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Elliptic K3 Surfaces with Geometric
Mordell–Weil Rank 15

Remke Kloosterman

Abstract. We prove that the elliptic surface y2 = x3 + 2(t8 + 14t4 + 1)x + 4t2(t8 + 6t4 + 1) has

geometric Mordell–Weil rank 15. This completes a list of Kuwata, who gave explicit examples of elliptic

K3-surfaces with geometric Mordell–Weil ranks 0, 1, . . . , 14, 16, 17, 18.

1 Introduction

The Mordell–Weil rank r of a Jacobian elliptic surface π : X → C is defined as the

rank of the group of sections of π. If X is a K3 surface, then it follows easily that

C = P1. If one works over a field of characteristic 0, then it is well known that

0 ≤ r ≤ 18. (In positive characteristic we know that 0 ≤ r ≤ 20.)

By a result of Cox [4], there exists a Jacobian elliptic K3 surface defined over C

with any given Mordell–Weil rank r, with r an integer, 0 ≤ r ≤ 18. Actually, using

reasoning similar to [4], one can show there are infinitely many 18 − r-dimensional

families of Jacobian elliptic K3 surfaces defined over C, with Mordell–Weil rank r.

The examples constructed in the proof of Cox are not explicit: the existence of such

examples follows from properties of the period map.

Kuwata [10] has given a list of explicit Weierstrass equations for elliptic K3 sur-

faces defined over Q with Mordell–Weil rank r (over Q) for any r between 0 and 18,

except for the case r = 15.

The aim of this paper is to complete this list by producing an explicit example of

an elliptic K3 surface with Mordell–Weil rank 15. This is achieved in two steps. In

Section 3 we prove the following.

Theorem 1.1 Let K be an algebraically closed field, with char(K) 6= 2, 3. Let

a, b, c ∈ K. Let Ea,b,c/K(s) be the curve given by the Weierstrass equation

y2
= x3 + Aa,b,c(s)x + Ba,b,c(s),

with

Aa,b,c(s) = 4a3b3((b − a)cs8 + (4ab − 2ac − 2bc)s4 + (b − a)c,

Ba,b,c = 16a5b5s2((a − b)s8 + 2(b + a)s4 + (a − b)).

For a general (a, b, c) ∈ K3 this defines an elliptic K3 surface with 24 fibers of type I1

and Mordell–Weil rank at least 15. In case K = C, a generic member of this family has

Mordell–Weil rank 15.
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The strategy of our proof is the following. We start with a Jacobian elliptic K3

surface π : Y → P1 such that there are exactly 15 components of fibers of π not

intersecting the zero-section. The Shioda–Tate formula (Theorem 2.4) implies that

ρ(Y ) := rank NS(Y ) ≥ 17.

The particular examples π : X → P1 presented here allow a degree 8 base-change

of π such that its associated relatively minimal model ϕ : X → P1 has only irreducible

fibers and X is a K3 surface as well. One can show in different ways (either in a

direct and elaborate way or, if K = C, using a powerful result in Hodge theory) that

ρ(X) = ρ(Y ). The Shioda–Tate formula (Theorem 2.4) implies that the Mordell–

Weil rank of ϕ is at least 15.

In Section 5 we give an explicit example.

Theorem 1.2 Assume that K = Q. The elliptic K3 surface π : X → P1 with Weier-

strass equation y2
= x3 + 2(t8 + 2t4 + 1)x − 4t2(t8 − 6t4 + 1) has Mordell–Weil rank

15.

The surface X is isomorphic to the surface obtained by choosing (a, b, c) = (2, 4, 2)

in the equations of Theorem 1.1.

We use the following strategy to prove Theorem 1.2. The proof of Theorem 1.1

yields that the Mordell–Weil rank of π is at least 15. To prove equality we do the

following. It follows from the Shioda–Tate formula (Theorem 2.4) that it suffices to

prove ρ(X) ≤ 17. Since elliptic K3 surfaces over finite fields satisfy the Tate con-

jectures, one can determine ρ(X mod q) from the characteristic polynomial P2(t) of

Frobenius on H2
ét(X mod q, Qℓ). The polynomial P2(t) can be easily determined us-

ing the Lefschetz fixed point formula and counting the number of points on X mod q.

