tk be the subtrees of T rooted at v1, . . . , vk, respectively. By
the induction hypothesis, for each i there is a 3-expression which creates Ti such that, in the
resulting labelled tree, only vi has label 3. We take the disjoint union ⊕ of these expressions
and let E be the resulting 3-expression. Then η3,2(3(v)⊕ ρ3→2(ρ2→1(E))) is a 3-expression
which creates T such that, in the resulting labelled tree, only v has label 3. Therefore for
every tree T , there is a 3-expression that constructs T . Since a forest is a disjoint union of
trees, we can then use the ⊕ operation to extend this to a 3-expression for any forest. The
proposition follows.

Proposition 3.3. Every graph of maximum degree at most 2 has clique-width at most 4.

Recall that for general graphs, the complexity of computing the clique-width of a graph
was open for a number of years, until Fellows, Rosamund, Rotics and Szeider [77] proved
that this is NP-hard. However, Proposition 3.2 implies that we can determine the clique-
width of a forest F in polynomial time: if F contains an induced P4, then cw(F ) = 3; if F
is P4-free but has an edge, then cw(F ) = 2; and if F = sP1 for some s ≥ 1, then cw(F ) = 1.

In contrast to Proposition 3.3, graphs of maximum degree at most 3 may have arbitrarily
large clique-width. An example of this is a wall of arbitrary height, which can be thought
of as a hexagonal grid. We do not formally define the wall, but instead we refer to Figure 6,
in which three examples of walls of different heights are depicted; see, for example, [46]
for a formal definition. Note that walls of height at least 2 have maximum degree 3. The
following result is well known; see for example [116].

Theorem 3.4. The class of walls has unbounded clique-width.

As mentioned, clique-width is more general than treewidth. Courcelle and Olariu [59]
proved that cw(G) ≤ 4 · 2tw(G)−1 + 1 for every graph G (see [87] for an alternative proof).
Corneil and Rotics [50] improved this bound by showing that cw(G) ≤ 3 · 2tw(G)−1 for
every graph G. They also proved that for every k, there is a graph G with tw(G) = k
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Figure 6: Walls of height 2, 3 and 4, respectively.

and cw(G) ≥ 2

⌊
tw(G)

2

⌋
−1

. The following result shows that for restricted graph classes the
two parameters may be equivalent (see [53, 54] for graph classes for which treewidth and
clique-width are even linearly related).

Theorem 3.5 ([97]). For t ≥ 1, every class of Kt,t-subgraph-free graphs of bounded clique-
width has bounded treewidth.

Corollary 3.6. A class of graphs of bounded maximum degree has bounded clique-width if
and only if it has bounded treewidth.

Gurski and Wanke gave another connection between treewidth and clique-width.

Theorem 3.7 ([100]). A class of graphs G has bounded treewidth if and only if the class of
line graphs of graphs in G has bounded clique-width.

As mentioned in Section 1, boundedness of clique-width has been determined for many
hereditary graph classes. However, using the definition of clique-width directly to prove
that a certain hereditary graph class G has bounded clique-width is often difficult. An
alternative way to show that a hereditary graph class G has bounded clique-width is to
prove that for infinitely many values of n, the number of labelled graphs in G on n vertices
is at most the Bell number Bn [3], but this has limited applicability. The following BCW

Method is more commonly used:

Bounding Clique-Width (BCW Method)

1. If possible, consider only graphs in G that have some suitable property π.

2. Take a graph class G′ for which it is known that its clique-width is bounded.

3. For every graph G ∈ G (possibly with property π), reduce G to a graph in G′ by using
a constant number of graph operations that do not change the clique-width of G by
“too much”.

Note that the subclass of graphs in G that have some property π in Step 1 need not be
hereditary. For example, it is known [18, 139] that we may choose the property π to be
that of being 2-connected and that we can delete some constant number k of vertices from
a graph without affecting the clique-width by more than some bounded amount. Then we
could try to prove that G has bounded clique-width by showing that for every 2-connected
graph in G, we can delete no more than k vertices to obtain a graph in some class G′ that
we know to have bounded clique-width. We give some concrete examples of this method in
the next section.
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The power of the method depends on both the graph property π in Step 1 and the graph
operations that we are allowed to use in Step 3. In particular we will use graph operations
to modify a graph G of some class G into the disjoint union of some graphs that have a
simpler structure than G itself. As a result, we can then deal with these simpler graphs
separately. This approach is particularly useful if G is hereditary: if the simpler graphs are
induced subgraphs of the original graph G, then we can still make use of earlier deduced
properties for G when dealing with the simpler induced subgraphs of G. Before giving
important examples of these operations and properties, we first formalize our approach.

Let k ≥ 0 be a constant and let γ be some graph operation. We say that a graph class G′
is (k, γ)-obtained from a graph class G if the following two conditions hold:

1. every graph in G′ can be obtained from a graph in G by performing γ at most k times,
and

2. for every graph G ∈ G there exists at least one graph in G′ that can be obtained
from G by performing γ at most k times (note that G is not necessarily a subclass
of G′).

A graph operation γ preserves boundedness of clique-width if, for every finite constant k
and every graph class G, every graph class G′ that is (k, γ)-obtained from G has bounded
clique-width if and only if G has bounded clique-width. We note that Condition 1 is
necessary for this definition to be meaningful; without this condition the class of all graphs
(which has unbounded clique-width) would be (k, γ)-obtained from every other graph class.
Similarly, we also need Condition 2, as otherwise every graph class would be (k, γ)-obtained
from the class of all graphs. If k = ∞ is allowed, then γ preserves boundedness of clique-
width ad infinitum. Similarly, a graph property π preserves boundedness of clique-width
if, for every graph class G, the subclass of G with property π has bounded clique-width if
and only if G has bounded clique-width. If necessary, we may restrict these definitions to
only be valid for some specific types of graph classes.

We refer to the survey of Gurski [95] for a detailed overview of graph operations that
preserve boundedness of clique-width and for bounds that tell us more precisely by how
much the clique-width can change when applying various operations.6 Here, we only state
the most important graph operations, together with two well-known properties that preserve
boundedness of clique-width.

Facts about clique-width:

Fact 1. Vertex deletion preserves boundedness of clique-width [139].

Fact 2. Subgraph complementation preserves boundedness of clique-width [116].

Fact 3. Bipartite complementation preserves boundedness of clique-width [116].

Fact 4. Being prime preserves boundedness of clique-width for hereditary graph classes [59].

Fact 5. Being 2-connected preserves boundedness of clique-width for hereditary graph
classes [18, 139].

Fact 6. Edge subdivision preserves boundedness of clique-width ad infinitum for graph
classes of bounded maximum degree [116].

6We note that some of these graph operations may exponentially increase the upper bound of the clique-
width.
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We note that Fact 3 follows from Fact 2, as bipartite complementations can be mim-
icked by three subgraph complementations. Moreover, an edge deletion is a special case
of subgraph complementation, whereas an edge contraction is a vertex deletion and a bi-
partite complementation. Finally, recall that an edge subdivision is the reverse operation
of a vertex dissolution, which can be seen as a type of edge contraction. Hence, from
Facts 1–3 it follows that edge deletion, edge contraction and edge subdivision each preserve
boundedness of clique-width.

Vertex deletions, edge deletions and edge contractions do not preserve boundedness of
clique-width ad infinitum: one can take any graph class of unbounded clique-width and
apply one of these operations until one obtains the empty graph or an edgeless graph.
Hence, Facts 1–3 do not preserve boundedness of clique-width ad infinitum. This holds
even for graphs of maximum degree at most 3, as the class of walls and their induced
subgraphs has unbounded clique-width by Theorem 3.4.

In contrast, Fact 6 says that edge subdivisions applied on graphs of bounded maximum
degree do preserve boundedness of clique-width ad infinitum. We note that Fact 6 follows
from Corollary 3.6 and the fact that an edge subdivision does not change the treewidth
of a graph (see, for example, [140]). However, the condition on the maximum degree is
necessary for the “only if” direction of Fact 6. Otherwise, as discussed in [67], one could
start with a clique K on at least two vertices (which has clique-width 2) and then apply an
edge subdivision on an edge uv in K if and only if uv is not an edge in some graph G of
arbitrarily large clique-width with |V (G)| = |V (K)|. This yields a graph G′ that contains G
as an induced subgraph, implying that cw(G′) ≥ cw(G), which is arbitrarily larger than
cw(K) = 2.

As an aside, note that edge contractions do not increase the clique-width of graphs of
bounded maximum degree either. We can apply Corollary 3.6 again after observing from
the definition of treewidth that edge contractions do not increase treewidth. However, the
condition on the maximum degree is necessary here as well; a (non-trivial) counterexample
is given by Courcelle [52], who proved that the class of graphs that are obtained by edge
contractions from the class of graphs of clique-width 3 has unbounded clique-width.

For the BCW Method, operations that preserve boundedness of clique-width may be com-
bined, but these operations may not always be used in combination with some property π
that preserves boundedness of clique-width. This is because applying a graph operation
may result in a graph that does not have property π. Moreover, it is not always clear
whether two or more properties that preserve boundedness of clique-width may be unified
into one property. For instance, every non-empty class of 2-connected graphs is not hered-
itary and every class of prime graphs containing a graph on more than two vertices is not
hereditary. As such, it is unknown whether Facts 4 and 5, which may only be applied on
hereditary graph classes, can be combined. That is, the following problem is open.

Open Problem 3.8. Let G be a hereditary class of graphs and let F be the class of 2-
connected prime graphs in G. If F has bounded clique-width, does this imply that G has
bounded clique-width?

To prove that a graph class G has unbounded clique-width, a similar method to the BCW
Method can be used.
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Unbounding Clique-Width (UCW Method)

1. Take a graph class G′ known to have unbounded clique-width.

2. For every graph G′ ∈ G′, reduce G′ to a graph in G by using a constant number of
graph operations that do not change the clique-width of G′ by “too much”.

By Theorem 3.4, we can consider the class of walls as a starting point for the graph
class G′. A k-subdivided wall is a graph obtained from a wall after subdividing each edge
exactly k times for some constant k ≥ 0. Combining Fact 6 with Theorem 3.4 and the
observation that walls of height at least 2 have maximum degree 3 leads to the following
result.

Corollary 3.9 ([140]). For any constant k ≥ 0, the class of k-subdivided walls has un-
bounded clique-width.

Corollary 3.9 has proven to be very useful. For instance, it can be used to obtain the
following result (recall that S is the class of graphs each connected component of which is
either a subdivided claw or a path).

Corollary 3.10 ([140]). Let {H1, . . . , Hp} be a finite set of graphs. If Hi /∈ S for all
i ∈ {1, . . . , p}, then the class of (H1, . . . , Hp)-free graphs has unbounded clique-width.

As a side note, we remark that “limit classes” of hereditary graph classes of unbounded
clique-width may have bounded clique-width. For instance, the class of (Ck, . . . , C�)-
subgraph-free graphs has unbounded clique-width for any two integers k ≥ 3 and � ≥ k
due to Corollary 3.9. However, for every k ≥ 3, the class of (Ck, Ck+1, . . .)-subgraph-free
graphs has bounded clique-width [137]. We refer to [137] for more details on limit classes.

Corollary 3.9 is further generalized by the following theorem.

Theorem 3.11 ([67]). For m ≥ 0 and n > m + 1 the clique-width of a graph G is at
least � n−1m+1� + 1 if V (G) has a partition into sets Vi,j (i, j ∈ {0, . . . , n}) with the following
properties:

1. |Vi,0| ≤ 1 for all i ≥ 1,
2. |V0,j | ≤ 1 for all j ≥ 1,
3. |Vi,j | ≥ 1 for all i, j ≥ 1,
4. G[∪nj=0Vi,j ] is connected for all i ≥ 1,
5. G[∪ni=0Vi,j ] is connected for all j ≥ 1,
6. for i, j, k ≥ 1, if a vertex of Vk,0 is adjacent to a vertex of Vi,j then i ≤ k,
7. for i, j, k ≥ 1, if a vertex of V0,k is adjacent to a vertex of Vi,j then j ≤ k, and
8. for i, j, k, � ≥ 1, if a vertex of Vi,j is adjacent to a vertex of Vk,� then |k − i| ≤ m and
|�− j| ≤ m.

