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ABSTRACT. In the empirical study of jo« kulhlaups, the peak discharge, Qmax, and
water volume drained by the ice-dammed lake during the floods, Vt, appear to follow a
power-law relation Qmax ˆ KVt

b, where K are b are constants determined from field
data. First identified by Clague and Mathews (1973), this relation is a useful reference
for predicting flood magnitude, but its physical origin remains unclear. Here, we develop
the theory that connects it to contemporary models for simulating the flood hydro-
graph. We explain how the function Qmax ˆ f…Vt† arises from Nye’s (1976) theory of
time-dependent water flow in a subglacial channel coupled to a lake, and we describe
how discharge^volume data record the (monotonically increasing) form of this function
so long as the lake is not emptied in the floods. The GrõÂmsvo« tn jo« kulhlaups present an
example where, because of partial draining of the lake, agreement between the model-
derived f and data is excellent. It is documented that other lake systems drain com-
pletely, but we explain how the exponent b º 2/3 observed for them collectively is due
primarily to a scaling effect related to their size, modified by other factors such as the
flood initiation process.

1. INTRODUCTION

The release of water from glaciers in catastrophic floods,
known as jo« kulhlaups, has a long history of study prompted by
their environmental consequences and potential threat to
human activity.The challenge clearly is to predict their timing
andmagnitude. But we are still shortof this goal eventhougha
physical understanding of flood mechanics is emerging.

In this paper, we discuss a long-standing issue in the
problem of flood prediction. By analyzing flood data from
10 marginal ice-dammed lakes, Clague and Mathews
(1973) identified an empirical relation between the peak dis-
charge, Qmax, and the water volume drained during the
flood, Vt, in the form

Qmax ˆ KVt
b : …1†

The constants are K ˆ 75 and b ˆ 0.67 (with Qmax meas-
ured in m3 s^1 and Vt measured in 106 m3) and the statistical
fit was foundto be remarkably good. A careful andextended
study by Walder and Costa (1996) revealed greater scatter
when obtaining a fit to 26 lakes, but the exponent, b º 2/3,
seems robust for lake systems that produce jo« kulhlaups sub-
glacially (as opposed to those that are drained by water
flowing along the ice margin, bounded by valley walls). It
is thus natural to suppose that the power law in Equation
(1), the so-called `̀Clague^Mathews relation’’, has an origin

in the physics governing floodevolution, and this is what we
set out to examine here.

The starting point of our enquiry is the modern thermo-
mechanical description of jo« kulhlaups. Its constituents have
been investigated by several authors, notably Ro« thlisberger
(1972), Mathews (1973) and Glazyrin and Sokolov (1976), but
a complete theory first appeared in the celebrated paper by
Nye (1976). In this description the ice-dammed lake drains
via a subglacial water channel linking it to the snout.
During the rising flood stage, the channel expands by melt-
ing of its ice walls due to heat dissipation by the water being
conveyed. A positive feedback between the rate of melting
and channel enlargement leads to an escalating discharge
(the rapid growth observed in the flood hydrograph), but
this does not continue indefinitely, as later, at lower lake
levels and reduced water pressure, ice deformation closes
down the channel and the flood subsides. Nye (1976) formu-
lated the governing equations to model this behaviour.
Although this model is not without shortcomings (Fowler
and Ng, 1996), it has been used to simulate hydrographic
data, with a fair degree of success, from jo« kulhlaups from
both marginal and subglacial lakes.

Explaining the trend behind Equation (1) is motivated
by the potential for predicting flood magnitude given a
known lake volume. Moreover, the trend persists over a vast
range in Qmax and Vt, and poses a crucial test for our current
understanding of flood mechanics. Previous work has
focused on simulating discharge variations over time, espe-
cially the flood hydrograph (e.g. Spring and Hutter, 1981;
Clarke, 1982; Bjo« rnsson, 1992). Instead, we use the Nye
model here to illuminate the nature of existing Qmax¡Vt

data, and show that insight can be gained into the me-
chanics of the floods through their collective behaviour.
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2. BACKGROUND

2.1. Discharge^volume data for jo« kulhlaups

Pertinent data compilations have been presented by other
investigators. Walder and Costa (1996, fig. 2 and table 1)
studied a dataset of `̀ subaerial’’ ice-dammed lakes in a vari-
ety of settings (e.g. at the glacier margin orat the confluence
of glacier tributaries), including a revised version of the ori-
ginal data of Clague and Mathews (1973, fig.2 and table1) as
subset. Bjo« rnsson (1992, fig.16) worked on a dataset based on
jo« kulhlaups originating from subglacial lake GrõÂmsvo« tn in
Iceland, one of the most extensively studied systems in the
world. These two datasets are probably the most compre-
hensive to date and are shown in Figure 1. Only floods that
are thought to have drained subglacially are included. The
power laws derived by earlier authors are straight lines in
the figure, and the corresponding K and b values are listed
in Table 1. Full reference to the data sources is provided by
Walder and Costa (1996).

Although Figure 1 displays a coherent trend, several
complications must be taken into account when interpreting
it. First and foremost, the scatter of the data is significant.
Where data on multiple flood events are available for a
given lake, they commonly occur in clusters spanning up to
an order-of-magnitude range in Qmax and Vt. If one were to
construct a Clague^Mathews relation for each lake, the
resulting best-fit slope (the value of b) would generally differ
significantly from the overall slope derived for all lake sys-
tems, which is about 2/3.

Another feature is that many of the outbursts are known
to have emptied the lake (`̀ complete draining’’), while
others have terminated with the lake still partially filled

(`̀ incomplete draining’’). (Clague and Mathews (1973)
referred to Vt as the water volume stored in the lake, or the
lake capacity, which is appropriate because draining was
thought to be complete in their examples. In this paper, to
avoid ambiguity, we define Vt to be the volume drained.) The
GrõÂ msvo« tn jo« kulhlaups belong consistently to the second
category. A Clague^Mathews fit for them also seems to be
exceptionally good compared to other systems (Fig. 1),
despite a drastically different value of the exponent; Table 1
shows that b calculated by Bjo« rnsson (1992) for GrõÂmsvo« tn is
almost three times the other b values. These observations
may not be coincidental, and we discuss them later.

A plausible strategy for us to follow is to study how a
physics-based relation between Qmax and Vt can arise in a
model. This notion is not new. Equation (1) is suggestive of
a scaling law in the description of the floods, for instance, and
this aspect has been investigated by Clarke (1982). But the
complications noted above reveal important subtleties. The
general trend pertaining to b º 2/3 seems to be one that

Fig. 1. Peak flood discharge plotted against volume drained for subaerial lakes (crosses) (taken from the dataset of Walder and
Costa, 1996) and for GrõÂmsvo« tn (circles) (from Bjo« rnsson, 1992; Gudmundsson and others, 1995). Envelopes group together
multiple events from the same lake if there are three or more. Numbering of regression power laws followsTable 1.