To prove ρ(X) ≤ 17 we find two prime numbers p1, p2 of good reduction such that

the reduction X mod p1 and X mod p2 have Picard number 18. This is the best pos-

sible bound one can hope for by only considering ρ(X mod q), since ρ(X mod q) is

even. From the fact ρ(X) ≤ ρ(X mod q) for any prime q of good reduction it follows

ρ(X) ≤ 18.

We now use a refinement of the Tate conjectures to prove that ρ(X) ≤ 17. Let

Gq be the Gram matrix of the intersection pairing on NS(X mod q). If ρ(X) would

be 18, then det(Gp1
) and det(Gp2

) would differ by a square. We use the Artin–Tate

conjecture (which is both a refinement of and equivalent to the Tate conjecture, hence

it holds for our K3 surfaces X mod pi) to determine det(Gp1
) and det(Gp2

) up to

squares. Since they differ, we deduce that ρ(X) ≤ 17.

2 Definitions and Notation

Definition 2.1 An elliptic surface is a triple (π, X,C) with X a smooth projective

surface, C a smooth projective curve and π a morphism X → C , such that almost

all fibers are irreducible genus 1 curves and X is relatively minimal, i.e., no fiber of π
contains an irreducible rational curve D with D2

= −1.

We denote by j(π) : C → P1 the rational function such that j(π)(P) equals the

j-invariant of π−1(P), whenever π−1(P) is non-singular.
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A Jacobian elliptic surface is an elliptic surface together with a section σ0 : C → X

of π. The set of sections of π is an abelian group, with σ0 as the identity element.

Denote this group by MW (π).

Let NS(X) be the group of divisors on X modulo algebraic equivalence, called the

Néron–Severi group of X. The Picard number ρ(X) is by definition the rank of the

Néron–Severi group of X.

Remark 2.2 Suppose we are working over a field not of characteristic 2 or 3. If

P is a point on C , such that π−1(P) is singular, then j(π)(P) and the number of

components of π−1(P) are as in Table 1. For proofs of these facts see [1, Section V.7]

(or [2, Section V.7]), [22, Theorem IV.8.2], [23, p. 46] or [16, Lecture 1].

Kodaira type

of fiber

over P

j(π)(P)

number of

geometric

components

I∗0 6= ∞ 5

Iν (ν > 0) ∞ ν + 1

I∗ν (ν > 0) ∞ ν + 5

II 0 1

IV 0 3

IV∗ 0 7

II∗ 0 9

III 1728 2

III∗ 1728 8

Table 1: Classification of singular fibers

Definition 2.3 Let X be a surface, let C and C1 be curves. Let ϕ : X → C and

f : C1 → C be two morphisms. Then we denote by ˜X ×C C1 the smooth relatively

minimal model of the fiber product of X and C1 over C .

Recall the following theorem.

Theorem 2.4 (Shioda-Tate [20, Theorem 1.3; Corollary 5.3]) Let π : X → C be a

Jacobian elliptic surface, such that π has at least one singular fiber. Then the Néron–

Severi group of X is generated by the classes of σ0(C), a non-singular fiber, the compo-

nents of the singular fibers not intersecting σ0(C), and the generators of the Mordell–Weil
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group. Moreover, let S be the set of points P such that π−1(P) is singular. Let m(P) be

the number of irreducible components of π−1(P). Then

ρ(X) = 2 +
∑

P∈S

(m(P) − 1) + rank(MW (π)).

The following result will be used several times. It is a direct consequence of the

Shioda–Tate formula.

Theorem 2.5 ([20, Theorem 10.3]) Let π : X → P1 be a rational Jacobian elliptic

surface. Then the rank of the Mordell–Weil group is 8 minus the number of irreducible

components of singular fibers not intersecting the zero section.

Given a Jacobian elliptic surface π : X → C over a field K, we can associate an

elliptic curve in P2
K(C) corresponding to the generic fiber of π. This induces a bijection

between isomorphism classes of Jacobian elliptic surfaces and isomorphism classes of

elliptic curves over K(C).