Many other constructions of graphs of large clique-width follow from Theorem 3.11 using
the UCW Method (possibly by applying Facts 1–3). For instance, this is the case for square
grids [145], whose exact clique-width was determined by Golumbic and Rotics [91]. This is
also the case for the constructions of Brandstädt, Engelfriet, Le and Lozin [27], Lozin and
Volz [143], Korpelainen, Lozin and Mayhill [124] and Kwon, Pilipczuk and Siebertz [128]
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for proving that the classes of K4-free co-chordal graphs, 2P3-free bipartite graphs, split
permutation graphs and twisted chain graphs, respectively, have unbounded clique-width.

Constructions of graphs of arbitrarily large clique-width not covered by Theorem 3.11
can be found in [91] and [35], which prove that unit interval graphs and bipartite permu-
tation graphs, respectively, have unbounded clique-width. We discuss these results in more
detail in the next section, but we note the following.

First, the classes of split permutation graphs (and the analogous bipartite class of bichain
graphs) [5], unit interval graphs [136] and bipartite permutation graphs [136] are even min-
imal hereditary graph classes of unbounded clique-width. Collins, Foniok, Korpelainen,
Lozin and Zamaraev [48] proved that the number of minimal hereditary graphs of un-
bounded clique-width is infinite. Second, for classes, such as split graphs, bipartite graphs,
co-bipartite graphs and (K1,3, 2K2)-free graphs, unboundedness of clique-width also follows
from the fact that these classes are superfactorial [18] and an application of the following
result.

Theorem 3.12 ([18]). Every superfactorial graph class has unbounded clique-width.

4 Results on Clique-Width for Hereditary Graph Classes

In this section we survey known results on (un)boundedness of clique-width for hered-
itary graph classes in a systematic way.7 The proofs of these results often use the BCW

Method or UCW Method. As mentioned earlier, many well-studied graph classes are heredi-
tary. From the point of view of clique-width, these are also natural classes to consider, as
the definition of clique-width implies that if a graph G contains a graph H as an induced
subgraph, then cw(H) ≤ cw(G).

Recall that a graph class G is hereditary if and only if it can be characterized by a
(possibly infinite) set of forbidden induced subgraphs FG . We start by giving a dichotomy
for the case when FG consists of a single graph H. This result is folklore: observe that P4

has clique-width 3 and see [59] for a proof that P4-free graphs have clique-width at most 2
and [67] for a proof of the other claims of Theorem 4.1.

Theorem 4.1. Let H be a graph. The class of H-free graphs has bounded clique-width
if and only if H is an induced subgraph of P4. Furthermore, a graph has clique-width at
most 2 if and only if it is P4-free.

Note that by Theorem 4.1 we can test whether a graph G has clique-width at most 2
in polynomial time by checking whether G is P4-free. We recall that deciding whether a
graph has clique-width at most c is known to be polynomial-time solvable for c = 3 [49],
but open for c ≥ 4.

As discussed in Section 1, an important reason for studying boundedness of clique-
width for special graph classes is to obtain more classes of graphs for which a wide range of
classical NP-complete problems become polynomial-time solvable. Theorem 4.1 shows that
this cannot be done for (most) classes of H-free graphs. In order to find more graph classes
of bounded clique-width, we can follow several approaches that try to extend Theorem 4.1.

To give an example, Vanherpe [163] considered the class of partner-limited graphs,
which were introduced by Roussel, Rusu and Thuillier in [158]. A vertex u in a graph G is
a partner of an induced subgraph H isomorphic to P4 of G if V (H) ∪ {u} induces at least

7The Information System on Graph Classes and their Inclusions [71] also keeps a record of many graph
classes for which boundedness or unboundedness of clique-width is known.
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two P4s in G. A graph G is said to be partner-limited if every induced P4 has at most two
partners. Vanherpe proved that the clique-width of partner-limited graphs is at most 4.
This result generalized a corresponding result of Courcelle, Makowsky and Rotics [58] for
P4-tidy graphs, which are graphs in which every induced P4 has at most one partner.

To give another example, Makowsky and Rotics [145] considered the classes of (q, t)-
graphs, which were introduced by Babel and Olariu in [8]. For two integers q and t, a graph
is a (q, t)-graph if every subset of q vertices induces a subgraph that has at most t distinct
induced P4s. Note that P4-free graphs are the (4, 0)-graphs, whereas (5, 1)-graphs are also
known as P4-sparse graphs; note that the latter class of graphs is a subclass of the class of
P4-tidy graphs. Makowsky and Rotics proved the following result.

Theorem 4.2 ([145]). Let q ≥ 4 and t ≥ 0. Then the class of (q, t)-graphs has bounded
clique-width if
• q ≤ 6 and t ≤ q − 4, or
• q ≥ 7 and t ≤ q − 3

and it has unbounded clique-width if
• q ≤ 6 and t ≥ q − 3
• q = 7 and t ≥ q − 2, or
• q ≥ 8 and t ≥ q − 1.

Theorem 4.2 covers all cases except where q ≥ 8 and t = q − 2. Makowsky and
Rotics [145] therefore posed the following open problem (see also [116]).

Open Problem 4.3. Is the clique-width of (q, q − 2)-graphs bounded if q ≥ 8?

Below we list five other systematic approaches, which we discuss in detail in the remain-
der of this section. First, we can try to replace “H-free graphs” by “H-free graphs in some
hereditary graph class X” in Theorem 4.1. We discuss this line of research in Section 4.1.

Second, we may try to determine boundedness of clique-width of hereditary graph
classes G for which FG is small. However, even the classification for (H1, H2)-free graphs
is not straightforward and is still incomplete. We discuss the state-of-the-art for (H1, H2)-
free graphs in Section 4.2. There, we also explain how results in Section 4.1 are helpful for
proving results for (H1, H2)-free graphs.8

Third, we may try to determine boundedness of clique-width for hereditary graph
classes G for which FG only contains graphs of small size. For instance, Brandstädt, Dragan,
Le and Mosca [26] classified boundedness of clique-width for those hereditary graph classes
for which FG consists of 1-vertex extensions of P4. We discuss their result, together with
other results in this direction, in Section 4.3.

Fourth, we observe that P4 is self-complementary. As such we can try to extend The-
orem 4.1 to graph classes closed under complementation. Determining boundedness of
clique-width for such graph classes is also natural to consider due to Fact 2. We present
the current state-of-the-art in this direction in Section 4.4.

Fifth, we may consider hereditary graph classes that can be described not only in terms
of forbidden induced subgraphs but also using some other forbidden subgraph containment.
For instance, we can consider hereditary graph classes characterized by some set F of
forbidden minors. We survey the known results in this direction in Section 4.5.

8We emphasize that the underlying research goal is not to start classifying the case of three forbidden
induced subgraphs H1, H2 and H3 after the classification for two graphs H1 and H2 has been completed.
Instead the aim is to develop new techniques through a systematic study, by looking at hereditary graph
classes from different angles in order to increase our understanding of clique-width.
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4.1 Considering H-Free Graphs Contained in Some Hereditary Graph Class

Theorem 4.1 shows that the class of H-free graphs has bounded clique-width only if H
is an induced subgraph of P4. In this section we survey the effect on boundedness of clique-
width of restricting the class of H-free graphs to just those graphs that belong to some
hereditary graph class X . Initially we do not want to make the hereditary graph class X , in
which we look for these H-free graphs, too narrow. However, if we let X be too large, the
classification might remain the same as the one for general H-free graphs in Theorem 4.1.
This is the case if we let X be the class of perfect graphs, or even the class of weakly chordal
graphs, which form a proper subclass of perfect graphs by Observation 2.5.

Theorem 4.4 ([25]). Let H be a graph. The class of H-free weakly chordal graphs has
bounded clique-width if and only if H is an induced subgraph of P4.

If we restrict X further, then there are several potential classes of graphs to consider,
such as chordal graphs, permutation graphs and distance-hereditary graphs (see also Fig-
ure 5). However, distance-hereditary graphs are known to have clique-width at most 3 [91]
(and hence their clique-width can be computed in polynomial time using the algorithm
of [49]). On the other hand, the classes of chordal graphs and permutation graphs have
unbounded clique-width. This follows from combining Observation 2.5 with one of the
following three theorems.

Theorem 4.5 ([91]). The class of unit interval graphs has unbounded clique-width.

Theorem 4.6 ([124]). The class of split permutation graphs has unbounded clique-width.

Theorem 4.7 ([35]). The class of bipartite permutation graphs has unbounded clique-width.

The case when X is the class of chordal graphs has received particular attention, as we
now discuss. Brandstädt, Engelfriet, Le and Lozin [27] proved that the class of 4P1-free
chordal graphs has unbounded clique-width. However, there are many graphs H besides P4

for which the class of H-free chordal graphs has bounded clique-width. A result of [50]
implies that Kr-free chordal graphs have bounded clique-width for every integer r ≥ 1.
Brandstädt, Le and Mosca [32] showed that (P1+P4)-free chordal graphs have clique-width
at most 8 and that P1 + P4-free chordal graphs are distance-hereditary graphs and thus have
clique-width at most 3. Brandstädt, Dabrowski, Huang and Paulusma [25] proved that bull-
free chordal graphs have clique-width at most 3, improving a known bound of 8 [132]. The
same authors also proved that S1,1,2-free chordal graphs have clique-width at most 4, and
that the classes of K1,3 + 2P1-free chordal graphs, (P1 + P1 + P3)-free chordal graphs and
(P1 + 2P1 + P2)-free chordal graphs each have bounded clique-width.

Combining all the above results [25,27,32,50,91,145] leads to the following summary for
H-free chordal graphs; see Figure 7 for definitions of the graphs F1 and F2 and Figure 8 for
pictures of all (maximal) graphs H for which the class of H-free chordal graphs is known
to have bounded clique-width.

Theorem 4.8 ([25]). Let H be a graph with H /∈ {F1, F2}. The class of H-free chordal
graphs has bounded clique-width if and only if:
(i) H = Kr for some r ≥ 1,
(ii) H ⊆i bull,
(iii) H ⊆i P1 + P4,
(iv) H ⊆i gem,
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F1 F2

Figure 7: The two graphs H for which the boundedness of clique-width of the class of
H-free chordal graphs is open.

S1,1,2 K1,3 + 2P1 P1 + P1 + P3 P1 + 2P1 + P2

bull Kr (r = 6 shown) P1 + P4 gem = P1 + P4

Figure 8: The graphs H listed in Theorem 4.8, for which the class of H-free chordal graphs
has bounded clique-width.

(v) H ⊆i K1,3 + 2P1,
(vi) H ⊆i P1 + P1 + P3,
(vii) H ⊆i P1 + 2P1 + P2, or
(viii) H ⊆i S1,1,2.

As can be seen from its statement, Theorem 4.8 leaves only two cases open, namely F1

and F2; see also [25].

Open Problem 4.9. Determine whether the class of H-free chordal graphs has bounded
or unbounded clique-width when H = F1 or H = F2.

Recall that split graphs are chordal by Observation 2.5 and have been shown to have
unbounded clique-width [145] (this also follows from Theorem 4.6). We now let X be the
class of split graphs, that is, we consider classes of H-free split graphs, and find graphs H
for which the class of H-free split graphs has bounded clique-width. We first note that as
the class of split graphs is the class of (C4, C5, 2P2)-free graphs [78], the complement of a
split graph is also a split graph by Observation 2.2. By Fact 2 this implies the following
observation, which we discuss in more depth in Section 4.4.

Observation 4.10. For a graph H, the class of H-free split graphs has bounded clique-width
if and only the class of H-free split graphs has bounded clique-width.
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F1 F2 F3

rP1 (r = 4 shown) bull+P1 Q K1,3 + 2P1

Figure 9: The graphs H from Theorem 4.11 for which the classes of H-free split graphs
and H-free split graphs have bounded clique-width.