Table 1. Constants in the regression power laws of Clague^
Mathews form derived by earlier authors for flood discharge^
volume data. r2 is the correlation coefficient. Power law 3 is
based on the Grïmsvo« tn dataset only

Power law K b r2 Source

1 75 0.67 0.96 Clague and Mathews (1973)
2 113 0.64 0.80 Costa (1988)
3 4.15610^3 1.84 0.97 Bjo« rnsson (1992)
4 46 0.66 0.70 Walder and Costa (1996)
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exists between the different data clusters, not within indi-
vidual clusters, and so the factors governing the discharge^
volume characteristics of a number of lakes and those of a
single lake, while they may be closely related, are probably
different. In addition, the possibility of the lake running out
of water creates a (discontinuous) threshold in the flood
system. Because of this, the data recorded in Figure 1 may
not be carrying the same information about the floods’ evo-
lutionary mechanics, in the sense that some of them have
been influenced by this threshold while others have not.

2.2.The Nye model

Figure 2 shows a hypothetical jo« kulhlaup system, consisting
of a source lake drained by a subglacial channel with cross-
sectional area S…x; t†, where x denotes downstream distance
fromthe lake and t denotes time. Nye’s (1976) theory describes
the evolution of this channel as a result of ice melting and ice
deformation (creep closure) along its length, using the
equation

@S

@t
ˆ m

»i
¡ K0S…pi ¡ pw†n ; …2†

where m is the melt rate of ice (mass per unit length per
time), »i is ice density, and the last term of this equation
relates the closure rate of the channel to the difference
between the overburden ice pressure, pi, and the channel
water pressure, pw. It is convenient to define an effective
pressure, N ˆ pi ¡ pw, for subsequent calculations. n (º 3)
is the exponent in Glen’s flow law. The classical theory
assumes a cylindrical channel, and the constant K0 has
been derived by solving the corresponding creep closure
problem for the ice (Nye,1953).

The key idea in this model is that a flood arises as an
imbalance between melting and closure when the channel
is coupled to the lake, the draining of which controls N
(through water pressure). m is deduced from hydraulic con-
siderations. If Q…x; t† is the water flux in the channel, then
the equations for mass, momentum and energy conserva-
tion, respectively, are

@S

@t
‡ @Q

@x
ˆ m

»w
; …3†

ª ‡ @N

@x
ˆ F1Q

2

S8=3
; …4†

Q

³
ª ‡ @N

@x

´
ˆ mL ; …5†

where »w is the density of water and L is latent heat. (An
equivalent version of Nye’s equations written in terms of
the effective pressure N has been given by Fowler (1999).)
Equation (4) is a Manning parameterization for turbulent
flow, in which the constant F1 takes into account the wall
friction of the channel and its cross-sectional geometry.

ª ‡ @N=@x is the hydraulic gradient driving the flow, and
ª is that component due to topography alone (a function of
x only), defined by

ª ˆ »wg sin ¬b ¡ dpi

dx
: …6†

¬b is the slope of the glacier bed, and g (ˆ9.8 m s^2) is gravi-
tational acceleration.

We need not be concerned with the full model here.
Indeed, Equation (5), which relates the rate of heat dissipa-
tion to the melt rate, is already simplified, as it neglects the
heat that raises the water temperature (slightly) above the
melting point. Nye (1976) and Clarke (1982) considered
other simplifications, the most useful of which allows the
model’s x dependence to be removed. By a scaling analysis,
Ng (1998) has shown that such an approximation is valid
when pressure conditions at the snout do not influence the
lake-end of the system strongly.1 Under these conditions, N
refers to the effective pressure at the seal (close to the lake),
and Equations (3^5) become

Q º Q…t† only ; …7†
ª º F1Q2S¡8=3 ; …8†
ªQ º mL : …9†

On eliminating m and S from Equations (2), (8) and (9), we
find

dQ

dt
ˆ 4ª

3»iL

³
ª

F1

´3=8

Q5=4 ¡ 4K0

3
QNn; …10†

which is a compact description of channel evolution arising
from melting and closure (the first and second term on the
right, respectively). In our applications, we use a spatially
averaged value of ª calculated from the ice thickness at the
seal and the bed elevation drop from there to the glacier
snout. We also assume F1 ˆ 530 kg m^8/3 based on a Man-
ning roughness coefficient 0.1m^1/3 s found by Nye (1976)
and Clarke (1982), and the constants »i ˆ 900 kg m^3, »w ˆ
1000 kg m^3, L ˆ 3.346105 J kg^1.

Lake dynamics
If hi is the ice thickness at the seal and hw is the lake surface

1 Strictly speaking, the approximation is valid asymptoti-
cally for ‰N Š ½ »iglc sin ¬i, where lc is the channel length,
¬i is the ice surface slope and ‰N Š is the typical effective
pressure, defined later. This condition is usually satisfied,
albeit not for several lake systems considered later (Table
4) in which the ice dam is exceedingly thin. Nevertheless,
we shall apply the approximation because it is not unrea-
sonable in terms of numerical accuracy in these situations.

Fig. 2. Schematic diagram of a jo« kulhlaup system and the
definitions used in our mathematical model. Inset (top right)
illustrates the depth correction arising from a floating ice shelf,
described in the text.
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elevation relative to the lowest point of the lake (Fig. 2), then
the effective pressure is

N ˆ »ighi ¡ »wg…hw ‡ hs†; …11†

and we may describe the time variation of N through sur-
face lowering of the lake as its volume V is reduced.This for-
mulation is similar to the one introduced by Clarke (1982),
but not identical since we allow a vertical offset, hs, between
the lake bottom and the seal. Given the lake hypsometry
A ˆ A…hw†, where A is lake area, we have
V ˆ

R hw…t†
0 A…z† dz. The mass-continuity equation for the

lake is simply dV =dt ˆ ¡Q, or, if we include a recharge
term QIN (representing long-term precipitation and/or
geothermal meltwater input), then dV =dt ˆ ¡Q ‡ QIN.
An alternative way of writing this is

¡ A…hw†
»wg

dN

dt
ˆ ¡Q ‡ QIN : …12†

This equation couples with Equation (10). Following Clarke
(1982), we describe the lake hypsometry using a power-law
function and let

A

A0
ˆ

³
hw

h0

´

; … > 0† …13†

in which h0 is the flotation lake level (at which point N ˆ 0),
given by

h0 ˆ »ihi

»w
¡ hs ; …14†

A0 is the corresponding lake area (Fig. 2).
When Equation (12) is applied, a correction is necessary

if a floating ice shelf covers the lake, as encountered at
GrõÂmsvo« tn. Then it is the basal area of the ice shelf that
determines the lake volume change for a known adjustment
of water level. However, because of the way terms represent-
ing water pressure have been defined in Equation (11), hw in
this case refers to an equivalent lake water depth taking into
account the ice shelf, and we evaluate A in Equation (12) at
the elevation hw ¡ »ids=»w, where ds is the average ice-shelf
thickness, and not at the elevation hw (see inset in Fig. 2).