Two elliptic curves E1 and E2 are isomorphic over K(C) if and only if j(E1) =

j(E2) and the quotient of the discriminants of E1/K(C) and E2/K(C) is a 12-th power

(in K(C)∗).

Assume that E1, E2 are elliptic curves over K(C) with j(E1) = j(E2) 6= 0, 1728.

Then one easily shows that the quotient of the discriminants of E1 and E2 equals u6

for some u ∈ K(C)∗. Hence E1 and E2 are isomorphic over K(C)(
√

u). We call E2

the twist of E1 by u, denoted by E(u)
1 . Actually, we are not interested in the function

u, but in the places at which the valuation of u is odd.

Definition 2.6 Let π : X → C be a Jacobian elliptic surface. Fix 2n points Pi ∈
C(K). Let E/K(C) be the Weierstrass model of the generic fiber of π.

A Jacobian elliptic surface π ′ : X ′ → C is called a (quadratic) twist of π by

(P1, . . . , Pn) if the Weierstrass model of the generic fiber of π ′ is isomorphic to E( f ),

where E( f ) denotes the quadratic twist of E by f in the above-mentioned sense and

f ∈ K(C) is a function such that vPi
( f ) ≡ 1 mod 2 and vQ( f ) ≡ 0 mod 2 for all

Q 6∈ {Pi}.

If K = K, then the existence of a twist of π by (P1, . . . , P2n) follows directly from the

fact that Pic0(C) is 2-divisible. Moreover, if we fix 2n points P1, . . . P2n, then there

exist precisely 22g(C) twists by (Pi)
2n
i=1.

If P is one of the 2n distinguished points, then the fiber of P changes in the follow-

ing way (see [16, V.4]).

Iν ↔ I∗ν (ν ≥ 0), II ↔ IV∗, III ↔ III∗, IV ↔ II∗ .

Let π : X → C be a Jacobian elliptic surface, P1, . . . P2n ∈ C points. Let π̃ : X̃ → C

be a twist by the Pi . Then there exist a double cover ϕ : C1 → C ramified at the Pi ,

such that the minimal non-singular models of X ×C C1 → C1 and X̃ ×C C1 → C1 are

isomorphic as fibers surfaces. Denote this model by π1 : X1 → C1.
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Recall from [21, Exercise 10.16] that

(1) rank(MW (π1)) = rank(MW (π)) + rank(MW (π̃)).

Moreover, the singular fibers change as follows:

Fiber of π at Pi Iν or I∗ν II or IV∗ III or III∗ IV or II∗

Fiber of π1 at ϕ−1(Pi) I2ν IV I∗0 IV∗

3 Construction

Let K be an algebraically closed field of characteristic different from 2 and 3.

Consider the following construction.

Construction 3.1 Let π : X → P1 be a Jacobian elliptic surface whose singular

fibers are three fibers of type I1 and one fiber of type III∗. Let f ∈ K(t) be a function

of degree two, such that the fibers of π over the critical values of f are non-singular.

Let α, β ∈ P1 be the two distinct points such that f (α) = f (β) is the point whose

fiber is of type III∗. Let g be a degree four cyclic covering, with only ramification

over α, β. Let ϕ : Y → P1 be the non-singular relatively minimal model of the fiber

product X ×P1 P1 with respect to π and f ◦ g : P1 → P1.

Y

~~~~
~
~
~

��

ϕ
// P1

g ′

2
����

P1 X̃2

π̃2

oo X2

����
�
�
�

π2

//

��

P1

��

P1 X̃1

π̃1

oo X1

~~~~
~
~
~

π1

//

��

P1

f
��

P1 X̃
π̃

oo X
π

// P1

Table 2: Overview of all maps used in this section (g = g2 ◦ g ′

2 ).