Brandstädt, Dabrowski, Huang and Paulusma considered H-free split graphs in [24].
They considered the two cases H = F1 and H = F2 that are open for H-free chordal
graphs (Open Problem 4.9) and proved that the classes of F1-free split graphs and F2-free
split graphs have bounded clique-width. They showed the same result for (bull +P1)-free
split graphs, Q-free split graphs, (K1,3 + 2P1)-free split graphs and F3-free split graphs;
see Figure 9 for a description of each of these graphs. They also proved that for every
integer r ≥ 1, the clique-width of rP1-free split graphs is at most r + 1. Moreover, they
showed the following: if H is a graph with at least one edge and at least one non-edge that
is not an induced subgraph of a graph in {F4, F4, F5, F5} (see Figure 10), then the class
of H-free split graphs has unbounded clique-width. Note that both F4 and F5 have seven
vertices. The 6-vertex induced subgraphs of F4 are: bull +P1, F1, F3 and K1,3 + 2P1. The
6-vertex induced subgraphs of F5 are: bull +P1, F1, F2, F2, F3, F3 and Q. The above results
lead to the following theorem.

Theorem 4.11 ([24]). Let H be a graph not in {F4, F4, F5, F5}. The class of H-free split
graphs has bounded clique-width if and only if:
(i) H = rP1 for some r ≥ 1,
(ii) H = Kr for some r ≥ 1, or
(iii) H is an induced subgraph of a graph in {F4, F4, F5, F5}.

Theorem 4.11, combined with Observation 4.10, leaves two open cases: F4 (or equiva-
lently F4) and F5 (or equivalently F5); see also [24].

Open Problem 4.12. Determine whether the class of H-free split graphs has bounded or
unbounded clique-width when H = F4 or H = F5.

Note that a split graph with split partition (K, I) can be changed into a bipartite
graph with bipartition classes K and I by applying a subgraph complementation on K.
Hence, due to Fact 2, there is a close relationship between boundedness of clique-width for
subclasses of split graphs and for subclasses of bipartite graphs. As such, it is natural to also
consider the class of bipartite graphs as our class X . We note that the relationship between
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F4 F5

Figure 10: The (only) two graphs for which it is not known whether or not the classes of
H-free split graphs and H-free split graphs have bounded clique-width.

sP1 (s = 5 shown) K1,3 + 3P1 K1,3 + P2

P1 + P5 P1 + S1,1,3 S1,2,3

Figure 11: The graphs H for which the class of H-free bipartite graphs has bounded clique-
width.

split graphs and bipartite graphs involves some subtleties as a split graph can have two
non-isomorphic split partitions and a (disconnected) bipartite graph may have more than
one bipartition (see [24] for a precise explanation). Nevertheless, results on boundedness
of clique-width for H-free bipartite graphs, which we discuss below, have proved useful in
proving Theorem 4.11.

Lozin [135] proved that the clique-width of S1,2,3-free bipartite graphs is at most 5. He
previously proved this bound in [134] for (sun4, S1,2,3)-free bipartite graphs where sun4 is
the graph obtained from a 4-vertex cycle on vertices u1, . . . , u4 by adding four new vertices
v1, . . . , v4 with edges uivi for i ∈ {1, . . . , 4}. Fouquet, Giakoumakis and Vanherpe [81]
proved that (P7, S1,2,3)-free bipartite graphs have clique-width at most 4.

Lozin and Volz [143] used the above results to continue the study of [140] into bound-
edness of clique-width of H-free bipartite graphs. They fully classified the boundedness of
clique-width for a variant ofH-free bipartite graphs called stronglyH�-free graphs, whereH
is forbidden with respect to a specified bipartition given by some labelling � (which is unique
if H is connected). Dabrowski and Paulusma [66] proved a similar (but different) dichotomy
for a relaxation of this variant called weakly H�-free graphs, which is the variant used for
proving some of the cases in Theorem 4.11. We refer to [66] for an explanation of strongly
and weakly H�-free bipartite graphs. Using the above results Dabrowski and Paulusma [66]
also gave a full classification for H-free bipartite graphs, that is, with H forbidden as an
induced subgraph, as before; see also Figure 11.

Theorem 4.13 ([66]). Let H be a graph. The class of H-free bipartite graphs has bounded
clique-width if and only if:
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(i) H = sP1 for some s ≥ 1,
(ii) H ⊆i K1,3 + 3P1,
(iii) H ⊆i K1,3 + P2,
(iv) H ⊆i P1 + S1,1,3, or
(v) H ⊆i S1,2,3.

We refer to [23] for some specific bounds on the clique-width of subclasses of H-free split
graphs, bipartite graphs and co-bipartite graphs obtained from a decomposition property
of 1-Sperner hypergraphs.

We continue our discussion on finding suitable graph classes X for which the classifica-
tion of boundedness of the clique-width of its H-free subclasses differs from the (general)
classification for H-free graphs in Theorem 4.1. Theorem 4.5 states that the class of unit
interval graphs has unbounded clique-width. Unit interval graphs are contained in the class
of interval graphs, which are contained in the class of chordal graphs by Observation 2.5.
Hence, as well as narrowing the class of chordal graphs to split graphs, it is also natural to
consider unit interval graphs and interval graphs to be the class X . We recall that the class
of unit interval graphs is a minimal hereditary graph class of unbounded clique-width [136].
Hence the clique-width of H-free unit interval graphs is bounded if and only if H is a unit
interval graph. We refer to [147] for bounds on the clique-width of certain subclasses of
unit interval graphs and pose the following open problem.

Open Problem 4.14. Determine for which graphs H the class of H-free interval graphs
has bounded clique-width.

As mentioned earlier, instead of chordal graphs we can consider other subclasses of
weakly chordal graphs as our class X , such as permutation graphs (the containment follows
from Observation 2.5). Recall that even the classes of split permutation graphs and bipar-
tite permutation graphs have unbounded clique-width, as stated in Theorems 4.6 and 4.7,
respectively. Hence, we could also take each of these three graph classes as the class X .
However, we recall that the classes of split permutation graphs [5] and bipartite permuta-
tion graphs [136] are minimal hereditary graph classes of unbounded clique-width. Hence,
the clique-width of H-free split permutation graphs is bounded if and only if H is a split
permutation graph, and similarly, the clique-width of H-free bipartite permutation graphs
is bounded if and only if H is a bipartite permutation graph. Recall that Theorem 4.1 states
that the class of H-free graphs has bounded clique-width if and only if H is an induced
subgraph of P4 and that Theorem 4.4 states that the same classification holds if we restrict
to H-free weakly chordal graphs. Brignall and Vatter proved that the same classification
also holds if we further restrict to H-free permutation graphs.

Theorem 4.15 ([40]). Let H be a graph. The class of H-free permutation graphs has
bounded clique-width if and only if H is an induced subgraph of P4.

Proof. Let H be a graph and note that if H is not a permutation graph, then the class of
H-free permutation graphs equals the class of permutation graphs, which has unbounded
clique-width by Theorem 4.1. We may therefore assume that H is a permutation graph.
If H is an induced subgraph of P4 then the class of H-free permutation graphs is a subclass
of the class of P4-free graphs and in this case Theorem 4.1 completes the proof.

The class of C3-free permutation graphs is equal to the class of bipartite permutation
graphs, which has unbounded clique-width by Theorem 4.7. Since the class of permutation
graphs is closed under complementation (in the definition of permutation graphs, reverse
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the order of intersections of the line segments with one of the parallel lines), Fact 2 implies
that 3P1-free permutation graphs also have unbounded clique-width. It therefore remains
to consider the case when H is a (C3, 3P1)-free graph that is not an induced subgraph of P4.

It is easy to verify that the only (C3, 3P1)-free graph on more than four vertices is C5.
Since C5 is not a permutation graph, we may assume that H has at most four vertices.
By inspection, the only (C3, 3P1)-free graphs H on at most four vertices that are not
induced subgraphs of P4 are C4 and 2P2. As C5 is not a permutation graph, the class of
(C4, 2P2)-free permutation graphs is equal to the class of split permutation graphs, which
has unbounded clique-width by Theorem 4.6. Therefore the class of H-free permutation
graphs has unbounded clique-width if H ∈ {C4, 2P2}. This completes the proof.

Recall from Observation 2.5 that bipartite permutation graphs are chordal bipartite, and
that by Theorem 4.7 the class of bipartite permutation graphs has unbounded clique-width.
From these two facts it follows that the class of chordal bipartite graphs has unbounded
clique-width. In contrast, Lozin and Rautenbach [138] proved that K+

1,t-free chordal bi-

partite graphs have bounded clique-width (recall that K+
1,t is the graph obtained from the

star K1,t by subdividing one of its edges). Subdividing all three edges of the claw K1,3

yields the graph S2,2,2. As every bipartite permutation graph is S2,2,2-free chordal bipar-
tite, the class of S2,2,2-free chordal bipartite graphs has unbounded clique-width, again due
to Theorem 4.7.

The above discussion leads to the following open problems. Let Et denote the graph
obtained from the star K1,t+1 after subdividing exactly two of its edges. Kamiński, Lozin
and Milanič [116] asked the question: for which t, does the class of Et-free chordal bipartite
graphs have bounded clique-width? For t ≤ 2, the class of Et-free graphs has bounded
clique-width by Theorem 4.13, as E2 = S1,2,2. Hence t = 3 is the first open case. By
taking the class of chordal bipartite graphs as the class X , we can pose a more general open
problem.

Open Problem 4.16. Determine for which graphs H the class of H-free chordal bipartite
graphs has bounded clique-width.

Boliac and Lozin [18] proved that for a graph H, the class of H-free claw-free graphs
has bounded clique-width if and only if H ⊆i P4, H ⊆i paw or H ⊆i K3 + P1 (see also
the more general Theorem 4.18 in Section 4.2). Line graphs form a subclass of the class of
claw-free graphs. Gurski and Wanke [101] proved that if a line graph has a vertex whose
non-neighbours induce a subgraph of clique-width k, then it has clique-width at most 8k+4,
which would imply, for instance, that (P1+P4)-free line graphs have clique-width at most 18
(they then improved this bound to 14). In fact we can show the following classification for
the boundedness of clique-width of (H1, . . . , Hp)-free line graphs. Recall that S is the class
of graphs every connected component of which is either a subdivided claw or a path on at
least one vertex, whereas T consists of all line graphs of graphs in S.

Theorem 4.17. Let {H1, . . . , Hp} be a finite set of graphs. Then the class of (H1, . . . , Hp)-
free line graphs has bounded clique-width if and only if Hi ∈ T for some i ∈ {1, . . . , p}.

Proof. First suppose that Hi ∈ T for some i ∈ {1, . . . , p}. By definition of T , it follows
that Hi is the line graph of some graph F ∈ S. Because F is in S, forbidding F as
a (not necessarily induced) subgraph of G is the same as forbidding F as a minor by
Observation 2.4. Moreover, F is planar. By a result of Bienstock, Robertson, Seymour and
Thomas [13], every graph that does not contain some fixed planar graph as a minor has
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bounded path-width. Hence, the class of F -subgraph-free graphs has bounded path-width
and consequently, bounded treewidth. Then, by Theorem 3.7, the class of Hi-free graphs,
and thus the class of (H1, . . . , Hp)-free graphs, has bounded clique-width.

Now suppose that Hi /∈ T for every i ∈ {1, . . . , p}. Then every Hi has a connected
component H ′

i /∈ T . We may assume without loss of generality that each Hi is a line
graph (otherwise forbidding it does not affect the class defined; if no Hi is a line graph,
then the class of (H1, . . . , Hp)-free line graphs is the class of all line graphs, which has
unbounded clique-width [18]). Since every H ′

i /∈ T , every H ′
i is not isomorphic to K3.

Hence, for every H ′
i there exists a unique graph F ′i such that H ′

i is the line graph of F ′i
(see, for example, [103]). Since H ′

i /∈ T , it follows that F ′i /∈ S, which means that there
exists a positive integer ki, such that the class of F ′i -subgraph-free graphs contains the class
of ki-subdivided walls. We let k = max{ki | 1 ≤ i ≤ p}. Then the class of (F ′1, . . . , F

′
p)-

subgraph-free graphs contains the class of k-subdivided walls. As the class of k-subdivided
walls has unbounded clique-width by Corollary 3.9, it follows that the class of (F ′1, . . . , F

′
p)-

subgraph-free graphs has unbounded clique-width and hence unbounded treewidth [59].
Then, by Theorem 3.7, the class of (H ′

1, . . . , H
′
p)-free line graphs has unbounded clique-

width. Since the class of (H1, . . . , Hp)-free line graphs contains the class of (H ′
1, . . . , H

′
p)-

free line graphs, it follows that the class of (H1, . . . , Hp)-free line graphs also has unbounded
clique-width.

