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SPECTRALLY BOUNDED TRACES ON C*-ALGEBRAS

MARTIN MATHIEU

A linear mapping T from a subspace E of a Banach algebra into another Banach
algebra is called spectrally bounded if there is a constant M ^ 0 such that r(Tx) ^
Mr(x) for all x 6 E, where r(-) denotes the spectral radius. We establish the
equivalence of the following properties of a unital linear mapping T from a unital
C* -algebra A into its centre:

(a) T is spectrally bounded;
(b) T is a spectrally bounded trace;
(c) T is a bounded trace.

1. INTRODUCTION AND MAIN RESULT

The results in this paper were motivated by the following two recent theorems. For
an element x in a Banach algebra A, we shall denote by <r(x) its spectrum and by r(x)
its spectral radius.

THEOREM 1 . 1 . ([1]) Let T: A —> B be a surjective spectrum-preserving linear
mapping between von Neumann algebras A and B, that is, cr(Tx) — <r(x) for all
x € A. Then T is a Jordan isomorphism.

THEOREM 1.2. ([ll]) Let T:A^B be a unital surjective spectrally bounded
linear mapping from a properly infinite von Neumann algebra A onto a unital semisim-
ple Banach algebra B. Then T is a Jordan epimorphism.

It is fairly easy to verify that a surjective spectrum-preserving linear mapping T
is injective and unital, that is, T\ — 1. Therefore, the main conclusion in Theorem 1.1
is that T is a Jordan homomorphism, that is, T(x2) = (Tx)2 for all x 6 A. This
remarkable result confirmed a conjecture by Kaplansky, which had been open for about
30 years, in the context of von Neumann algebras. (In fact, it is easy to see that B
merely needs to be a unital semisimple Banach algebra.)

A linear mapping T:E-*B defined on a subspace E of a Banach algebra A into
a Banach algebra B is called spectrally bounded if there is a constant M ^ 0 such
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that r(Tx) ^ Mr(x) for all x € E. In this case, there is a smallest such constant,
which is called the spectral operator norm of T and denoted by ||T||ff. A number of
basic properties of spectrally bounded operators are discussed in [10]. For instance,
every spectrally bounded linear functional is bounded and therefore every spectrally
bounded operator into a commutative C* -algebra is bounded. In general, spectrally
bounded operators need not be continuous, turning them into a useful tool in studying
derivations on Banach algebras, see [3] and [7]. On the other hand, they also play an
important role in automatic continuity theory, see for example, [2].

Lately, the attention on spectrally bounded operators turned to their structure the-
ory ([4, 5, 9, 11,13]). Every Jordan epimorphism, that is, surjective Jordan homomor-
phism, preserves invertibility and hence, is spectrally bounded. Clearly, the hypothesis
to preserve the spectrum is much stronger than spectral boundedness. Since commu-
tative von Neumann algebras are finite, and in the commutative case every bounded
operator is spectrally bounded, it is impossible to obtain an analogue of Theorem 1.2
for finite von Neumann algebras. Thus, it is the best generalisation of Theorem 1.1 that
can be obtained in this setting.

Finite von Neumann algebras are characterised by the existence of a canonical
centre-valued trace r . It is known that r is spectrally bounded with H T ^ = 1, but it
is no Jordan homomorphism. If A is a finite-dimensional factor, that is, A = Mn(C) for
some n 6 N, every surjective spectrally bounded operator on A is a linear combination
of a Jordan isomorphism and the normalised trace, see [13]. Trivially, a decomposition
into a sum of a Jordan homomorphism plus a centre-valued trace also holds for every
commutative von Neumann algebra. It thus appears that traces are the essential ob-
struction to a direct extension of Theorem 1.2 to general von Neumann algebras. The
main result of this paper, stated below, indicates that this may be the case.

THEOREM 1 . 3 . Let T: A —> Z(A) be a unital linear mapping on a unital C* -

algebra A into the centre Z{A) of A. Then the following conditions on T are equiv-

alent.

(a) T is spectrally bounded;

(b) T is a spectrally bounded trace;

(c) T is a bounded trace.

Here, and in the sequel, we call a linear mapping T a trace if T(xy) = T(yx) for all
x, y in the domain. Note that, in this case, the mapping T* defined by T"(x) — (Tx*)*
is another trace, and we say that T is self-adjoint if T — T*. This clearly amounts
to the requirement that T preserves self-adjoint elements. We say that a trace T on a
unital C* -algebra A is normalised if T\ = 1. A tracial state on a unital C* -algebra
is a normalised trace functional of norm 1.
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2. P R O O F OF THE MAIN RESULT

In this section we give the proof of Theorem 1.3. We start with two auxiliary

lemmas.

LEMMA 2 . 1 . Let T.A-tB be a spectrally bounded operator from a Banach
algebra A into a commutative C* -algebra B. Then T(xy) = T(yx) for all x, y € A.