Non-dimensionalization
To facilitate analysis of Equations (10^13), we let ‰tŠ be the
time-scale and assign scales for the other variables ‰hwŠ,
‰QŠ, ‰N Š, ‰AŠ, ‰V Š, writing t? ˆ t=‰tŠ, h? ˆ hw=‰hwŠ, and
Q? ˆ Q=‰QŠ, etc. (The stars label dimensionless variables.)
If we use the natural scales ‰hwŠ ˆ h0, ‰AŠ ˆ A0,
‰V Š ˆ h0A0=… ‡ 1† and balance the scaled size of all the
terms in Equation (10), and also the left of Equation (12)with
‰QŠ arising from its righthand side, then the dimensionless
model is (dropping the stars ?)

dQ

dt
ˆ Q5=4 ¡ QNn ; …15†

A
dN

dt
ˆ Q ¡ ¸ ; …16†

and these are supplemented by the equations

A ˆ …h ¡ ¹† ; h ˆ 1 ¡ N

®
; and

V ˆ … ‡ 1†
Z h

0

A…z† dz ˆ …h ¡ ¹† ‡1 :

…17†

The definitions of ‰QŠ, ‰N Š and ‰tŠ are given in the Appendix.
We have introduced the new parameters

® ˆ »wgh0

‰NŠ ; ¸ ˆ QIN

‰QŠ ; ¹ ˆ »ids

»wh0
…18†

as dimensionless measures of the lake depth, meltwater input
and ice-shelf thickness, respectively. Equations (15^18) pro-
vide a framework in which jo« kulhlaups from different lake
systems can be analyzed together once their topographic set-
tings have been defined via the constants h0 (flotation water
depth), A0,  (hypsometry), QIN (influx to the lake) and ª
(topographicalpart of the hydraulic gradient). In this dimen-
sionless model, ® controls the size of N as the lake drains, and
thus it plays a part in determining the relative importance of
channel closure and melting in Equation (15).The water level
varies in the range 1 ¶ h ¶ ¹, so the dimensionless (max-
imum) lake depth is given by ®…1 ¡ ¹†. We have ¹ ˆ 0 for a
subaerial lake (no ice shelf), and typically ¸ ½1.

3.THEORETICAL DEVELOPMENT

3.1. Fundamentals

Properties of the model may be studied on the Q¡N phase
plane (Fig. 3a), which shows the solution trajectory as time
proceeds. This construction is instrumental for understand-
ing the Clague^Mathews data of section 2.1. It is useful to
consider the state of the flood system with reference to three
special curves on the phase plane, known as nullclines (a
mathematical term from the study of dynamical systems).

(i) Q ˆ N4n, on which the rates of melting and closure
balance, and the time derivative dQ=dt ˆ 0. This is a
dimensionless version of Ro« thlisberger’s (1972) condi-
tion for steady channel flow.

(ii) Q ˆ ¸ (½ 1), on which lake inflow and outflow equal-
ize, and dN=dt ˆ 0.

(iii) N ˆ ®…1 ¡ ¹†, on which the lake is empty, and dN=dt
`̀ blows up’’ (except where it meets nullcline (ii)).

These nullclines may also be deduced from the non-
linear ordinary differential equation

dQ

dN
ˆ A

Q5=4 ¡ QNn

Q ¡ ¸
ˆ …1 ¡ ¹ ¡ ®¡1N† Q5=4 ¡ QNn

Q ¡ ¸

…19†
which follows from dividing Equation (15) by Equation (16)
and substituting for A with Equation (17). The phase trajec-
tories have zero slope where they meet nullcline (i) or (iii),
and infinite slope where they meet nullcline (ii). Because the
formulation of creep closure breaks down for N < 0, the
model cannot describe what happens when the lake is above
the flotation level. We consider solutions in the range 0
µ N µ ®…1 ¡ ¹† and Q ¶ 0.

We highlight two important problems when the model is
used for flood simulation. Given suitable initial values for Q
and N that resemble conditions at the beginning of a jo« kul-
hlaup (typically, low Q and low N), Equations (15^17) may
be solved, giving a clockwise arc on the phase plane, with
the rise and fall of Q depicting growth and recession of a
flood. An example is shown in Figure 3a (thick curve). The
first problem is that the physical basis of the Nye model fails
to describe the shut-down of channelized subglacial drainage
at floodtermination (we suppose this happens in reality).The
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solution therefore becomes invalid after a flood, even though,
mathematically, it provides a logical (but bogus) prediction
of a continued, spiral trajectory on the phase plane (Fig. 3a),
mimicking a succession of flood events separated by stages of
slow refilling.This shortcoming is confirmed by observations
(e.g. at GrõÂmsvo« tn), where neither the magnitude nor the
triggering lake level of successive floods increases indefinitely.

With the model’s applicability restricted to one flood
cycle, there is a second problem, relating to prediction.The
initial conditions for Q and N determine the precise trajec-

tory (out of an infinite number of possible ones on the phase
plane) followed by a flood. However, it is not clear how to
specify them because the model lacks a mechanism of flood
initiation, so the peak discharge, Qmax, cannot be predicted.
Furthermore, althoughthe model may be tuned to match an
observed hydrograph, the result is extremely sensitive to the
chosen initial conditions. To investigate how the dam-break
mechanism might determine these conditions, Fowler (1999)
has modelled the spatial developmentof subglacial drainage
at the seal. His theory indicates that during flood initiation
the lake level begins to drop at a critical N-value (Ncrit) that
depends on the basal melting rate (at the seal) and also the
refilling rate ¸. He thereby proposed an explanation for the
regular lake levels (below flotation) at which the normal
GrõÂ msvo« tn jo« kulhlaups tend to be triggered, corresponding
to Ncrit º 6 bar (Bjo« rnsson, 1988, 1992; Gudmundsson and
others, 1995). Tentatively, this would suggest taking …N; Q†
ˆ …Ncrit; ¸† as initial conditions on the phase plane. But
while Fowler’s theory is insightful and may lay the path for
flood prediction, there are serious obstacles in applying
(indeed, testing) it, owing to the difficulty of measuring
either the basal melting rate or ¸ accurately in the field.