4.2 Forbidding A Small Number of Graphs

As discussed, even the case when only two induced subgraphs H1 and H2 are forbid-
den has not yet been fully classified, and there are only partial results for the cases where
three or four induced subgraphs are forbidden. Besides the class of (C4, C5, 2P2)-free graphs
(split graphs) [145], it is, for example, known that the classes of (C4,K1,3,K4, diamond)-free
graphs [18,27] and (3P2, P2+P4, P6, gem)-free graphs have unbounded clique-width [67]. Re-
call that the gem is the graph P1 + P4 (see Figure 3) and that the hammer is the graph T0,0,2

(see Figure 4). It is known that the clique-width of (hammer, gem, S1,1,2)-free graphs is at
most 7 [33]. However, unlike the case for two forbidden induced subgraphs, no large-scale
systematic study has been initiated for finitely defined hereditary graphs classes with more
than two forbidden induced subgraphs; in Sections 4.3 and 4.4, respectively, we discuss
two studies [14, 26] with partial results in this direction. In this section, we focus only on
(H1, H2)-free graphs.

Despite the classification for H-free graphs (Theorem 4.1) and many existing results
for (un)boundedness of clique-width for (H1, H2)-free graphs [18,24,27,30–32,36,61,62,65]
over the years, the number of open cases (H1, H2) was only recently proven to be finite,
in [67]. This was done by combining the existing known results together with a number of
new results for (H1, H2)-free graphs, and led to a classification that left 13 non-equivalent
open cases.9 This number has been reduced to five non-equivalent open cases by four later
papers [14,19,60,63], and the current state-of-the-art is as follows (recall that S is the class
of graphs each connected component of which is either a subdivided claw or a path and see
also Figures 3, 4 and 11 in which a number of the graphs mentioned below are displayed).

9Given four graphs H1, H2, H3, H4, the classes of (H1, H2)-free graphs and (H3, H4)-free graphs are said
to be equivalent if the unordered pair H3, H4 can be obtained from the unordered pair H1, H2 by some
combination of the operations: (i) complementing both graphs in the pair, and (ii) if one of the graphs in
the pair is 3P1, replacing it with P1 + P3 or vice versa. If two classes are equivalent, then one of them has
bounded clique-width if and only if the other one does [67].
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Theorem 4.18 ([19]). Let G be a class of graphs defined by two forbidden induced subgraphs.
Then:

1. G has bounded clique-width if it is equivalent to a class of (H1, H2)-free graphs such
that one of the following holds:
(i) H1 or H2 ⊆i P4,
(ii) H1 = Ks and H2 = tP1 for some s, t ≥ 1,
(iii) H1 ⊆i paw and H2 ⊆i K1,3+3P1, K1,3+P2, P1+P2+P3, P1+P5, P1+S1,1,2,

P2 + P4, P6, S1,1,3 or S1,2,2,
(iv) H1 ⊆i diamond and H2 ⊆i P1 + 2P2, 3P1 + P2 or P2 + P3,
(v) H1 ⊆i gem and H2 ⊆i P1 + P4 or P5,
(vi) H1 ⊆i K3 + P1 and H2 ⊆i K1,3, or
(vii) H1 ⊆i 2P1 + P3 and H2 ⊆i 2P1 + P3.

2. G has unbounded clique-width if it is equivalent to a class of (H1, H2)-free graphs such
that one of the following holds:
(i) H1 �∈ S and H2 �∈ S,
(ii) H1 /∈ S and H2 �∈ S,
(iii) H1 ⊇i K3 + P1 or C4 and H2 ⊇i 4P1 or 2P2,
(iv) H1 ⊇i diamond and H2 ⊇i K1,3, 5P1, P2 + P4 or P6,
(v) H1 ⊇i K3 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3,
(vi) H1 ⊇i K4 and H2 ⊇i P1 + P4 or 3P1 + P2, or
(vii) H1 ⊇i gem and H2 ⊇i P1 + 2P2.

Example 4.19. As an example of how results from Section 4.1 were useful in proving
Theorem 4.18, consider the case when (H1, H2) = (K4, 2P1 + P3). In [25], it was shown
that (K4, 2P1 + P3)-free graphs have bounded clique-width. This was proven as follows.
First, Theorem 4.8 was applied to solve the case when the given (K4, 2P1+P3)-free graph G
is chordal. If G is not chordal, then G must contain a cycle C of length at least 4. As G is
(2P1 + P3)-free, C can have length at most 7. This leads to a case distinction depending
on the length of C. In each case, the set of vertices of G not on C is partitioned according
to the intersection of their set of neighbours with C. This partition is then analysed and
the facts from Section 3 are used to modify G into a graph belonging to a class known to
have bounded clique-width.

As mentioned earlier, Theorem 4.18 does not cover five (non-equivalent) cases; see
also [19].

Open Problem 4.20. Does the class of (H1, H2)-free graphs have bounded or unbounded
clique-width when:

(i) H1 = K3 and H2 ∈ {P1 + S1,1,3, S1,2,3},

(ii) H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5}

(iii) H1 = gem and H2 = P2 + P3.

As discussed in [63], it would be interesting to find out if H-free bipartite graphs and
H-free triangle-free graphs have the same classification with respect to the boundedness
of their clique-width. It follows from Theorems 4.13 and 4.18 that the evidence so far is
affirmative. Nevertheless, Open Problem 4.20.(i) shows that two remaining cases still need
to be solved, namely H = P1 + S1,1,2 and H = S1,2,3.
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We will prove two partial results for the two cases in Open Problem 4.20.(i). These
results also illustrate some of the previously discussed techniques. Namely, we show that
the class of prime (K3, C5, S1,2,3)-free graphs has bounded clique-width (Proposition 4.22)
and that the class of (K3, C5, P1 + S1,1,3)-free graphs has bounded clique-width (Proposi-
tion 4.23). Combining Propositions 4.22 and 4.23 with Fact 4 implies that in both cases of
Open Problem 4.20.(i) we need only consider prime graphs that contain C5 as an induced
subgraph.

For Proposition 4.22 we need the following lemma, which follows from [60, Lemma 8].10

Proposition 4.23 is a new result.

Lemma 4.21 ([60]). If G is a prime (K3, C5, S1,2,3)-free graph, then G is either bipartite
or a cycle.

Proposition 4.22. The class of prime (K3, C5, S1,2,3)-free graphs has bounded clique-width.

Proof. If a (K3, C5, S1,2,3)-free graph is bipartite, then it is an S1,2,3-free bipartite graph
and we are done by Theorem 4.13. If it is a cycle then it has maximum degree 2, and we
are done by Proposition 3.3. By Lemma 4.21 this completes the proof.

Proposition 4.23. The class of (K3, C5, P1 +S1,1,3)-free graphs has bounded clique-width.

Proof. Let G be a (K3, C5, P1+S1,1,3)-free graph. Since the clique-width of a graph equals
the maximum of the clique-width of its components, we may assume that G is connected.
We may assume that G is not bipartite, otherwise it is a (P1 + S1,1,3)-free bipartite graph,
in which case it has bounded clique-width by Theorem 4.13. As G is (C3, C5)-free (since
C3 = K3), it contains an induced odd cycle C on k vertices, say v1, v2, . . . , vk in that order,
where k ≥ 7. We may assume without loss of generality that C is an odd cycle of minimum
length in G.

If V (G) = V (C), then G has maximum degree 2 and we can use Proposition 3.3. From
now on we assume that G contains at least one vertex not on C. Suppose that there is a
vertex v that is adjacent to at least two vertices of C. As C has minimal length and G is
(C3, C5)-free, v must be adjacent to precisely two vertices of C, which must be at distance 2
from each other on C.

For i ∈ {1, . . . , k}, let Vi be the set of vertices outside C that are adjacent to vi−1
and vi+1 (subscripts on vertices and vertex sets are interpreted modulo k throughout the
proof), and let Wi be the set of vertices whose unique neighbour in C is vi. Finally, let U
be the set of vertices that have no neighbour in C. Thus every vertex in G is in C, U or
in some set Vi or Wi for some i ∈ {1, . . . , k}. Moreover, as G is connected, there must be
at least one set of the form Vi or Wi that is non-empty. We may assume without loss of
generality that there is a vertex v ∈ V1 ∪W2. If k ≥ 9 then G[v7, v2, v, v1, v3, v4, v5] is a
P1 + S1,1,3, a contradiction. We conclude that k = 7.

We now prove five claims, the first of which follows immediately from the fact that G
is K3-free.

Claim 1. For i ∈ {1, . . . , 7}, Vi and Wi are independent sets.

Claim 2. For every i ∈ {1, . . . , 7}, Vi and Wi are complete to U , and |U | ≤ 1.
Suppose, for contradiction, that a vertex x ∈ V1 ∪ W2 is non-adjacent to y ∈ U . Then
G[y, v2, x, v1, v3, v4, v5] is a P1 + S1,1,3, a contradiction. By symmetry, this proves the first

10 [60, Lemma 8] is about (K3, C5, S1,2,3)-free graphs without false twins, that is, without pairs of non-
adjacent vertices which have the same set of neighbours. Prime graphs have no false twins by definition.
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part of the claim. Now suppose that U contains at least two vertices y and y′. Then
v ∈ V1 ∪W2 is adjacent to both y and y′. Since G is K3-free, it follows that y and y′ are
not adjacent. Then G[v6, v, y, y

′, v2, v3, v4] is a P1 + S1,1,3, a contradiction. This proves the
second part of the claim.

Claim 3. For i ∈ {1, . . . , 7}, |Wi| ≤ 1.
Suppose that x, y ∈ W1. By Claim 1, we find that x is non-adjacent to y. Then
G[v6, v1, x, y, v2, v3, v4] is a P1 + S1,1,3, a contradiction. The claim follows by symmetry.

A set of vertices is large if it contains at least two vertices and small otherwise.

Claim 4. For i, j ∈ {1, . . . , 7}, if vi is adjacent to vj and at least one of Vi and Vj is large,
then Vi is complete to Vj.
Suppose that there are vertices x, x′ ∈ V2 and y ∈ V3 such that y is non-adjacent to x′. By
Claim 1, x is non-adjacent to x′. Then G[x′, y, x, v2, v4, v5, v6] or G[y, v1, x, x

′, v7, v6, v5] is
a P1 + S1,1,3 if y is adjacent or non-adjacent to x, respectively, a contradiction. The claim
follows by symmetry.

Claim 5. For distinct i, j ∈ {1, . . . , 7}, if a vertex of Vi has a neighbour in Vj, then vi is
adjacent to vj.
Since G is K3-free, for every i the set Vi is anti-complete to the set Vi+2. Moreover, if i
and j are such that the vertices vi and vj are at distance more than 2 on the cycle, then Vi

and Vj must be anti-complete, as otherwise there would be a smaller odd cycle than C in G,
contradicting the minimality of k. This proves Claim 5.

Let G′ be the graph obtained from G by deleting all vertices in small sets Vi, Wi or U (note
that in doing this we delete at most 7 + 7 + 1 = 15 vertices). By Fact 1, it is sufficient to
show that G′ has bounded clique-width. Let V ′i be Vi if Vi is large and ∅ otherwise. By
Claims 2 and 3, G′ only contains vertices in C and the sets V ′i . By Claim 1, each set V ′i
is independent. Furthermore, by Claim 4, if vi and vj are adjacent vertices of C then V ′i
is complete to V ′j . By Claim 5, for all other choices of i and j, the set V ′i is anti-complete
to V ′j . This implies that for every i ∈ {1, . . . , 7}, the set V ′i ∪ {vi} is a module that is an
independent set. We apply seven bipartite complementations, namely between Vi and Vi+1

for i ∈ {1, . . . , 7}. This yields an edgeless graph, which has clique-width 1. By Fact 3,
it follows that G′ has bounded clique-width. Hence G has bounded clique-width. This
completes the proof.

4.3 Forbidding Small Induced Subgraphs

Theorem 4.1 states that a class of H-free graphs has bounded clique-width if and only
if H is an induced subgraph of P4. As discussed, one way to obtain more graph classes of
bounded clique-width is to extend P4 by one extra vertex, but then we need to forbid at
least one other graph as an induced subgraph besides this 1-vertex extension of P4. In this
context, Brandstädt and Mosca [37] classified the boundedness of clique-width for H-free
graphs, where H is a subset of the set of P4-sparse graphs with five vertices. Brandstädt,
Hoàng and Le [29] proved that (bull, S1,1,2, S1,1,2)-free graphs have bounded clique-width.
Brandstädt, Dragan, Le and Mosca proved the following more general dichotomy containing
the results of [29, 37]; see also Figure 12.