Proposition 3.2 The Mordell–Weil rank of ϕ (of Construction 3.1) is at least 15, and

is precisely 15 if and only if the rank of the twist of π by the two critical values of f is 0.
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Proof The assumptions imply that X is a rational surface and hence using Theo-

rem 2.5 we have that rank MW (π) = 1. Let π1 : X1 → P1 be the fiber product

X ×P1 P1 with respect to f : P1 → P1 and π. Let π̃ : X̃ → P1 be the twist of π by the

two critical values of f . Then by (1) and Theorem 2.5

rank(MW (π1)) = rank(MW (π)) + rank(MW (π̃)) = 1 + rank(MW (π̃)).

Note that π1 has two fibers of type III∗ and six fibers of type I1. Let P1 and P2 be the

points with a fiber of type III∗.

Let g2 : P1 → P1 be the degree two function with critical values P1 and P2. Define

π2 : X2 → P1 to be the non-singular relatively minimal model of the fiber product

X ×P1 P1 with respect to π1 and g2.

Let π̃1 be the twist of π1 by P1 and P2. Then π̃1 has two fibers of type III and

six fibers of type I1, hence the corresponding surface is rational and by Theorem 2.5

π̃1 has Mordell–Weil rank 6. It follows that rank(MW (π2)) = 7 + rank(MW (π̃)).
Furthermore, π2 has two fibers of type I∗0 , and 12 fibers of type I1.

Let π̃2 be the twist of π2 by the two points with fiber of type I∗0 . Then π̃2 has 12

fibers of type I1 and the corresponding surface is rational with Mordell–Weil rank

eight. So

rank(MW (ϕ)) = rank(MW (π2)) + rank(MW (π̃2)) = 15 + rank(MW (π̃)).

Remark 3.3 If we suppose that rank(MW (π̃)) = 0, then it is relatively easy to

find explicit generators for MW (ϕ). In that case the pull-backs of the generators of

MW (π), MW (π̃1), MW (π̃2) generate a subgroup of MW (ϕ) of index 2m, for some

m ≥ 0. Since all these three surfaces are rational, we can take a specific Weierstrass

model for these surfaces such that all Mordell–Weil groups are generated by polyno-

mials of degree at most 2. (See [18].)

Remark 3.4 In the case K = C, there exists another proof. Since Y and X̃ are

both K3 surfaces and there exists a finite map between them, the Picard numbers of

both surfaces coincide (see [7, Corollary 1.2]). From an easy exercise using Kodaira’s

classification of singular fibers it follows that the configuration of singular fibers of

ϕ is the one mentioned in the theorem. By Kodaira’s classification of singular fibers

and the Shioda–Tate formula 2.4, we conclude

2 + 15 + rank(MW (π̃)) = ρ(X) = ρ(Y ) = 2 + rank(MW (ϕ)).

Proposition 3.2 enables us to prove the first theorem.

Proof of Theorem 1.1 Let c ∈ K∗ be such that c2 6= −1. Then the rational elliptic

surface E ′

c associated to the Weierstrass equation y2
= x3 +t3(t−c)x+t5 has a fiber of

type III∗ and three fibers of type I1. One easily shows that if E ′

c
∼= E ′

c ′ then c ′2 = c2.

(If E ′

c
∼= E ′

c ′ then there exists an automorphism h : P1 → P1 fixing 0 and ∞, and a

constant λ ∈ K, verifying h(t)3(h(t) − c) = λ4t3(t − c ′) and h(t)5
= λ6t5. This

implies that λ2
= 1 and c ′ = λc.)
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Let a 6= b and

fa,b(s) =
4abs

(a − b)s2 + 2(a + b)s + a − b
.

The critical values of fa,b are a and b, and f −1(0) = {0,∞}. Hence by Proposition 3.2

the elliptic surface associated to the Weierstrass equation

y2
= x3 + fa,b(s4)3( fa,b(s4) − c)x + fa,b(s4)5

satisfies the properties stated in the theorem. After a coordinate change which clears

denominators, we obtain the equation of Ea,b,c.

This family contains a three-dimensional sub-family of non-isomorphic elliptic

surfaces, because it is a finite base change of a three-dimensional family of non-

isomorphic elliptic surfaces.

Assume now that K = C. Let M be the moduli space of Jacobian elliptic K3

surfaces (cf. [15]). Let U ⊂ M be the set of elliptic surfaces with non-constant

j-invariant. Let NL18 be the locus in M corresponding to elliptic K3 with Picard

number at least 18.