3.2. Peak-discharge^effective-pressure relation

Despite uncertainty as to which trajectory is selected, we may
determine from the model how the change in effective pres-
sure in each (and every possible) flood is related to its peak
discharge. Figure 3 illustrates this idea. Each trajectory has
associated with it a value of Qmax where it crosses nullcline
(i), but also unique values of the effective pressure: N ˆ N2

at the end of the flood and N ˆ N1 at the beginning (see
Fig. 3b, where we define flood initiation and termination by
the interception points of the trajectory with nullcline (ii)).
Moreoever, the relation between the three quantities may be
studied by plotting Qmax vs. N1 and Qmax vs N2 for different
trajectories (Fig. 3c).

We think of N1 and N2 as functions of Qmax here, even
though the implied dependences are implicit (and do not
involve time).This treatment may notbe intuitive but it pro-
vides a conceptual basis for understanding discharge^
volume data. During a flood, the change from N1 to N2 cor-
responds to a certain lake volume reduction.Therefore, the
functions in Figure 3c can be used to calculate the volume
drained, Vt, directly, knowing Qmax. Notably, Figure 3c in-
dicates that a more destructive jo« kulhlaup (with a large
value of Qmax) begins at a lower N value (higher lake level)
and terminates at a higher N value (lower lake level) than a
less destructive jo« kulhlaup (with small Qmax) would do.
Thus Vt increases with Qmax for a given lake system.

Crucial to the preceding argument, Figure 3 succeeds in
demonstrating that in the Nye model: (a) a flood culminates
when the rates of melting and closure balance, so Qmax

determines the state of the system completely ö the value of
N then, and hence the entire history of the flood, especially
the values of N1 and N2; and (b) different phase trajectories
do not cross, in such a way that N2 increases (and N1

decreases) with Qmax. It is much more difficult to arrive at
the dependence of Vt on Qmax (or vice versa) by an alterna-
tive argument based directly on Equations (15) and (16),
where rates of change with time are involved.

Notice we impose lower and upper cut-offs to N1 and N2,
respectively, at N ˆ 0 and N ˆ ®…1 ¡¹†, for those trajectories
high on the phase plane (with sufficiently large Qmax) that do

Fig. 3. (a) A sketch showing the phase-plane solutions of the
coupled model of Equations (15^17) and nullclines (i^iii)
described in the text. Arrows point in the direction of time.
(b) Definition of Qmax, N1 and N2 for a flood trajectory.
(c) Peak-discharge^effective-pressure functions N1…Qmax†
and N2…Qmax† derived from (a) and (b).
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not meet nullcline (ii) (see Fig. 3a). In this connection, we
define a critical value Qcrit in Figure 3c, where, if Qmax ¶
Qcrit, the corresponding flood empties the lake completely
(its trajectory meets nullcline (iii), and N2 ˆ ®…1 ^ ¹†),
whereas below this critical value (Qmax < Qcrit) the lake is
only partially drained by the flood.This distinction between
the two`̀drainage styles’’ (complete vs incomplete drainingor
emptying) becomes relevant in section 4, where we analyze
flood data on both the Qmax^N and Qmax^Vt domains.

3.3. Results for a single lake

Analytical solution of Equation (19) is not straightforward,
so we evaluate N1…Qmax† and N2…Qmax† numerically. We
treat Equations (15) and (16) as parametric equations and
integrate them forward and backward in time from differ-
ent points on nullcline (i), where …N; Q† ˆ …Q1=4n

max ; Qmax†,
with Qmax > ¸, to obtain N1 and N2 subject to the cut-offs
in effective pressure. In back integrations N1 (¶ 0) is given
by the crossing with nullcline (ii), at the time of flood initi-
ation hypothesized in our model. Typically the observed
value, N1o, differs from this owing to the actual initiation
process. N1o may be calculated from the initial lake level,
which has been measured for some flood events.

Knowing the change from N1 to N2 in a flood, the lake
volume drained, derived from Equations (17)2 and (17)3, is

Vt ˆ …1 ¡ ¹ ¡ ®¡1N1† ‡1 ¡ …1 ¡ ¹ ¡ ®¡1N2† ‡1 : …20†
Since N1 and N2 are functions of Qmax, a model-based
Clague^Mathewsrelation for floods originating from a given
lake can now be established. In dimensionless form, we write

Qmax ˆ f…Vt† ; …21†
or

Vt ˆ f¡1…Qmax† ˆ
µ
1 ¡ ¹ ¡ ®¡1N1…Qmax†

¶ ‡1

¡
µ
1 ¡ ¹ ¡ ®¡1N2…Qmax†

¶ ‡1

: …22†

An example of computed results is shown in Figure 4, where

we plot Qmax against N1 and N2 (solid lines), taking n ˆ 3
and the parameters ¹ ˆ 0,  ˆ 1, ® ˆ 3 and ¸ ˆ 0.001. The
corresponding function f calculated from Equation (22) is
also indicated (dashed line).

3.4. Comparing results for different lakes

The fact that f is an increasing function appears consistent
with the discharge^volume data. However, comparing f
directly with the overall trend in Figure 1 would be highly
misleading, because Equation (21) (or (22)) is dimensionless
and its application requires the Clague^Mathews data to be
rescaled first. Since the scales ‰QŠ, ‰N Š, ‰V Š depend on the
values of A0, h0, ª and  , the data for different lakes are ren-
dered dimensionless in different scales; the effect of this is to
translate the data clusters on the log^log plot. When the size
and geometry of the systems are different, it clearly is not pos-
sible to recover f by fitting apower law to the dimensional data.

Alternatively, consider the reverse of putting Equation
(21) associated with two different flood systems, Q?

max ˆ
f1…V ?

t † and Q?
max ˆ f2…V ?

t †, respectively, into dimensional
form. (We reintroduce the ? here to highlight the dimension-
less variables.) Then Qmax=‰QŠi ˆ fi…Vt=‰V Ši† (i ˆ 1 or 2),
and by defining the functions g1 and g2 via 10gi…x† ˆ fi…10x†,
we can write

log10 Qmax ˆ g1…log10 Vt ¡ log10‰V Š1† ‡ log10‰QŠ1 ;

log10 Qmax ˆ g2…log10 Vt ¡ log10‰V Š2† ‡ log10‰QŠ2 : …23†
These equations show that even for two similar systems ö
similar in the sense that they share identical  , ®, ¸ and ¹,
such that g1 ² g2 ö the corresponding Clague^Mathews
relations would appear displaced from each other in Figure
1 by the amounts log10…‰V Š2=‰V Š1† horizontally and log10

…‰QŠ2=‰QŠ1† vertically. Generally, g1 6ˆ g2 means that the
relations will differ in shape also.