Theorem 4.24 ([26]). Let H be a set of 1-vertex extensions of P4. The class of H-free
graphs has bounded clique-width if and only if H is not a subset of any of the following sets:
(i) {P1 + P4, P5, S1,1,2, banner, C5, S1,1,2},
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S1,1,2 banner P5

banner chair = S1,1,2 P1 + P4 gem = P1 + P4

house = P5 bull = bull C5 = C5

Figure 12: The 1-vertex extensions of P4.

(ii) {P1 + P4, P5, S1,1,2, banner, C5, S1,1,2},
(iii) {P1 + P4, P5, S1,1,2, banner, banner, C5, bull},
(iv) {P1 + P4, P5, S1,1,2, banner, banner, C5, bull} or
(v) {P5, banner, banner, C5, P5}.

Brandstädt, Engelfriet, Le and Lozin [27] considered all sets H of graphs on at most four
vertices and determined for which such setsH the class ofH-free graphs has bounded clique-
width. They proved the following dichotomy for sets H of 4-vertex graphs and showed that
all cases involving at least one graph with fewer than four vertices follow from known cases
(see also Theorems 4.1 and 4.18); the graphs in Theorem 4.25 are displayed in Figure 13.

Theorem 4.25 ([27]). Let H be a set of 4-vertex graphs. The class of H-free graphs has
bounded clique-width if and only if H is not a subset of any of the following sets:
(i) {C4, 2P2},
(ii) {K4, 2P2},
(iii) {C4, 4P1},
(iv) {K4, diamond, C4, claw},
(v) {4P1, 2P1 + P2, 2P2,K3 + P1},
(vi) {K4, diamond, C4, paw,K3 + P1}, or
(vii) {4P1, 2P1 + P2, 2P2, P1 + P3, claw}.

4.4 Considering Hereditary Graph Classes Closed Under Complementation

Recall that subgraph complementation preserves boundedness of clique-width by Fact 2.
It is therefore natural to consider hereditary classes of graphs G that are closed under
complementation. In this section we survey the known results for these graph classes.
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K4 = diamond = C4 = paw = claw = K1,3 =

4P1 2P1 + P2 2P2 P1 + P3 K3 + P1

4P1 = 2P1 + P2 = 2P2 = P1 + P3 = K3 + P1 =

K4 diamond C4 paw claw

P4 = P4

Figure 13: The graphs on four vertices.

Recall that by Observation 2.2 a hereditary graph class G is closed under complementation
if and only if H = FG is closed under complementation. We start by considering the cases
where |H| is small.

The only two non-empty self-complementary induced subgraphs of P4 are P1 and P4.
Hence, from Theorem 4.1 it follows that the only self-complementary graphs H for which
the class of H-free graphs has bounded clique-width are H = P1 and H = P4. This result
settles the |H| = 1 case and was generalized as follows.

Theorem 4.26 ([14]). For any set H of non-empty self-complementary graphs, the class
of H-free graphs has bounded clique-width if and only if either P1 ∈ H or P4 ∈ H.

We now discuss the |H| = 2 case. By Theorem 4.26, it remains to consider the case when
H = {H1, H2} with H2 = H1 and H1 is not self-complementary. This leads to the following
classification, which also follows from Theorem 4.18. The graphs in this classification are
displayed in Figure 14.

Theorem 4.27 ([14]). For a graph H, the class of (H,H)-free graphs has bounded clique-
width if and only if H or H is an induced subgraph of K1,3, P1 + P4, 2P1 + P3 or sP1 for
some s ≥ 1.

As we will see, the |H| = 3 case has not yet been fully settled. Up to permutations of
the graphs H1, H2, H3, a class of (H1, H2, H3)-free graphs is closed under complementation
if and only if Hi is self-complementary for all i ∈ {1, 2, 3}, or H1 = H2 and H3 is self-
complementary (note that we may assume that H is minimal). By Theorem 4.26, we only
need to consider the second case. By Theorem 4.1, we may exclude the case when H3 = P1

or H3 = P4. The next two smallest self-complementary graphs H3 are the C5 and the bull.
Blanché, Dabrowski, Johnson, Lozin, Paulusma and Zamaraev [14] proved that the

classification of boundedness of clique-width for (H,H,C5)-free graphs coincides with the
one of Theorem 4.27. This raised the question of whether the same is true for other sets
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claw = K1,3 K1,3 = K3 + P1 P1 + P4 gem = P1 + P4

2P1 + P3 2P1 + P3 sP1 (s = 5 shown) sP1 (s = 5 shown)

Figure 14: Graphs H for which the clique-width of (H,H)-free graphs is bounded.

of self-complementary graphs F �= {C5}. However, the bull is self-complementary, and
if F contains the bull, then the answer is negative, which can be seen as follows. By
Theorem 4.27, both the class of (S1,1,2, S1,1,2)-free graphs and the class of (2P2, C4)-free
graphs have unbounded clique-width. In contrast, by Theorem 4.24, both the class of
(S1,1,2, S1,1,2, bull)-free graphs and even the class of (P5, P5, bull)-free graphs have bounded
clique-width. However, as shown in the next theorem, the bull turned out to be the only
exception if we exclude the “trivial” cases H3 = P1 and H3 = P4, which are the only
non-empty self-complementary graphs on fewer than five vertices.

Theorem 4.28 ([14]). Let F be a set of self-complementary graphs on at least five vertices
not equal to the bull. For a graph H, the class of ({H,H} ∪ F)-free graphs has bounded
clique-width if and only if H or H is an induced subgraph of K1,3, P1+P4, 2P1+P3 or sP1

for some s ≥ 1.

By Theorems 4.26 and 4.28 the case |H| = 3 is settled except when H1 = H2 and H3 is
the bull; see also [14].

Open Problem 4.29. For which graphs H does the class of (H,H, bull)-free graphs have
bounded clique-width?

In light of Theorem 4.28, Open Problem 4.29 can also be extended to sets F of self-
complementary graphs containing the bull.

4.5 Forbidding with Respect to Other Graph Containment Relations

In this section we survey results on (un)boundedness of clique-width for hereditary graph
classes that can alternatively be characterized by some other graph containment relation.
In particular, when we forbid a finite collection of either subgraphs, minors or topological
minors, it is possible to completely characterize those graph classes that have bounded
clique-width.

Theorem 4.30 ([67, 116]). Let {H1, . . . , Hp} be a finite set of graphs. Then the following
statements hold:
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2P1 + P3 gem = P1 + P4

Figure 15: The graphs H such that the class of H-induced-minor-free graphs has bounded
clique-width.

(i) The class of (H1, . . . , Hp)-subgraph-free graphs has bounded clique-width if and only
if Hi ∈ S for some i ∈ {1, . . . , p}.

(ii) The class of (H1, . . . , Hp)-minor-free graphs has bounded clique-width if and only if Hi

is planar for some i ∈ {1, . . . , p}.

(iii) The class of (H1, . . . , Hp)-topological-minor-free graphs has bounded clique-width if
and only if Hi is planar and has maximum degree at most 3 for some i ∈ {1, . . . , p}.

The graph classes in Theorem 4.30 have in common that the corresponding containment
relation allows edge deletions. If edge deletions are not permitted, then the situation
becomes less clear, as we already saw for the induced subgraph relation. This is also true
for the induced minor relation, for which only the following (non-trivial) result is known.
We refer to Figure 15 for a picture of the graphs 2P1 + P3 and P1 + P4 (recall that the
latter graph is also known as the gem).

Theorem 4.31 ([10]). Let H be a graph. The class of H-induced-minor-free graphs has
bounded clique-width if and only if H ⊆i 2P1 + P3 or H ⊆i P1 + P4.

With an eye on Theorem 4.18, Theorem 4.31 leads to the following open problem.

Open Problem 4.32. Determine for which pairs of graphs (H1, H2) the class of (H1, H2)-
induced-minor-free graphs has bounded clique-width.

We end this section with two more open problems; we note that a class ofH-contraction-
free graphs need not be hereditary and that Open Problem 4.33 is trivial if we allow dis-
connected graphs, since edge contractions preserve the number of components in a graph.

Open Problem 4.33. Determine for which graphs H the class of connected H-contraction-
free graphs has bounded clique-width.

Open Problem 4.34. Determine for which graphs H the class of H-induced-topological-
minor-free graphs has bounded clique-width.

5 Algorithmic Consequences

In this section we illustrate how bounding clique-width (or one of its equivalent pa-
rameters) can be used to find polynomial-time algorithms to solve problems on special
graph classes, even when these problems are NP-hard on general graphs. In Section 5.1
we discuss meta-theorems, and in Section 5.2 we show how they can be used as part of a
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general strategy for solving problems. In Section 5.3 we focus on atoms, which are often
used as a specific ingredient for the general strategy. Finally, in Sections 5.4 and 5.5 we
look at two problems in particular, namely Colouring and Graph Isomorphism, respec-
tively. For other graph problems where boundedness of clique-width is used to classify their
computational complexity on hereditary graph classes, see, for example, [28, 44]. We refer
to [11, 41,79,80,89] for parameterized complexity results on clique-width.

5.1 Meta-Theorems

We observed in Section 1 that one of the advantages of showing that a graph class
has bounded clique-width is that one can apply meta-theorems that say that any problem
definable within certain constraints can be solved in polynomial time on the class. We
mentioned such a theorem concerning any problem that can be defined in MSO1 [58]. The
result of [58] has been extended by others to address graph problems that cannot be defined
in MSO1. An important example of such a problem is the F-Partition problem, which
asks, for a graph G and an integer k, whether V (G) can be partitioned into (possibly empty)
sets V1, . . . , Vk such that every Vi induces a graph in F . In particular, if F consists of the
edgeless graphs, then the F-Partition problem is equivalent to the Colouring problem.

Espelage, Gurski and Wanke [74] gave a general method to show that on graphs of
bounded clique-width, F-Partition is polynomial-time solvable for a number of graph
classes F including complete graphs, edgeless graphs, forests and triangles. Their method
can also be applied to other problems, such as Hamilton Cycle (see also [166] and
see [12] for a faster algorithm) and Cubic Subgraph. Later, Kobler and Rotics [121]
proved that a variety of other NP-complete graph partition problems (where either the set
of vertices or the set of edges is partitioned) can be solved in polynomial time for graphs
of bounded clique-width. Again, their set of problems includes Colouring (see [131] for
the fastest known algorithm, parameterized by clique-width, for finding a k-colouring if k is
constant). However, their work also captures other graph partition problems, such as List
k-Colouring and Edge-Dominating Set.

Gerber and Kobler [86] gave a framework of vertex partition problems with respect
to a fixed interval degree constraint matrix. They showed that these problems, which
include Induced Bounded Degree Subgraph, Induced k-Regular Subgraph, H-
Colouring and H-Covering, are all solvable in polynomial time on graphs of bounded
clique-width. In the same paper, they extended their framework to include more general
problems, such as Satisfactory Graph Partitioning and Majority Domination
Number. Rao [153] gave another family of vertex partitioning problems that can be solved
in polynomial time for graphs of bounded clique-width. Besides Colouring, this family
also includes Domatic Number, Hamilton Cycle and F-Partition where F consists
of complete and edgeless graphs; perfect graphs; or H-free graphs, for an arbitrary fixed
graph H.

The algorithms in [58,74,86,92,121] all require a c-expression of the input graph G for
some constant c. Recall that computing the clique-width of a graph is NP-hard [77] (and
that the complexity of deciding whether a graph has clique-width at most c is still open
for every constant c ≥ 4). Of course, this suggests we cannot hope to compute a cw(G)-
expression in polynomial time. However, it is sufficient to use the algorithm of Seymour
and Oum [151], which returns a c-expression for some c ≤ 23 cw(G)+2−1 in O(n9 log n) time,
or the later improvements of Oum [149] and Hliněný and Oum [110] that provide cubic-
time algorithms which yield a c-expression for some c ≤ 8cw(G) − 1 and c ≤ 2cwG+1 − 1,
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respectively.
We note that there exist problems that are polynomial-time solvable for graphs of clique-

width c, but NP-complete for graphs of clique-width d for constants c and d with c < d.
For example, this holds for the Disjoint Paths problem, which is linear-time solvable for
graphs of clique-width at most 2, but NP-complete for graphs of clique-width at most 6 [99].