Suppose that a generic twist of E ′

c would have positive Mordell–Weil rank. Then

the constructed family Ea,b,c would map to a 3-dimensional component C of NL18,

moreover the general member of the family Ea,b,c has non-constant j-invariant, hence

dim C ∩ U = 3. From [9, Theorem 1.1] it follows that dim NL18 ∩ U ≤ 2, a con-

tradiction. From Proposition 3.2 it follows that the generic member of Ea,b,c has

Mordell–Weil rank precisely 15.

4 A Method for Bounding the Picard Number

In the previous sections we showed the existence of a family of K3 surfaces such that

the general member has Mordell–Weil rank 15. In this section we give an explicit

example. In general it is hard to determine the Mordell–Weil rank of a non-rational

elliptic surface. In the case of elliptic K3 surfaces, one might be able to compute

the Mordell–Weil rank using the Tate conjectures (which are proven for elliptic K3

surfaces over finite fields.)

In this section K is supposed to be a number field. Recall the following facts.

Suppose π : Y → P1 is an elliptic surface defined over a number field K. Fix a

model for π over OK , the ring of integers of K. Let p be a prime of OK . Assume that

Y has good reduction at p. Let q : = #OK/pOK . Let Y be the reduction of Y modulo

p. Then the reduction map rp : NS(YQ) → NS(Y Fq
) is injective (see [11, Proposi-

tion 6.2]). It turns out that one can determine the rank of NS(Y Fq
) for varieties Y for

which the Tate conjectures hold. In any case, the method mentioned below gives us

an upper bound for rank NS(Y Fq
)).

Definition 4.1 Suppose (Λ, 〈 · , · 〉) is a lattice. Let G be a Gram matrix of Λ with

respect to 〈 · , · 〉. By definition, the discriminant of (Λ, 〈 · , · 〉) is the determinant of

G, which we denote by ∆(Λ, 〈 · , · 〉) or ∆(Λ), if no confusion arises.
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It is well known that the Néron–Severi group (modulo torsion) together with the

intersection pairing forms a lattice. This implies the following proposition.

Proposition 4.2 Let Y/K be a smooth projective surface. Suppose p is a prime of good

reduction. Let q = #OK/pOK . Suppose that the reduction map

rp : NS(YQ) ⊗ Q → NS(Y Fq
) ⊗ Q

is an isomorphism. Then the determinant of the Gram matrices of the intersection pair-

ings on NS(Y
Q

) and NS(Y Fq
) differ by a square.

Proof Since p is a prime of good reduction, we have that NS(Y
Q

) is a sublattice of

NS(Y Fq
) (see [11, Proposition 6.2]). Our assumptions imply that both lattices have

the same rank. A standard result in lattice theory gives

∆(NS(YQ)) = [NS(Y Fq
) : NS(YQ)]2

∆(NS(Y Fq
))

where ∆(Λ) denotes the determinant of the Gram matrix of the lattice Λ. This yields

the proposition.

One can construct examples of surfaces such that for every prime p of good re-

duction the image of rp is not of finite index in NS(Y Fq
). (See [6, 19, 25] for examples

such that ρ(Y ) = 1. An easy example is the Kummer surface Y of E × E, for an

elliptic curve E/K without potential complex multiplication, then ρ(Y ) = 19. By

Proposition 4.4 all good reductions have an even Picard number).

Proposition 4.2 turns out to be useful in showing that rp is not surjective. In

Section 5 we give such an example.

Conjecture 4.3 (Tate Conjecture) Let Y/Fq be a smooth surface. Let F∗

q be the au-

tomorphism of H2
ét(Y, Qℓ) induced by the Frobenius automorphism of Fq on Y . Let

Q(t) be det(I − tF∗

q | H2
ét(Y, Qℓ)). Then ρ(Y ) equals the number of reciprocal zeroes

of Q of the form qζ , with ζ a root of unity.

This conjecture is known to be true for several classes of varieties, see for example

[24].