Our theory reveals other factors influencing the beha-
viour of each lake system in Figure 1 that complicate its
interpretation. For multiple, incomplete-draining flood
events, Qmax¡Vt data for f within a limited range may be
approximated by a power law with a well-defined Clague^
Mathews exponent b. (For instance, b º1^2 in Figure 4.) In
practice though, this property will be destroyed if: (a) the
flood-initiation lake levels differ markedly from those cor-
responding to N1 defined in our model (then Vt departs
from that predicted by theory,`̀ blurred’’ by the actualvalues
of N1o), (b) the flood system geometry has changed signifi-
cantly between events, or (c) some of the floods involve
complete draining of the lake.The last factor is particularly

Fig. 4. Double logarithmic plot of the discharge^pressure
functions N1…Qmax† and N2…Qmax† (solid lines) and the
discharge^volume function Qmax ˆ f…Vt† (dashed line),
computed from the dimensionless model with n ˆ 3, ¹ ˆ 0,
 ˆ 1, ® ˆ 3 and ¸ ˆ 0.001.

Table 2. Model constants for the GrõÂmsvo« tn system

Symbol Value

Glacier bed elevation at seal 1050m a.s.l.
Ice thickness at seal hi 485m
Lake^seal vertical offset hs 0 m
Flotation lake level above seal h0 436.5m
Lake area scale A0 115 km2

Lake hypsometry exponent  1.94
Influx rate to lake QIN 20.9 m3 s^1

Topographic hydraulic gradient ª 270Pa m^1

Notes:  is derived by fitting 1986 and 1996 lake bathymetry data for lake-
water levels between1260 and 1515 m. Assuming a 230m thick ice shelf in
1986, A0 is the extrapolated area scale that gives a shelf area of approxi-
mately 40 km2 at flotation lake levels, as observed.
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problematic because the corresponding data will not reflect
the curved portion of f at all. Armed with the prerequisites,
we are ready to examine existing data more closely.

4. MODEL^DATA COMPARISON

4.1. GrõÂ msvo« tn

Dimensionless Qmax^N domain
We begin by comparing N1…Qmax† and N2…Qmax† derived
from theory with N1o and N2o calculated from the lake
levels. (Subscript o denotes the observed values.) The GrõÂms-
vo« tn data are well suited for this purpose because the initial
and final values of hw have been documented. Moreover,
draining of the lake is incomplete (Bjo« rnsson, 1988), which
makes possible a comparison between N2 and N2o below
their upper cut-off.

We use the constants listed in Table 2 and analyze the
data for10 jo« kulhlaups of the last century compiled by Gud-
mundsson and others (1995), reproduced in Table 3. (The
volcanogenic floods of 1934, 1938 and 1996 are omitted
because they probably involved a high lake-water tempera-
ture several ³C above the melting point, not described by
our simplified Nye model.) As can be seen from the defini-
tions in the Appendix, the scales for non-dimensionalizing
the data depend on the values of K0 and n specified. Good
agreement between model and data is achieved (in Fig. 5,
discussed below) with K0 ˆ 5610^24 Pa^3 s^1 when n ˆ 3.
Then ‰QŠ ˆ 4.276105 m3 s^1 and ‰N Š ˆ 15.3 bar, and the
model parameters are

® ˆ 2:80 and ¸ ˆ 4:89 £ 10¡5 : …24†
The corresponding Qmax, N1o and N2o values (dimension-
less) appear inTable 3. Figure 5a illustrates these discharge^
pressure data, which are divided into two groups by nullcline
(i) (Q ˆ N12 in this case).

Next we calculate N1 and N2 from the theory, assuming
the parameters in Equation (24). Because the ice shelf at
GrõÂmsvo« tn has been thickening, we are dealing with a
system whose geometry has changed between the floods,
and this is reflected in the different values of ¹ (Table 3).
Our first comparison between data and theory assumes the
mean value ¹ ˆ 0.403 to define a fixed system.The (continu-
ous) functions N1 and N2 have been computed and plotted
over the data in Figure 5a. N2 agrees quite well with the

observed N2o. The discrepancy between N1 and N1o is
expected because the former is based on a hypothetical
definition of flood initiation, but it is relevant to the volume
predictionbelow (Fig.5b). In the second comparison, we cor-

Table 3. Characteristics of 10 recent jo« kulhlaups from GrõÂ msvo« tn.Values in the last four columns are dimensionless and based on the scales
defined in section 4.1

Year Ice-shelf Lake level Flood volume Peak discharge Q?
max N?

1o N ?
2o ¹

thickness Initial Final

m m a.s.l. m a.s.l. km3 103 m3 s^1

1945 150 1425 1325 2.5 8^10 21.1610^3 0.394 1.035 0.309
1954 150 1435 1305 3.0 10 23.4610^3 0.330 1.164 0.309
1960 155 1428 1338 2.0 5^6 12.9610^3 0.375 0.952 0.320
1965 175 1432 1317 2.4 6 14.1610^3 0.349 1.087 0.361
1972 195 1436 1330 2.0 5 11.7610^3 0.324 1.003 0.402
1976 210 1439 1350 1.6 3^4 8.78610^3 0.305 0.875 0.433
1982 230 1447 1380 1.15 2 4.68610^3 0.253 0.683 0.474
1983 230 1412 1370 0.6 0.6 1.40610^3 0.478 0.747 0.474
1986 230 1430 1350 1.1 2 4.68610^3 0.362 0.875 0.474
1991 230 1452 1370 1.4 2 4.68610^3 0.221 0.747 0.474

Fig. 5. (a) Results of matching the model-derived functions
N1…Qmax† and N2…Qmax† with the observed values N1o

and N2o for 10 floods from GrõÂmsvo« tn. Model constants
include n ˆ 3, K0 ˆ 5610^24 Pa^3 s^1 and the ones listed in
Tables 2 and 3. Circles refer to the N2 values calculated with
the ice-shelf thickness specific to each flood. (b) Results of
matching the model-derived Clague^Mathews function
Qmax ˆ f…Vt† with discharge^volume data. Model param-
eters are the same as in (a). All figure axes are dimensionless.
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rect for the variability of ice-shelf thickness and calculate
N2…Qmax† for each flood by assuming the value of ¹ for that
year.This gives a much better agreement than before (circles
in Fig. 5a), because the larger (earlier) floods involved an ice
shelf that was generally thinner and had a larger basal area,
leading to lake-level drops that were less significant.

Dimensionless Qmax^Vt domain
Using Equation (22), we proceed to convert N1o (replacing
N1) and N2 into Vt, the volume drained. The model results
are shown in Figure 5b, together with data derived from the
measured Vt in Table 3. We give the theoretical curve (f)
based on the mean value of the ice-shelf thickness and the
mean value of N1o, and also isolated predictions (circles)
based on the year-specific values of these parameters. Know-
ing the value of N1o for each flood is crucial to the agreement,
since a small change in the initial lake level introduces large
errors in Vt.The predicted volumes may be seen to be as much
as 50% in error with the observed, but this is probably
similar to the uncertainty in the field measurements (for both
Qmax and Vt). Since the data span an order-of-magnitude
range, the agreement is really rather impressive.