5.2 A General Strategy for Finding Algorithms

Below we describe an approach that has often been used as a general strategy when we
want to solve a problem Π on a graph class G. We suppose that there exists some meta-
algorithm A that can be used to solve Π on classes of bounded clique-width. We say that
the graph class G is reducible to some subclass G′ ⊆ G with respect to Π if the following
holds: if Π can be solved in polynomial time on G′, then Π can also be solved in polynomial
time on G. We can now state the following general approach.

Clique-Width Method

1. Check if G has bounded clique-width (for instance, by using the BCW Method).

2. If so, then apply A. Otherwise choose between 3a and 3b.

3a. Reduce G to some subclass G′ of bounded clique-width and apply A.

3b. Partition G into two classes G1 and G2, such that G1 has bounded clique-width and is
as large as possible. Apply A to solve Π on G1. Use some problem-specific algorithm
to solve Π on G2.

To give an example where Step 3a of this method is used, we can let G′ be the class that
consists of all atoms in G. Recall that a connected graph is an atom if it has no clique
cut-set. Dirac [73] introduced the notion of a clique cut-set and proved that every chordal
graph is either complete or has a clique cut-set. As complete graphs have clique-width 2,
this means that chordal graphs that are atoms have clique-width at most 2, whereas the
class of chordal graphs has unbounded clique-width (see, for example, Theorem 4.8). Over
the years, decomposition into atoms has become a widely used tool for solving decision
problems on hereditary graph classes. For instance, a classical result of Tarjan [162] implies
that Colouring and other problems, such as those of determining the size of a largest
independent set (Independent Set) or a largest clique (Clique), are polynomial-time
solvable on a hereditary graph class G if and only if they are polynomial-time solvable on
the atoms of G. We will discuss atoms in more detail in Section 5.3.

To give an example where Step 3b of this method is used, Fraser, Hamel, Hoàng,
Holmes and LaMantia [82] proved that Colouring can be solved in polynomial time
for (C4, C5, 4P1)-free graphs by proving that the non-perfect graphs from this class have
bounded clique-width and by recalling that Colouring can be solved in polynomial time
on perfect graphs [93].

5.3 Atoms

As mentioned, atoms are an important example for Step 3a in the Clique-Width

Method. To determine new polynomial-time results for Colouring, Gaspers, Huang and
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Paulusma [85] investigated whether there exist graph classes of unbounded clique-width
whose atoms have bounded clique-width. They found that this is not the case for the
classes of H-free graphs. That is, the classification for H-free atoms coincides with the
classification for H-free graphs in Theorem 4.1.

Theorem 5.1 ([85]). Let H be a graph. The class of H-free atoms has bounded clique-width
if and only if H is an induced subgraph of P4.

As split graphs are chordal by Observation 2.5, it follows that split atoms (split graphs
that are atoms) are complete graphs, and thus have clique-width at most 2, whereas the
class of general split graphs has unbounded clique-width [145]. As the class of split graphs
coincides with the class of (C4, C5, 2P2)-free graphs [78], Gaspers, Huang and Paulusma [85]
asked whether there exists a class of (H1, H2)-free graphs of unbounded clique-width whose
atoms form a class of bounded clique-width. They proved that this is indeed the case
by showing a constant bound on the clique-width of atoms in the class of (C4, P6)-free
graphs, which form a superclass of split graphs (they used this to prove that Colouring
is polynomial-time solvable for (C4, P6)-free graphs).

Theorem 5.2 ([85]). Every (C4, P6)-free atom has clique-width at most 18.

We are not aware of any other examples, which leads us to ask the following open
problem (see also [85]).

Open Problem 5.3. Determine all pairs of graphs H1, H2 such that the class of (H1, H2)-
free graphs has unbounded clique-width, but the class of (H1, H2)-free atoms has bounded
clique-width.

Recall from Open Problem 4.20 that there are still five non-equivalent pairs H1, H2

for which we do not know whether the clique-width of (H1, H2)-free graphs is bounded or
unbounded. Due to the algorithmic implications mentioned above, the following problem
is therefore also of interest.

Open Problem 5.4. Does the class of (H1, H2)-free atoms have bounded clique-width
when:

(i) H1 = K3 and H2 ∈ {P1 + S1,1,3, S1,2,3}

(ii) H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5}

(iii) H1 = gem and H2 = P2 + P3.

5.4 Graph Colouring

Král’, Kratochv́ıl, Tuza, andWoeginger completely classified the complexity ofColour-
ing for H-free graphs.

Theorem 5.5 ([126]). Let H be a graph. If H ⊆i P4 or H ⊆i P1 + P3, then Colouring
restricted to H-free graphs is polynomial-time solvable, otherwise it is NP-complete.

For (H1, H2)-free graphs, the classification of Colouring is open for many pairs of
graphs H1, H2. A summary of the known results can be found in [88], but several other
results have since appeared [15, 43, 68, 85, 119, 120, 146]; see [68] for further details. In
relation to boundedness of clique-width, the following is of importance. There still exist
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ten classes of (H1, H2)-free graphs, for which Colouring could potentially be solved in
polynomial time by showing that their clique-width is bounded. That is, for these classes,
the complexity of Colouring is not resolved, and it is not known whether the clique-
width is bounded. This list is obtained by updating the list of [60], which contains 13
cases, with the result of [15] for (H1, H2) = (2P1 + P3, 2P1 + P3) and the results of [19] for
(H1, H2) = (gem, P1 + 2P2) and (H1, H2) = (P1 + P4, P1 + 2P2).

Open Problem 5.6. Can the Colouring problem be solved in polynomial time on
(H1, H2)-free graphs when:

(i) H1 ∈ {K3, paw} and H2 ∈ {P1 + S1,1,3, S1,2,3},

(ii) H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5},

(iii) H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5},

(iv) H1 = P1 + P4 and H2 = P2 + P3,

(v) H1 = gem and H2 = P2 + P3.

5.5 Graph Isomorphism

Grohe and Schweitzer [92] proved that Graph Isomorphism is polynomial-time solv-
able for graphs of bounded clique-width. Hence, identifying graph classes of bounded
clique-width is of importance for the Graph Isomorphism problem.

The classification for the computational complexity of Graph Isomorphism for H-free
graphs can be found in a technical report of Booth and Colbourn [22], who credited the
result to an unpublished manuscript of Colbourn and Colbourn. Another proof of this
result appears in a paper of Kratsch and Schweitzer [127].

Theorem 5.7 ([22]). Let H be a graph. If H ⊆i P4, then Graph Isomorphism for H-free
graphs can be solved in polynomial time, otherwise it is GI-complete.

Note that Graph Isomorphism is polynomial-time solvable even for the class of per-
mutation graphs [47], which contains the class of P4-free graphs.

Schweitzer [161] observed great similarities between the techniques used for classifying
boundedness of clique-width and classifying the complexity of Graph Isomorphism for
hereditary graph classes. He proved thatGraph Isomorphism is GI-complete for any graph
class G that allows a so-called simple path encoding and also showed that every such graph
class G has unbounded clique-width. Indeed, the UCW Method relies on some clique-width-
boundedness-preserving transformations of an arbitrary graph from some known graph
class G′ of unbounded clique-width, such as the class of walls, to a graph of the unknown
class G. One way to do this is to show that the graphs in G contain a simple path encoding
of graphs from G′.

Kratsch and Schweitzer [127] initiated a complexity classification for Graph Isomor-
phism for (H1, H2)-free graphs. Schweitzer [161] extended the results of [127] and proved
that the number of unknown cases is finite, but did not explicitly list what these cases
were. As mentioned earlier, Graph Isomorphism is polynomial-time solvable for graphs of
bounded clique-width [92]. Bonamy, Dabrowski, Johnson and Paulusma [19] therefore com-
bined the known results for boundedness of clique-width for bigenic classes (Theorem 4.18)
with the results of [127] and [161] to obtain an explicit list of only 14 cases, for which the
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complexity of Graph Isomorphism was unknown. In the same paper they reduced this
number to 7 and gave the following state-of-the-art summary; recall that K+

1,t and K++
1,t are

the graphs obtained from K1,t by subdividing one edge once or twice, respectively.

Theorem 5.8 ([19]). For a class G of graphs defined by two forbidden induced subgraphs,
the following holds:

1. Graph Isomorphism is solvable in polynomial time on G if G is equivalent11 to a
class of (H1, H2)-free graphs such that one of the following holds:
(i) H1 or H2 ⊆i P4
(ii) H1 and H2 ⊆i K1,t + P1 for some t ≥ 1
(iii) H1 and H2 ⊆i tP1 + P3 for some t ≥ 1
(iv) H1 ⊆i Kt and H2 ⊆i 2K1,t,K

+
1,t or P5 for some t ≥ 1

(v) H1 ⊆i paw and H2 ⊆i P2 + P4, P6, S1,2,2 or K++
1,t + P1 for some t ≥ 1

(vi) H1 ⊆i diamond and H2 ⊆i P1 + 2P2
(vii) H1 ⊆i gem and H2 ⊆i P1 + P4 or P5 or
(viii) H1 ⊆i 2P1 + P3 and H2 ⊆i P2 + P3.

2. Graph Isomorphism is GI-complete on G if G is equivalent to a class of (H1, H2)-free
graphs such that one of the following holds:
(i) neither H1 nor H2 is a path star forest
(ii) neither H1 nor H2 is a path star forest
(iii) H1 ⊇i K3 and H2 ⊇i 2P1 + 2P2, P1 + 2P3, 2P1 + P4 or 3P2
(iv) H1 ⊇i K4 and H2 ⊇i K

++
1,4 , P1 + 2P2 or P1 + P4

(v) H1 ⊇i K5 and H2 ⊇i K
++
1,3

(vi) H1 ⊇i C4 and H2 ⊇i K1,3, 3P1 + P2 or 2P2
(vii) H1 ⊇i diamond and H2 ⊇i K1,3, P2 + P4, 2P3 or P6 or
(viii) H1 ⊇i P1 + P4 and H2 ⊇i P1 + 2P2.

As shown in [19], Theorem 5.8 leads to the following open problem.

Open Problem 5.9. What is the complexity of Graph Isomorphism on (H1, H2)-free
graphs in the following seven cases?

(i) H1 = K3 and H2 ∈ {P7, S1,2,3},
(ii) H1 = K4 and H2 = S1,1,3,
(iii) H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5},
(iv) H1 = gem and H2 = P2 + P3,
(v) H1 = 2P1 + P3 and H2 = P5.

For H-induced-minor-free graphs the classification for the complexity of Graph Iso-
morphism is given in Theorem 5.10. Note that the second and third tractable cases follow
from Theorem 4.31 and the fact that Graph Isomorphism is polynomial-time solvable
on graphs of bounded clique-width [92]. We refer to Figure 15 for a picture of the graphs
2P1 + P3 and P1 + P4.

Theorem 5.10 ([10]). Let H be a graph. The Graph Isomorphism problem on H-
induced-minor-free graphs is polynomial-time solvable if:

(i) H is a complete graph,
(ii) H ⊆i 2P1 + P3 or
(iii) H ⊆i P1 + P4

and GI-complete otherwise.

11Equivalence is defined in the same way as for clique-width (see Footnote 9). If two classes are equivalent,
then the complexity of Graph Isomorphism is the same on both of them. [19].
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6 Well-Quasi-Orderability

We recall that the Robertson-Seymour Theorem [157] states that the set of all finite
graphs is well-quasi-ordered by the minor relation. This result, combined with the cubic-
time algorithm of [156] for testing if a graph G contains some fixed graph H as a minor,
gives a cubic-time algorithm for testing whether a graph belongs to some minor-closed graph
class. Other known results on well-quasi-orderability include a result of Ding [72], which
implies that every class of graphs with bounded vertex cover number is well-quasi-ordered
by the induced subgraph relation and a result of Mader [144], who showed that every class
of graphs with bounded feedback vertex number is well-quasi-ordered by the topological
minor relation. Fellows, Hermelin and Rosamund [76] simplified the proofs of Ding and
Mader. They also showed that every class of graphs of bounded circumference is well-quasi-
ordered by the induced minor relation. As applications they gave linear-time algorithms for
recognizing graphs from any topological-minor-closed graph class with bounded feedback
vertex number; any induced-minor-closed graph class of bounded circumference; and any
induced-subgraph-closed graph class with bounded vertex cover number.