P R O O F : Take x,y e A. For each A € C, let g{\) = T{eXxye~Xx). As T is
bounded, g is an entire function into B. Since B is commutative, the assumption on
T implies that

\\T(eXxye-x*)\\=r(T(eXxye-Xx)) ^ \\T\\or(v)

and thus g is bounded. By Liouville's theorem it follows that g is constant. Therefore,

Ty = T(eXxye~Xx) =Ty + XT(xy - yx) + higher terms (A € C)

entailing that T(xy) — T(yx), as claimed. D

LEMMA 2 . 2 . Let T be a normalised bounded self-adjoint centre-valued trace on
a unital C* -algebra A. Then T is spectrally bounded with \\T\\a = ||T||.

PROOF: Suppose first that T is positive; then the proof given for example in [8]
in the case of a finite von Neumann algebra can easily be adapted to the situation of
a general unital C -algebra to obtain that ||T||CT = 1 = ||T||. We therefore have to
reduce the assertion to this case.

Let ip be a state on Z(A). Then tp o T is a normalised bounded self-adjoint
trace functional on A. By [6, Proposition 2.8] there exist positive trace functionals
(<poT)+ and {(poT)~ on A such that <poT = (ipoT)+ - (<poT)~ and \\<p o T\\
= ||(ipoT)+|| + ||(¥>oT)~||. Evaluating at 1, it follows that (<poT)+ ^ 0. Since a
positive functional attains its norm at 1, we can thus write tpoT — aipi — fiip2 for two
tracial states ipi and a = \\((poT)+\\ > 0, /3 = ||(y?oT)~||. By the first paragraph of
the proof, we conclude that

\(<poT){x)\ ^ (a + /3)r(x) = ||¥>oT||r(z) (x € A).

Consequently, T is spectrally bounded with ^\T\\a ^ ||T|| and the reverse estimate
follows from [10, Proposition 2.9]. D

We are now in a position to give the proof of the main result.

PROOF OF THEOREM 1.3: The implication (a) => (b) is immediate from Lemma 2.1,
and the implication (b) => (c) follows from the fact that norm and spectral radius co-
incide in a commutative C* -algebra.
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In order to show that (c) => (a) we at first observe that, whenever T\, T2: A —¥ Z(A)
are spectrally bounded, every linear combination aT\ + @T2 is spectrally bounded
(with WoO1! + ffTih < |o|||Ti||ff + |/3|||T2|U). Let ReT = (l/2)(T + 2") and ImT
= ( l /2i)(T — T*) be the real and the imaginary part of T, respectively. Since T is a
normalised bounded trace, it follows that both ReT and ImT are bounded traces and
that ReT( l ) = 1 whereas ImT( l ) = 0. Consequently, ReT + ImT is a normalised
trace as well. By Lemma 2.2, ReT and ReT + ImT are both spectrally bounded.
Therefore, ImT = ReT + I m T - R e T is spectrally bounded. As T = ReT +i ImT
we finally conclude that T itself is spectrally bounded (with \\T\\a < 4||T||). This
completes the proof. D

Examples of unital C* -algebras without tracial states are properly infinite C*-
algebras (that is, there exist no pair of orthogonal projections which are both equivalent
to the identity). A C*-algebra A has no tracial states if and only if its universal
enveloping von Neumann algebra A" is properly infinite. Putting a recent result by
Pop together with Theorem 1.3 we obtain the following consequence.

COROLLARY 2 . 3 . Let A be a unital C* -algebra without tracial states. Then
there is no non-zero spectrally bounded operator from A into a commutative C*-
algebra.

PROOF: Let T: A —> B be a spectrally bounded operator from A into the com-
mutative C -algebra B. By Theorem 1.3 (b) (which does not need the assumption
T\ = 1), T vanishes on all commutators. By the main result in [12], every element in
A can be written as a finite sum of commutators. Therefore, T — 0. D

The spectral dual E" of a subspace E of a Banach algebra A is the Banach space
of all spectrally bounded linear functionals on E equipped with the spectral operator
norm, see [10]. Prom Corollary 2.3 we readily deduce that A" = {0} for every unital
C*-algebra A without tracial states. This extends Corollary 3.9 in [11], which contains
the same conclusion for properly infinite von Neumann algebras. On the other hand,
suppose that A has a unique tracial state (p. By [6], the linear span of all commutators
is dense in the kernel of <p. By the above, every spectrally bounded linear functional
has to vanish on ker tp. As a result, A" = C.

In [9] we obtain Theorem 1.2 under the assumption that A is a purely infinite
simple unital C* -algebra. However, no description of spectrally bounded operators is
as yet available on any infinite-dimensional C* -algebra which allows a non-trivial trace,
such as a finite simple unital C* -algebra and in particular not for any II1 factor.
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