The following proposition shows that considering only one prime might not be

sufficient to obtain a sharp bound on the Picard number, namely that over finite

fields the number of possible Picard numbers seems smaller than over fields of char-

acteristic zero.

Proposition 4.4 Let Y/Fq be a smooth projective surface for which Conjecture 4.3

holds, e.g., K3 surfaces. Then ρ(Y ) − dimQℓ
H2

ét(Y, Qℓ) is even.

Proof After replacing Fq by a finite extension, if necessary, we may assume that we

have a set of Fq-rational divisors generating NS(YFq
). This implies that the character-

istic polynomial of Frobenius on H2
ét(Y, Qℓ) is of the form g(t)(t − 1/q)ρ(Y ), where
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g ∈ Q[t] is a polynomial such that all its reciprocal zeroes have absolute value q [5,

Theorem 1.6]. Since the Tate Conjecture 4.3 holds for Y , it follows that g(±q) 6= 0,

hence g has no zeroes on the real line. In particular, g has even degree.

From Conjecture 4.3 it follows that

dimQℓ
H2

ét(Y, Qℓ) − ρ(Y ) = deg g(t),

which yields the proposition.

Remark 4.5 In this remark we try to indicate why there might exist many surfaces

such that rp is not surjective for any prime of good reduction. Using the period map

one can show that every integer r, such that 1 ≤ r ≤ 20 occurs as the Picard number

of an algebraic K3 surface Y over C. Since dim H2
ét(Y, Qℓ) = 22, it follows from

Proposition 4.4 that ρ(Y Fq
) is even, hence one might expect many examples of K3

surfaces defined over number fields such that for every prime of good reduction the

image of the reduction map rp is not of finite index in NS(Y Fq
).

Suppose we can show that for two different primes p1, p2 of good reduction the

rank of the Néron–Severi lattices is the same, but the discriminants of the Néron–

Severi lattices differ by a non-square. Then we conclude by Proposition 4.2 that the

rank of NS(Y
Q

) is at least one lower than the rank of NS(Y Fq1

). This method was

suggested to the author by Ronald van Luijk, see also [12].

The above remarks are only useful, if for a given surface Y/Fq one can efficiently

compute ρ(Y ) and the determinant of the Néron-Severi lattice of Y . In general this is

not the case, but for surfaces for which Conjecture 4.3 holds, this can be done. Milne

[13] proved that if Y is a surface for which Conjecture 4.3 holds, then the following

conjecture also holds.

Conjecture 4.6 (Artin–Tate Conjecture) Let Y/Fq be a smooth surface. Let Fq be

the Frobenius automorphism of Fq acting on Y . Let Q(t) := det(1−tF∗

q | H2
ét(Y, Qℓ)).

Then

(∗) lim
s→1

Q(q−s)

(1 − q1−s)ρ ′(Y )
=

(−1)ρ ′(Y )−1# Br(Y )∆(NS(YFq
))

qα(Y )(#NS(YFq
)tor)2

,

with α(Y ) = χ(Y, OY ) − 1 + dim Pic0(Y ) and Br(Y ) is the Brauer group of Y . With

NS(YFq
) we indicate the subgroup of NS(YFq

) generated by Fq-rational divisors and

with ρ ′(Y ) = rank NS(YFq
).

If Y/Fq is an elliptic K3 surface, such that gcd(q, 6) = 1, then both the Tate and

the Artin–Tate conjecture are known to be true (see [17]). We are actually interested

in the discriminant of NS(YFq
). This forces us to apply Conjecture 4.6 over a field

extension such that ρ ′(Y ) = ρ(Y ). (For an overview of cases for which the Tate and

the Artin–Tate conjecture holds, see [24].)

The Tate conjecture reduces our problem to finding the characteristic polynomial

of Frobenius on H2
ét(Y, Qℓ). This can be done by using the Lefschetz fixed point
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formula, i.e., one calculates the trace of the Frobenius automorphism (and several of

its powers) on the cohomology by counting points on the surface. From knowing

these traces, one deduces the characteristic polynomial. (This is explained in detail

in [11, Section 7]).