We have thus demonstrated that the discharge^volume
characteristics of the GrõÂ msvo« tn jo« kulhlaups (in dimen-
sional form (Fig. 1)) can be explained satisfactorily by the
model. Given the agreement in both stages of our compari-
son (Fig. 5a and b) and the well-constrained geometry and
data from GrõÂmsvo« tn, this result is convincing. While the
operation of subglacial water drainage during a flood has
not been observed directly, the idea of competing conduit
`̀expansion’’ and `̀constriction’’ seems capable of capturing
its dynamics, lending credibility to the mechanisms envis-
aged by Nye (1976).

4.2. Other lake systems

The previous analysis needs to be applied to other systems,
for which, similarly, knowledge of their size and geometry is

required to scale the observations. Unfortunately, a search
through the literature shows that usable data are scarce, as
few studies provide reliable estimates of the ice-dam and lake
geometry (hi, hs,  ), not to mention lake levels. This
inevitably limits what more canbe deduced, but the potential
value of the model is not exhausted.

Implications of complete-draining flood events
Complete emptying of the lake seems to be a common
occurrence (e.g. Table 4). In such cases, our model shows that
the Qmax¡N data contain little information on flood mech-
anics because N2 lie on nullcline (iii), which is a threshold in
the system.The drained volume is then equal to the initial lake
volume (in dimensionless terms, (1 ¡ ¹ ¡ ®¡1N1o† ‡1), so that
variations in the flood-triggering lake levels are directly re-
flected in a scatter of the data in the Vt axis. This effect may
play a leading role in shaping some of the data clusters in Fig-
ure1. In contrast, the scatter is subdued in the GrõÂmsvo« tn data,
where it appears superimposed on a dominant rising trend of
the function f associated with partial draining of the lake. (In
cases both of complete and of incomplete draining, variations
in the conditions at the time of flood initiation are responsible
for different values of Qmax in the data (section 3).) For a given
lake system, a power-law fit to discharge^volume data involv-
ing (any) complete-draining events will therefore misrepre-
sent its dynamics. Data interpretation is further complicated
if the drainage style of some of the floods is not known, or if
the ice-dam configurationchangeddrastically between floods,
altering the maximum lake capacity (e.g. the right and left
clusters for Gr×nalön in Figure 1, corresponding to the pre-
and post-1950 periods, may be due to this).

This raises interesting questions: What sets GrõÂ msvo« tn
apart from the other lakes in terms of drainage style? Is this
related to its subglacial, rather than marginal, location?
Moreover, if Figure 1 is plagued by data referring to com-
plete drainage, and f is irrecoverable, why is there an over-
all trend at all, and what does it indicate?

Table 4. Parameters for 11 ice-dammed lake systems in order of decreasing lake volume

System Year hi hs A0 Vt;max ª  Drainage style

m m 106 m2 km3 Pa m^1

Gr×nalön, Iceland1,2 1898^1940 300* 0* 22.5 1.5^2 280 1.79 c1898,1939
41950 220* 0* 16 0.2^0.5 280 1.79 i

Strandline, Alaska, U.S.A.3 1982,84,86 150* ^70* 10* 0.76* ¹600 0.7* c, not 1986
Summit, British Columbia, Canada4 1960s 675* 375* 4.66 0.28 530 2.93 ºc
Flood, British Columbia, Canada5 1979 111* 30* 4.5 0.15 390 1.1* c
Òsterdalsisen, Norway6 1953 160* 90* 3.6 0.145 280* 0.4^0.45* ºc
Vatnsdalslön, Iceland1,2 1898 225* 0* 1.9 0.12 460 ? c

1974^78 140 0* 1.9 0.088 310 ? c
Ape, British Columbia, Canada7 1984,86 85* º0 2.45 0.046 400* ? c
SÖndre StrÖmfjord, Greenland8 1984,87 a(60) a 1 0.036 ¹600 ? ºc
Gjänüpsvatn, Iceland1,9 1951^52 ¹150* ¹80* 1 0.02 360 ? c
Hazard,YukonTerritory, Canada10 1978 300* 170* 1.274 0.0196 360* 5.56 c
Strohn, British Columbia, Canada11 1961^63 60* 30* 0.44 0.01 ¹400* ? c

*Value derived from diagrams in the data source or estimates made in personal communications from the authors.

? Value not known.
aEstimates for hi and hs are not available, but we use an approximate value for h0 from observation (in parentheses).

Sources: 1Bjo« rnsson (1988,1992). 2Thörarinsson (1939b). 3Sturm and Benson (1985); Sturm and others (1987). 4Mathews (1973); Clarke and Mathews (1981);
Mathews and Clague (1993). 5Clarke and Waldron (1984). 6LiestÖl (1955). 7Desloges and others (1989). 8Sugden and others (1985); Russell (1989). 9Arnborg
(1955); Thörarinsson (1939a). 10Clarke (1982). 11Mathews (1965).

Notes: Last column indicates whether emptying of the lake by the floods is complete (c) or incomplete (i). In some systems, draining is complete in the sense
that the water level dropped to the highest point of the glacier bed along the subglacial flow path (e.g. Òsterdalsisen in 1953).
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The question of lake drainage style
According to Figure 3c, complete draining occurs when
(dimensionlessly) Qmax exceeds the value Qcrit (section 3).
For every lake in Figure 1, one could in principle calculate
Qcrit from the model, and test whether or not the measured
value of Qmax in each flood is consistent with the observed
drainage style. But since Qcrit and the discharge scale
involved in non-dimensionalizing Qmax both depend on
the closure rate constant K0 that is assumed, the results will
not be conclusive. Moreover, we have sufficient data only for
a handful of lakes (Table 4) for such analysis.

To explore why some lakes tend to drain partially, or
completely, or do both, we use a more general approach
based on Figure 3. The dimensionless lake depth ®…1 ¡ ¹†,
which controls the position of nullcline (iii), measures the
importance of channel closure in the model, and Qcrit is an
increasing function of it. Suppose the dam-break conditions
are `̀ invariant’’ ö we assume the flood is initiated at a fixed
place on the phase plane ö then a sufficiently `̀ shallow’’
lake (® small, and Qcrit small) will empty in the flood,
whereas a `̀deep’’ lake (® large, Qcrit large) will drain only
partially, other model parameters being equal. To look for
such pattern, note that ® (ˆ »wgh0=‰N Š, where ‰N Š is
defined in the Appendix) is proportional to

h0

…A0ª11=2†
1

3n¡1

; …25†

and in Figure 6 we plot this ratio (taking n ˆ 3) against the
maximum volume drained for the lakes listed in Table 4.
There is some evidence for the pattern mentioned above,
but this result is not unequivocal. Although ®…1 ¡ ¹† for
GrõÂmsvo« tn and ® for Gr×nalön (after 1950) lie near the top
of the range, they are not the highest values among the

lakes. (Gr×nalön emptied in the floods before 1940 and the
corresponding ® is highest.) Neither are they much greater
than the ® values for other lakes that drain completely. We
have verified that this result holds for 2 µ n µ 4.