The Robertson-Seymour Theorem also implies that there exist graph classes of un-
bounded clique-width that are well-quasi-ordered by the minor relation. For hereditary
graph classes, the notion of well-quasi-orderability by the induced subgraph relation is
closely related to boundedness of clique-width, but the exact relationship between the
two notions is not yet fully understood. In this section we survey results on well-quasi-
orderability by the induced subgraph relation for hereditary classes, together with some
more results for other containment relations.

In Section 1, we noted that Daligault, Rao and Thomassé [69] asked if every hereditary
graph class that is well-quasi-ordered by the induced subgraph relation has bounded clique-
width. Lozin, Razgon and Zamaraev [142] gave a negative answer to this question. That
is, they found an example of a hereditary graph class that is well-quasi-ordered by the
induced subgraph relation but has unbounded clique-width. As the hereditary graph class
in their example is not finitely defined (that is, this graph class is defined by infinitely many
forbidden induced subgraphs), they conjectured the following.

Conjecture 6.1 ([142]). If a finitely defined hereditary class of graphs G is well-quasi-
ordered by the induced subgraph relation, then G has bounded clique-width.

We note that the reverse implication of the statement in Conjecture 6.1 is not true.
We can take the (hereditary) class of graphs of maximum degree at most 2, which have
clique-width at most 4 by Proposition 3.3. However, the class of graphs of maximum
degree at most 2 contains all cycles, which form an infinite anti-chain. Furthermore,
the class of graphs of maximum degree at most 2, is finitely defined: it is the class of
(claw, paw, diamond,K4)-free graphs.

6.1 Well-Quasi-Orderability Preserving Operations

In order to prove that some class of graphs is well-quasi-ordered by the induced subgraph
relation or not, we would like to use similar facts to those used to prove boundedness
or unboundedness of clique-width. This is not straightforward, as there is no analogue
of Facts 1–6 for well-quasi-orderability by the induced subgraph relation. We show this
in the three examples below, but first we recall that these facts concern, respectively,
vertex deletion (Fact 1), subgraph complementation (Fact 2), bipartite complementation
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· · ·

H1 H2 H3 H4 · · ·

Figure 16: The graphs Hi from Example 6.3.

(Fact 3), being prime (Fact 4), being 2-connected (Fact 5), and edge subdivision for graphs
of bounded maximum degree (Fact 6).

Example 6.2. A counterexample for analogues of Facts 1–3 is formed by the class of
cycles [64]: deleting a vertex of a cycle, complementing the subgraph induced by two
adjacent vertices, or applying a bipartite complementation between two adjacent vertices
yields a path. The set of cycles is an infinite anti-chain with respect to the induced subgraph
relation, but the set of paths is well-quasi-ordered.

Example 6.3. A counterexample for analogues of Facts 4–5 is formed by the following class
of graphs. For i ≥ 1, take a path of length i with end-vertices u and v and add vertices u′,
u′′, v′, v′′ with edges uu′, uu′′, vv′ and vv′′. Call the resulting graph Hi (see also Figure 16)
and let H be the class of graphs Hi (and their induced subgraphs). If i �= j, then Hi is not
an induced subgraph of Hj , which implies that H is not well-quasi-ordered by the induced
subgraph relation. However, the prime graphs of H are paths, which are well-quasi-ordered
by the induced subgraph relation. This shows that the analogue to Fact 4 does not hold
for well-quasi-orderability by the induced subgraph relation. The analogue to Fact 5 does
not hold either, as H contains no 2-connected graphs.

Example 6.4. To obtain a counterexample for the analogue of Fact 6 we consider the
class of graphs H1 consisting of the graph H1 from Example 6.3 only. This class is well-
quasi-ordered by the induced subgraph relation. However, we can obtain the class H in
Example 6.3, which is not well-quasi-ordered, from H1 via edge subdivisions. That is, for
i ≥ 1, the graph Hi+1 is obtained from Hi by the subdivision of an edge of the path of
length i.

As these examples suggest, we need a stronger variant of well-quasi-orderability by the
induced subgraph relation. To define this variant, consider an arbitrary quasi-order (W,≤).
Then a graph G is a labelled graph if each vertex v of G is equipped with a label lG(v) ∈W .
A graph F with labelling lF is a labelled induced subgraph of G if F is isomorphic to an
induced subgraph G′ of G such that there is an isomorphism which maps each vertex v
of F to a vertex w of G′ with lF (v) ≤ lG(w). If (W,≤) is a well-quasi-order, then it is
not possible for a graph class G to contain an infinite sequence of labelled graphs that is
strictly-decreasing with respect to the labelled induced subgraph relation. We say that G
is well-quasi-ordered by the labelled induced subgraph relation if for every well-quasi-order
(W,≤) the class G contains no infinite anti-chains of labelled graphs.

Observation 6.5. Every graph class that is well-quasi-ordered by the labelled induced sub-
graph relation is well-quasi-ordered by the induced subgraph relation.
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Daligault, Rao and Thomassé proved the following result.

Theorem 6.6 ([69]). Every hereditary class of graphs that is well-quasi-ordered by the
labelled induced subgraph relation is finitely defined.

By Theorem 6.6 it is easy to prove that there exist hereditary graph classes that are well-
quasi-ordered by the induced subgraph relation but not by the labelled induced subgraph
relation. Korpelainen, Lozin and Razgon [125] gave the class of linear forests as an example
(see also Example 6.9 below). The same authors conjectured that if a hereditary class of
graphs G is defined by a finite set of forbidden induced subgraphs, then G is well-quasi-
ordered by the induced subgraph relation if and only if it is well-quasi-ordered by the
labelled induced subgraph relation. However, Brignall, Engen and Vatter [38] recently
found a counterexample for this conjecture.

Theorem 6.7 ([38]). There exists a graph class G∗ with |FG∗ | = 14 that is well-quasi-
ordered by the induced subgraph relation but not by the labelled induced subgraph relation.

Theorem 6.7 leads to the following open problem.

Open Problem 6.8. Does there exist a hereditary graph class G with |FG | ≤ 13 that is
well-quasi-ordered by the induced subgraph relation but not by the labelled induced subgraph
relation?

We consider an approach similar to one used for boundedness of clique-width. A graph
operation γ preserves well-quasi-orderability by the labelled induced subgraph relation if,
for every finite constant k and every graph class G, every graph class G′ that is (k, γ)-
obtained from G is well-quasi-ordered by this relation if and only if G is. We also say
that a graph property π preserves well-quasi-orderability by the labelled induced subgraph
relation if for every graph class G, the subclass of G with property π is well-quasi-ordered
by the labelled induced subgraph relation if and only if this is the case for G.

Facts about well-quasi orderability:

Fact 1. Vertex deletion preserves well-quasi-orderability by the labelled induced subgraph
relation [64].

Fact 2. Subgraph complementation preserves well-quasi-orderability by the labelled in-
duced subgraph relation [64].

Fact 3. Bipartite complementation preserves well-quasi-orderability by the labelled in-
duced subgraph relation [64].

Fact 4. Being prime preserves well-quasi-orderability by the labelled induced subgraph
relation for hereditary classes [6].

For labelled well-quasi-orders, there is no analogue to Fact 5 (on 2-connectivity) and
Fact 6 (on edge subdivision) as illustrated by the following counterexample.

Example 6.9. Let F be the (hereditary) class of linear forests. The class F contains the
class P of all paths on at least two vertices. If we label the end-vertices of every path
in P with one label and all other vertices with a second label incomparable with the first,
we obtain an infinite anti-chain with respect to the labelled induced subgraph relation
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Figure 17: An anti-chain of paths under the labelled induced subgraph relation. The two
colours are incomparable.

(see also Figure 17). Hence F is not well-quasi-ordered by the labelled induced subgraph
relation. However, the restriction of F to 2-connected graphs is the empty class, which is
well-quasi-ordered by the labelled induced subgraph relation. Moreover, every graph of F
has maximum degree at most 2. However, every path of P can be obtained by repeatedly
subdividing P2, and the class {P2} is well-quasi-ordered by the labelled induced subgraph
relation. We conclude that Facts 5 and 6 for clique-width do not have a counterpart for
well-quasi-orderability by the labelled induced subgraph relation.

As a final remark in this section, we note that it is easy to verify that graph classes of
bounded neighbourhood diversity (introduced in [130]) have bounded clique-width and are
well-quasi-ordered by the labelled induced subgraph relation. Moreover, the same prop-
erty also holds for graph classes of bounded uniformicity (introduced in [123]) or bounded
lettericity (introduced in [152]); uniformicity and lettericity are more general than neigh-
bourhood diversity.

6.2 Results for Hereditary Graph Classes

We now survey known results for well-quasi-orderability of hereditary graphs by the
induced subgraph relation. As we shall see, all known results agree with Conjecture 6.1.
We start with a result of Damaschke.

Theorem 6.10 ([70]). Let H be a graph. The class of H-free graphs is well-quasi-ordered
by the induced subgraph relation if and only if H ⊆i P4.

In fact, the same classification holds for the labelled induced subgraph relation [6],
which means that if there is a hereditary class G which gives a positive answer to Open
Problem 6.8, then |FG | ≥ 2. We also note that the classification of Theorem 6.10 coincides
with the one of Theorem 4.1 for boundedness of clique-width. In order to increase our
understanding of well-quasi-orderability by the induced subgraph relation we can follow
the same approaches as done in Section 4 for clique-width. However, considerably less work
has been done on this subject.

Just as in Section 4, we can first restrict ourselves to H-free graphs contained in some
other hereditary graph class. In particular, results for H-free bipartite graphs, such as those
in [122], have shown to be useful. For instance, they have been used to prove results on well-
quasi-orderability for (H1, H2)-free graphs [123]. Combining the results for H-free bipartite
and H-free triangle-free graphs of [122, 123] with the results of [6, 63, 72] and Ramsey’s
Theorem for the case when H = sP1 (s ≥ 1) yields the following two classifications (see [63]
for further explanation).
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Theorem 6.11 ([63]). Let H be a graph. The class of H-free bipartite graphs is well-quasi-
ordered by the induced subgraph relation if and only if H = sP1 for some s ≥ 1 or H is an
induced subgraph of P1 + P5, P2 + P4 or P6.

Theorem 6.12 ([63]). Let H be a graph. The class of (K3, H)-free graphs is well-quasi-
ordered by the induced subgraph relation if and only if H = sP1 for some s ≥ 1 or H is an
induced subgraph of P1 + P5, P2 + P4, or P6.

We note that the classifications of Theorem 6.11 and 6.12 coincide. In contrast, we
recall that it is not yet clear if the classifications for boundedness of clique-width on H-free
bipartite graphs and (K3, H)-free graphs also coincide; see Open Problem 4.20.

We now present the state-of-the-art summary for well-quasi-orderability for classes on
(H1, H2)-free graphs, which is obtained by combining results from [6, 63, 64, 72, 122, 123].
Note that Theorem 6.13 implies Theorem 6.12.

Theorem 6.13 ([63]). Let G be a class of graphs defined by two forbidden induced subgraphs.
Then:

1. G is well-quasi-ordered by the labelled induced subgraph relation if it is equivalent12 to
a class of (H1, H2)-free graphs such that one of the following holds:
(i) H1 or H2 ⊆i P4,
(ii) H1 = Ks and H2 = tP1 for some s, t ≥ 1,
(iii) H1 ⊆i paw and H2 ⊆i P1 + P5, P2 + P4 or P6,
(iv) H1 ⊆i diamond and H2 ⊆i P2 + P3 or P5.

2. G is not well-quasi-ordered by the induced subgraph relation if it is equivalent to a
class of (H1, H2)-free graphs such that one of the following holds:
(i) neither H1 nor H2 is a linear forest,
(ii) H1 ⊇i K3 and H2 ⊇i 3P1 + P2, 3P2 or 2P3,
(iii) H1 ⊇i C4 and H2 ⊇i 4P1 or 2P2,
(iv) H1 ⊇i diamond and H2 ⊇i 4P1, P2 + P4 or P6,
(v) H1 ⊇i gem and H2 ⊇i P1 + 2P2.