We discuss some of the other quantities that have to be computed. Since we are

only interested in knowing ∆(NS(YFq
)) up to squares, we might just disregard all

quantities in (∗) that are a square.

Proposition 4.7 Suppose q is a prime power, with gcd(q, 6) = 1. Let π : Y → P1 be

an elliptic K3 surface, defined over Fq. Assume that q is a square and ρ(Y ) = ρ ′(Y ).

Then

∆(NS(YFq
)) ≡ − lim

s→1

Q(q−s)

(1 − q1−s)ρ(Y )
mod Q∗2.

Proof It is known that for an elliptic surface π : Y → P1, the Brauer group Br(Y )

is isomorphic to X(Y/P1) [3, Chapter 5], where X(Y/P1) is the Tate–Shafarevich

group of Y/P1. It is classically known that the number of elements of X(Y/P1) is a

square [14, Remark 6.11], although this remark is not completely correct, it is correct

in the case of an elliptic curve over a function field), so we may disregard # Br(Y ). The

parity of ρ ′(Y ) follows from

ρ(Y ) = ρ ′(Y ) ≡ dim H2
ét(Y, Qℓ) ≡ 0 mod 2,

using Proposition 4.4. Since gcd(q, 6) = 1, we know that Conjecture 4.6 holds. Com-

bining these facts yields the proposition.

5 Proof of Theorem 1.2

We apply the above mentioned strategy in the following example.

Consider the following elliptic K3 surface X associated with

y2
= x3 − (2t − 1)3(4t − 1)2x + t(2t − 1)3(4t − 1)3.

This surface has two fibers of type I∗0 (at t = 1/4 and t = 1/2), a fiber of type III∗

at t = ∞ and three fibers of type I1. One can easily show that p = 17 and p = 19

are primes of good reduction, and all singular fibers are over points in P1(Fp). The

components of the singular fibers, the zero-section and the class of a smooth fiber

generate a rank 17 sublattice of NS(X). One can easily show that these generators

considered over F17 (resp., F19) are rational over F176 (resp., F196 ); this is a straight-

forward application of Tate’s algorithm [23]. A more precise application of Tate’s

algorithm yields an explicit degree 17 factor Tp of the characteristic polynomial Qp

of the Frobenius of Fp acting on H2
ét(X, Qℓ). In particular, one obtains that all roots

αp of Tp satisfy α6
p = p−6, if p ∈ {17, 19}. Since dim H2

ét(X, Qℓ) equals 22, we have

to find a complimentary degree 5 factor G̃p of Qp. From the fact that all reciprocal

roots of Qp have absolute value p, at least one of the roots of G̃p is ±1/p. By counting
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points over F17 and F172 and using Poincaré duality (cf. [11, §7]), we obtain that

G17 = (17x − 1)G̃17, with G̃17 given by

1 + 17x + 136x2 + 4913x3 + 83521x4

and similarly for p = 19, we obtain that G19 = (19x + 1)G̃19, with G̃19 given by

1 − 9x − 228x2 − 3249x3 + 130321x4.

One easily shows that both polynomials have no reciprocal root of the form pζ , with

ζ a root of unity. This implies that ρ(XFp
) = 18, for p = 17, 19.

Let Hp the polynomial obtained by taking all roots of Gp to the power six. Then

(p6X − 1)18Hp is the characteristic polynomial of the Frobenius of Fp6 acting on

H2
ét(XFp6

, Qℓ) for p = 17, 19.

Proposition 4.7 implies that

∆(NS(XF
176

)) ≡ 5 · 19 · 101516605992547 · 11 · 875005421 mod Q∗2

and

∆(NS(XF
196

)) ≡ 809308043 · 95814202607062823339·

· 2297 · 774901 · 7 · 13 · 419 · 16620229 mod Q∗2.

The strategy explained in the previous section now implies that ρ(X) ≤ 17. From

Proposition 3.2 we know that ρ(X) ≥ 17, proving that rank NS(X) = 17, and

rank MW (π) = 0. Applying Proposition 3.2 again gives that

y2
= x3 + 2(t8 + 2t4 + 1)x − 4t2(t8 − 6t4 + 1)

has Mordell–Weil rank 15.
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