The preceding comparison is exact for fixed  , because
then the drainage style is controlled by ® alone. However, 
does vary between systems (Fig. 6), and several of them have
rather high values, for instance, indicating that they involve
`̀ horn-shaped’’ reservoirs rather than `̀ bowl-shaped’’ ones
(using Clarke’s (1982) terminology) in the side-valleys. The
effect of this is to accelerate lake area reduction at low water
levels, promoting complete drainage. A small  has the
opposite effect, but comparison with the pre-1940 Gr×nalön
value ( º 1.79) in Figure 6 suggests that the GrõÂ msvo« tn
value ( º 1.94) is not small enough to guarantee flood
termination before the lake empties. Partial draining of
GrõÂ msvo« tn and post-1950 Gr×nalön probably reflects a ten-
dency of their flood initiation mechanism to launch trajec-
tories lower on the phase plane than in the case of the other
lakes, which is against the supposition of invariant initial
conditions. An understanding of flood initiation thus seems
to be necessary when comparing data for different lakes.

Multiple systems: rising trend of the Clague^Mathews relation
Our results so far indicate that model and data are com-
patible. For a single lake, the discharge^volume data should:

Record the function f predicted by theory (Equations
(21) and (22)) and follow a coherent trend (with a log^
log slope of ¹1 to 2 (e.g. Fig. 4)) if they refer to flood
events involving only partial draining of the lake. The
GrõÂ msvo« tn jo« kulhlaups are the definitive (and only)
example (section 4.1).

Show little or no coherent trend when complete drain-
ing is involved.This may be responsible for the scatter
of data within clusters in Figure1.

That voluminous floods should proceed with high peak
flows might seem intuitive, and happens in the first scenario
above. What remains perplexing is the overall rising trend
among different lake systems (Fig. 1), given that many of the
lakes drain completely. Explaining this has important impli-
cations for predicting the maximum possible Qmax. As we
argue below, part of the answer lies in the issue of `̀ scaling’’.
The trend reflects different dynamics of the flood systems
arising from their geometry and topographical setting
(which are conditioned by other processes). But these are
not the only factors, and the precise reason for the exponent
b being close to 2/3 seems to be inextricably linked to the
nature of flood initiation.

Two lake systems are `̀ similar’’ to each other if, after non-
dimensionalization (section 2.2), their corresponding model
parameters are identical.Then the phase-plane solutions gov-
erning their dynamics are the same, and the natural scales of
the systems, ‰QŠ and ‰V Š, determine the locations of the (lake-
specific) Clague^Mathews relations in Figure 1.2 It is not pos-
sible to predict where the next flood event will occur along
each Clague^Mathews relation, because of uncertainty in
the conditions at the time of flood initiation. If, however, the
same conditions of flood initiation (initial values of dimen-
sionless N and Q on the phase plane) apply to the lakes, then
a Clague^Mathews relation describing the flood data for both
lakes would have the slope of the line that passes through
(log10‰V Š1,log10‰QŠ1) and (log10‰V Š2,log10‰QŠ2). (Here sub-
scripts label the lakes, and we refer to the line as the scaling

Fig. 6. Plot showing the ratio in Expression (25) (propor-
tional to the dimensionless lake depth, ®) against lake volume
for 12 jo« kulhlaup systems. The GrõÂ msvo« tn value has been
corrected by the multiplicative factor 1 ¡ ¹ where ¹ ˆ 0.403,
due to the presence of an ice shelf. Open/filled circles refer to
complete/incomplete lake-emptying. Lake hypsometry expo-
nents  , where known, are shown next to the data points.

2 This follows from Equation (23) and the argument given
immediately after it.
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line.) In actual observations, departure from the theoretical
scaling slope brings out the dissimilarity between the systems,
in terms of dynamics, conditions at flood initiation or both.

This idea may be generalized for several lakes. In Figure
7, we show the values of ‰QŠ and ‰V Š derived for the lakes of
Table 4 on a logarithmic plot (assuming n ˆ 3 and K0 ˆ
5610^24 Pa^3 s^1), and construct an approximate scaling line
through them in order to make a comparison with actual
flood data from Figure1. ‰QŠ and ‰V Š are scales, so our aim is
not to produce a match by tuning K0, even though increasing
it lowers the scaling line in the figure towards the data. In
Figure 7 the axes are dimensional, and flood data are
recorded at positions …log10 Vt; log10 Qmax†, where Vt º ‰V Š
(due to the common occurrence of complete-draining events)
and Qmax ˆ ‰QŠQ?

max. The dimensionless peak discharge
Q?

max depends on the systems’parameters and the trajectories
picked up at flood initiation.The vertical offset between scal-
ing data and flooddata indicates that Q?

max is not the same for
all lakes; typically Q?

max ¹10^2 to 10^1.
According to Figure 7, scale dependence alone would

cause a rising trend in the flood data, with a slope b close to
1. This arises because ‰QŠ / ª11=4A

3=2
0 for n ˆ 3 (Appen-

dix), and the dataset happens to obey A0 ¹ ‰V Š2=3 (roughly
indicative of geometric scaling) while ª has no significant
statistical dependence on ‰V Š. (In the Appendix, we also
show that the result b º 1 is insensitive to the value of n.)
Clarke (1982) was the first to propose a scaling argument.
His mathematical derivation is a special case (of ours)
where the same dimensionless closure rate is implied for all
systems. This is equivalent to using a fixed value of ® in our
model, which leads to ‰QŠ / ª11=6‰V Š4=3 (Clarke’s equation
(29)) and a theoretical slope of 4/3. Our revised scaling
removes the restriction on ® and is necessary for the cross-
system analysis.

Because the slope predicted from scaling exceeds b º 2/3
for the flood data, large systems (with large Vt) release less
violent floods (with lower Qmax) than is expected from sim-
ple scale extrapolation of what is observed for small systems.
(We are referring to relative magnitudes.) This result points
to systematic variation of other factors among the different
lakes, specifically with lake volume. These factors include:
(1) the thermomechanical parameters governing flood evo-
lution (e.g. constants K0 and n), and (2) the conditions at
flood initiation, as measured on the dimensionless phase
plane. (1) is motivated by the fact that the scaling slope will
be altered if constants in the model vary systematically with
‰V Š of the different lakes. (2) invokes variation of Q?

max (the
ratio of Qmax to ‰QŠ) with ‰V Š, without a change in the
scaling slope.