Theorem 6.13 does not cover six cases, which are all still open (see also [63]).

Open Problem 6.14. Is the class of (H1, H2)-free graphs well-quasi-ordered by the induced
subgraph relation when:
(i) H1 = diamond and H2 ∈ {P1 + 2P2, P1 + P4},
(ii) H1 = gem and H2 ∈ {P1 + P4, 2P2, P2 + P3, P5}?

It follows from Theorems 4.18 and 6.13 that the class of (P1 + P4, P2+P3)-free graphs is
the only class of (H1, H2)-free graphs left for which Conjecture 6.1 still needs to be verified
(see also [64]).

Open Problem 6.15. Is Conjecture 6.1 true for the class of (H1, H2)-free graphs when
H1 = P1 + P4 and H2 = P2 + P3?

Finally, instead of the induced subgraph relation or the minor relation, one can also
consider other containment relations. Ding [72] proved that for a graph H, the class of
H-subgraph-free graphs is well-quasi-ordered by the subgraph relation if and only if H is a
linear forest. This result can be readily generalized.

12Equivalence is defined in the same way as for clique-width (see Footnote 9). If two classes are equivalent,
then one of them is well-quasi-ordered by the induced subgraph relation if and only if the other one is [123].
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Theorem 6.16. Let {H1, . . . , Hp} be a finite set of graphs. The class of (H1, . . . , Hp)-
subgraph-free graphs is well-quasi-ordered by the subgraph relation if and only if Hi is a
linear forest for some i ∈ {1, . . . , p}.

Proof. If Hi is a linear forest for some i ∈ {1, . . . , p}, then we can apply the result of
Ding [72]. Now suppose that every Hi either has a cycle or an induced claw. We let g be
the maximum girth over all Hi that contain a cycle. Then the set of cycles of length at
least g+1 is an infinite antichain of (H1, . . . , Hp)-free graphs with respect to the subgraph
relation.

Kamiński, Raymond and Trunck [117] and B�lasiok, Kamiński, Raymond and Trunck [16]
gave classifications for the contraction relation and induced minor relation, respectively. We
note that the connectivity condition in Theorem 6.17 is natural, as the edgeless graphs form
an antichain under the contraction relation. We refer to Figure 15 for pictures of the graphs
2P1 + P3 and P1 + P4 in Theorem 6.18.

Theorem 6.17 ([117]). Let H be a graph. The class of connected H-contraction-free graphs
is well-quasi-ordered by the contraction relation if and only if H ∈ {C3, diamond, P1, P2, P3}.

Theorem 6.18 ([16]). Let H be a graph. The class of H-induced-minor-free graphs is well-
quasi-ordered by the induced-minor relation if and only if H ⊆i 2P1 + P3 or H ⊆i P1 + P4.

We pose the following two open problems.

Open Problem 6.19. Determine for which pairs of graphs (H1, H2) the class of connected
(H1, H2)-contraction-free graphs is well-quasi-ordered by the contraction relation.

Open Problem 6.20. Determine for which pairs of graphs (H1, H2) the class of (H1, H2)-
induced-minor-free graphs is well-quasi-ordered by the induced minor relation.

For containment relations other than the induced subgraph relation we can ask the
following question: does there exist a containment-closed graph class of unbounded clique-
width that is well-quasi-ordered by the same containment relation? The Robertson-Seymour
Theorem [157] tells us that that the class of all (finite) graphs is well-quasi-ordered by the
minor relation. Hence, if we forbid minors, we can consider the class of all finite graphs,
which has unbounded clique-width. By Theorems 4.30.(i) and 6.16, we would need to forbid
an infinite set of graphs for the subgraph relation to find a positive answer to this question.
A clique-cactus graph is a graph in which each block is either a complete graph or a cycle
(these graphs are also known as cactus block graphs). The class of diamond-contraction-free
graphs coincides with the class of clique-cactus graphs [117]. As complete graphs and cycles
have clique-width at most 2 and 4, respectively, clique-cactus graphs have bounded clique-
width due to Fact 4. Hence, by Theorem 6.17 we would need to forbid a set of at least two
graphs for the contraction relation (when considering connected graphs). The classification
in Theorem 6.18 coincides with the classification in Theorem 4.31 for boundedness of the
clique-width of H-induced-minor-free graphs. Hence we would also need to forbid a set
of at least two graphs for the induced minor relation. We note that the hereditary graph
class given in [142] (that is well-quasi-ordered by the induced subgraph relation, but has
unbounded clique-width) is not closed under contractions, subgraphs or induced minors.
Hence, this class does not give a positive answer to the question for contractions, subgraphs
or induced minors.
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7 Variants of Clique-Width

We have surveyed results and techniques for proving (un)boundedness of clique-width
for various families of hereditary graph classes and stated a number of open problems. We
conclude our paper with a brief discussion of some other variants of clique-width. Lozin and
Rautenbach [141] introduced the notion of relative clique-width, whose definition is more
consistent with the definition of treewidth. Computing relative clique-width is NP-hard, as
shown by Müller and Urner [148], but the concept has not been studied for hereditary graph
classes. Courcelle [52] and Fürer [83] defined symmetric clique-width and multi-clique-
width, respectively. Both these width parameters are equivalent to clique-width [52, 83].
As this survey focuses on boundedness of clique-width, we therefore do not discuss these
parameters any further here. Instead we focus on two other variants, namely linear clique-
width (Section 7.1) and power-bounded clique-width (Section 7.2).

7.1 Linear Clique-Width

Linear clique-width [98, 141], also called sequential clique-width, is defined in the same
way as clique-width except that in Operation 2 (the disjoint union operation) of the defini-
tion of clique-width, at least one of the two graphs must consist of a single vertex. Just as
clique-width is equivalent to NLC-width and rank-width, linear clique-width is equivalent
to linear NLC-width [98] and linear rank-width (see, for example, [150]).13 Moreover, just
as is the case for clique-width, the notion of linear clique-width is also not well understood,
and similar approaches to those for clique-width have been followed. To illustrate this, the
following analogous results to those for clique-width are known. Computing linear clique-
width is NP-hard [77] for general graphs, but it is polynomial-time solvable for forests [1]
and distance-hereditary graphs [2]. Moreover, graphs of linear clique-width at most 3 can
be recognized in polynomial time [104], but the computational complexity of recognizing
graphs of linear clique-width at most c is unknown for c ≥ 4 (see [105] for some partial
results for c = 4). Another analogous result is due to Gurski and Wanke who proved the
following theorem (compare to Theorem 3.7).

Theorem 7.1 ([100]). A class of graphs G has bounded path-width if and only if the class
of the line graphs of graphs in G has bounded linear clique-width.

By definition, every graph class of bounded linear clique-width has bounded clique-
width, but the reverse implication does not hold. For example, recall that every P4-free
graph has clique-width at most 2 by Theorem 4.1 and that every tree has clique-width at
most 3 by Proposition 3.2. In contrast, Gurski and Wanke [98] proved that the class of
P4-free graphs and even the class of complete binary trees have unbounded linear clique-
width. This led Brignall, Korpelainen and Vatter to consider hereditary subclasses of
P4-free graphs. They proved the following dichotomy result.

Theorem 7.2 ([39]). A hereditary subclass of P4-free graphs has bounded linear clique-
width if and only if it contains neither the class of (C4, P4)-free graphs nor the class of
(2P2, P4)-free graphs.

We note that (C4, P4)-free graphs are also known as the trivially perfect or quasi-
threshold graphs.

13We note that the corresponding variants for directed graphs were recently introduced by Gurski and
Rehs [96].
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To obtain an analogous result to Theorem 4.1, we state the following two results. The
first one is due to Gurski. The second can be easily derived from known results.

Theorem 7.3 ([94]). A graph has linear clique-width at most 2 if and only if it is
(2P2, 2P3, P4)-free.

Theorem 7.4. Let H be a graph. The class of H-free graphs has bounded linear clique-
width if and only if H is an induced subgraph of P1+P2 or P3. Furthermore, (P1+P2)-free
graphs and P3-free graphs have linear clique-width at most 2 and 3, respectively.

Proof. By Theorem 4.1 it suffices to consider the case when H is an induced subgraph of P4

and by Theorem 7.2 we may assume that H �= P4. Let G be an H-free graph. If H ⊆i P3,
then every connected component of G is a complete graph. Complete graphs are readily
seen to have linear clique-width at most 2. Hence, G has linear clique-width at most 3
(after creating each connected component, we relabel all of its vertices to a third label).
The only remaining case is H = P1+P2. Since P1+P2 is an induced subgraph of 2P2, 2P3

and P4, Theorem 7.3 implies that G has linear clique-width at most 2.

Theorem 7.4 leads to the following open problem.

Open Problem 7.5. Determine for which pairs of graphs (H1, H2) the class of (H1, H2)-
free graphs has bounded linear clique-width.

Just as is the case for clique-width, we expect that results on boundedness of linear
clique-width for H-free bipartite graphs would be useful for solving Open Problem 7.5. We
therefore also pose the following open problem.

Open Problem 7.6. Determine for which graphs H the class of H-free bipartite graphs
has bounded linear clique-width.

Finally, we can also prove an analogous result to Theorem 4.17.

Theorem 7.7. Let {H1, . . . , Hp} be a finite set of graphs. Then the class of (H1, . . . , Hp)-
free line graphs has bounded linear clique-width if and only if Hi ∈ T for some i ∈ {1, . . . , p}.

Proof. First suppose that Hi ∈ T for some i ∈ {1, . . . , p}. By definition of T , it follows
that Hi is the line graph of some graph Fi ∈ S. We repeat the arguments of the proof of
Theorem 4.17 to find that the class of Fi-subgraph-free graphs has bounded path-width.
Then, by Theorem 7.1, the class of Hi-free graphs, and thus the class of (H1, . . . , Hp)-
free graphs, has bounded linear clique-width. Now suppose that Hi /∈ T holds for every
i ∈ {1, . . . , p}. By Theorem 4.17, the class of (H1, . . . , Hp)-free line graphs has unbounded
clique-width, and thus unbounded linear clique-width.

7.2 Power-Bounded Clique-Width

Recall that the r-th power of G (r ≥ 1) is the graph with vertex set V (G) and an edge
between two vertices u and v if and only if u and v are at distance at most r from each
other in G. Gurski and Wanke [102] proved that the clique-width of the r-th power of a tree
is at most r + 2 +max{� r2� − 1, 0} and that the r-th power of a graph G has clique-width

at most 2(r + 1)tw(G)+1 − 1.
A graph class G has power-bounded clique-width if there is a constant r such that the

graph class consisting of all r-th powers of all graphs from G has bounded clique-width;
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otherwise G has power-unbounded clique-width. Hence, if a graph class has bounded clique-
width, it has power-bounded clique-width (we can take r = 1). The reverse implication does
not hold. This follows, for example, from a comparison of Theorem 4.1 with the following
classification for H-free graphs of Bonomo, Grippo, Milanič and Safe.

Theorem 7.8 ([21]). Let H be a graph. Then the class of H-free graphs has power-bounded
clique-width if and only if H is a linear forest.

Bonomo, Grippo, Milanič and Safe also proved the following classification for (H1, H2)-
free graphs when both H1 and H2 are connected.

Theorem 7.9 ([21]). Let H1 and H2 be two connected graphs. Then the class of (H1, H2)-
free graphs has power-bounded clique-width if and only if
(i) at least one of H1 and H2 is a path, or
(ii) H1 = S1,i,j for some i, j ≥ 1 and H2 = T0,i′,j′ for some i′, j′ ≥ 0.

The case when H1 or H2 is disconnected has not yet been settled.

Open Problem 7.10. Determine for which pairs of graphs (H1, H2) the class of (H1, H2)-
free graphs has power-bounded clique-width.

We note that analogous results to Theorems 4.5 and 4.7 exist for power-bounded clique-
width; that is, the classes of bipartite permutation graphs and unit interval graphs have
power-unbounded clique-width [21]. For more open problems on power-bounded clique-
width, we refer to [21].
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width of trees, Theoretical Computer Science 589 (2015), 87–98.

[2] Isolde Adler, Mamadou Moustapha Kanté, and O-joung Kwon, Linear rank-width of
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[28] Andreas Brandstädt, Vassilis Giakoumakis, and Martin Milanič, Weighted efficient
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