In connection with (1), K0 and n for a given lake system
may be estimated by the method of section 4.1. Alternative-
ly, they can be derived from known lake levels at the peak of
flood events, because the corresponding Q¡N pairs lie on
nullcline (i) (the `̀ Ro« thlisberger line’’) and a simple regres-
sion would reveal K0 and n needed to scale them correctly.
These methods, however, may be used only if the peak
occurs before the lake empties, which is not generally the
case for floods involving complete draining of the lake.
Despite this difficulty, it seems very unlikely that the differ-
ent lake volumes should exert any control on the creep clos-
ure constants of subglacial drainage. Other parameters to
be considered within the first factor include  and ®, but
their statistical dependence on Vt is weak or inconsistent
(Fig. 6), unable to account for much (and certainly not all)

of the discrepancy between the predicted and observed
values of b over a several orders-of-magnitude range in Vt.

We suggest that the second factor aboveö variation in
the conditions of flood initiation among different lakes ö is
a probable candidate in the explanation of b º 2/3. With the
scaling slope unchanged, Figure 7 implies that Q?

max

decreases with the flood volume (while approximately
‰QŠ / ‰V Š), and thus large lakes (with large Vt) are drained
in the floods via lower trajectories on the phase plane when
compared with what happens for small lakes (with small Vt).
If this is true, then the largest lakes may also exhibit
incomplete-draining behaviour. This prediction is consistent
with what we deduced from Figure 6 earlier for GrõÂ msvo« tn
and post-1950 Gr×nalön.

As yet, we do not fully understand the mechanism of
flood initiation, but there is evidence that the dam-break
process may be unique to each lake. The data clusters have
limited range, and a triggering threshold in the lake level
seems to operate in certain systems. A critical effective pres-
sure for GrõÂmsvo« tn has been mentioned before. Other
examples include Gr×nalön and Vatnsdalslön, with Ncrit of
about 4^5 and 2 bar respectively (Bjo« rnsson, 1988).
Although Fowler’s (1999) theory can potentially connect
these values to the physics of flood initiation, it needs to be
tested against independent data or experiments, and its
mathematical formulation adapted to the present context.
Given the need to predict the timing of the floods as well as
their magnitude, the initiation process is clearly the most
important unknown to be resolved in future work.

5. CONCLUSIONS

The Clague^Mathews relation for jo« kulhlaups, Qmax ˆ KV b
t ,

is one of the more curious results in glacier hydrology. Its phys-
ical origin has remained obscure despite its apparent success as
a peak discharge estimator to within an order of magnitude.
For the first time, we give in-depth treatment of the data on

Fig. 7. Plot showing discharge^volume scales ‰QŠ¡ ‰V Š (plus
signs) and the corresponding `̀scaling line’’ for GrõÂ msvo« tn and
other lakes listed inTable 4, alongside Qmax¡Vt data ofFigure
1 (circles or envelopes). Roman letters label some of the lakes
appearing in Figure 1. c1 ˆGr×nalön 51940; c2 ˆ Gr×nalön
41950; d1 ˆVatnsdalslön 1898; d2 ˆ Vatnsdalslön 1974^78.
The scales are based on n ˆ 3 and K0 ˆ 5610^24 Pa^3 s^1.
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which this relation is based, and we make a serious attempt at
unravelling it within the framework of the Nye (1976) model.

Phase-plane analysis of the model reduced to a pair of
coupled equations clarifies how flood discharge^volume
data (Fig. 1) ought to be interpreted. We propose a theory
to show that for a given jo« kulhlaup system, there is in fact a
monotonically increasing function, f, relating Qmax to Vt, as
long as draining of the lake is not complete. In this case, data
from multiple flood events contain information on the
floods’ evolutionary mechanics. The information may be
extracted with known system geometry and lake-level
history. GrõÂ msvo« tn provides a unique example where we are
able to demonstrate this in a direct comparison between
model and data, and impressive agreement is found (Fig. 5).
Thus, besides its success in simulating the flood hydrograph,
Nye’s description of the floods in terms of the growth and col-
lapse of channelized subglacial drainage is immensely robust
in capturing their collective characteristics.

Existing data (Fig. 1) refer to outburst floods from a large
number of lake systems, and the Clague^Mathews exponent
b º2/3 is one that describes their rising trend among the lakes.
The trend is the combined result of: (1) scale-dependent
effects, due to the different system size andgeometry andtheir
modification through time, (2) the precise conditions at flood
initiation, which may differ between systems and between
floods, as well as (3) the fundamental flood evolutionary
mechanics arising from the coupling of subglacial drainage
to an ice-dammed lake. Although complete draining of the
lake means that information on (3) is lost, making it more dif-
ficult to understand the characteristics of individual lake sys-
tems, this is not an obstacle when examining the other two
contributions in a cross-system data analysis. We show that
scaling alone leads to b º 1 (Fig. 7), and conjecture that the
observed b º 2/3 at least partially reflects the conditions in
which the floods are initiated in different systems.

And what are the implications for flood prediction? The
Clague^Mathews relation has lost some but not all of its
mystery, as we do not have an entirely physics-based theory
yet at our disposal, but some of the components of this theory
and the unknowns are becoming clear. Our study stresses the
importance of continuously monitoring lake levels during
flood events, and of making reliable field measurements,
especially on ice-dam thickness (via radar-echo or seismic
sounding techniques) and lake geometry. Flood initiation is
the obvious missing piece in the puzzle. Combining Fowler’s
(1999) theory (which provides a mechanistic description of
seal-breaking) with the framework advocated in this paper
(which connects model to observations in the large scale)
seems to be a promising way forward. Such an approach calls
for an extended assimilation of data from ice-dammed lake
systems and a close exchange between jo« kulhlaup scientists
worldwide.
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APPENDIX

Scale definitions

If we define the constants

c1 ˆ 4

3
; c2 ˆ A0

»wg
; c3 ˆ ª

»iL

³
ª

F1

´3=8

; …A1†

then

‰QŠ ˆ
µ

…c1c2†ncn‡1
3

K0

¶ 4
3n¡1

;

‰N Š ˆ
µ

c1c2c4
3

K3
0

¶ 1
3n¡1

;

‰tŠ ˆ
µ

K0

c4n¡1
1 …c2c4

3†n

¶ 1
3n¡1

:

…A2†

The scaling law and its sensitivity on n

To derive the scaling law discussed at the end of section 4.2,
notice that the first definition in Equation (A2) implies

‰QŠ / ª
11…n‡1†
2…3n¡1†A0

4n
3n¡1 : …A3†

With the data inTable 4, it is possible to show that ª does not
depend statistically on the lake volume scale ‰V Š to have any
significant effect here, while approximately A0 ¹ ‰V Š2=3.
Therefore, we write ‰QŠ / ‰V Šk where k ˆ 8n=3(3n ^ 1). For
n ˆ 2,3,4 we obtain k ˆ16/15,1,32/33, respectively, hence the
scaling slope is close to unity and varies little with n.
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