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Abstract. We discuss the problem of turbulent dynamo and illustrate it through numerical
simulations and few results from the VKS experiment.
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1. Introduction
A great amount of the work of Juri concerns the solar dynamo, that converts turbulent

convective motions into magnetic energy. It is described quite generally by the coupled
set of equations:

∂tv + (v · ∇)v = − 1
ρ0

∇P + j × B + ν∆v + f ,

∂tB = ∇× (v × (B) + η∆B, (1.1)

where v is the fluid velocity, P is the pressure, B is the Alfven velocity (or equivalently√
ρµ0 B is the magnetic field), j = ∇×B is the magnetic current, ν and η are the viscosity

and the magnetic diffusivity, and ρ0 is the (constant) fluid density. Four interesting
dimensionless parameter are necessary to understand them: i) the Reynolds number
Re = LV/ν, where L and V are typical length and velocity; ii) the magnetic Reynolds
number Rm = LV/η (or equivalently the Prandtl number Pm = Rm/Re); iii) the Rossby
number Ro = U/LΩ, where Ω is the rotation rate (or equivalently the rotation number
θ = 1/Ro); iv) the interaction parameter N = RmB2/V 2 . It characterizes the ratio of
the Lorentz force over the velocity advective term, and is a measure of the “non-linearity”
of the MHD system: when N � 1, the magnetic field does not react back to the velocity
field, and the two equations decouple.

In stars, both Rm and Re are large. In numerical simulations, one can reach values
of Rm up to 100 (Pm varying from 1 to 0.01). In present days laboratory experiments
with liquid metals, Rm cannot exceed 100, with Pm = 2×10−5 . They are however quite
interesting to understand the dynamo process in stars, as we discuss now.

1.1. The VKS experiments
The VKS experiment is based on stirring a von Karman flow of liquid sodium through
impellers counter-rotating at frequencies F1 and F2 . When monitoring the two frequen-
cies, one can vary the rotation number θ = (F1 − F2)/(F1 + F2) between −1 and 1-
corresponding to regime of turbulence predominant over rotation. We have shown on
Figure 1 the operating regime of the VKS experiments, to be compared with other
natural objects. One sees that VKS operates in rotation number equivalent to that of
sun-like-stars, but that another operating set up should be used to reach the parame-
ters regime of the earth. This is interesting because most cosmic dynamos are turbulent,
resulting in serious difficulties of modelling as we now discuss.
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Figure 1. Typical range of Reynolds number and Rossby number for young stars, the earth,
VKS2 experiment and DNS simulations.

2. Laminar vs turbulent dynamo
We first focus on the “linear” (also called “kinematic”) case, where N � 1, so that

v can be considered as independent of B. We decompose the velocity field into a mean
(time averaged) U and a fluctuating part u′, with δ =< u′2 > / < U

2
>, the <> denoting

spatial average. Since the velocity field is independent of B, we can study the evolution
of B from the induction equations, that reads:

∂tB = ∇×
(
U × B

)
+ ∇× (u′ × B) + η∆B . (2.1)

This is a linear equation. Since U is by construction time-independent, it admits expo-
nentially growing or decaying solutions in the absence of the second term of the r.h.s., like
in any classical instability problem. The natural non-dimensional parameter to quantify
the importance of the fluctuating term is ε = δ − 1. Therefore, when ε � 1, we have a
“laminar” instability, with exponential growth or decay. The frontier in between the two
behavior is the dynamo threshold, that will be close to the instability threshold computed
only the mean flow.

For ε of order unity, the fluctuating term becomes important, and the equation now
includes a time-dependent, stochastic like behavior. The instability is now akin to an
instability in presence of a multiplicative noise, and requires special tools to be detailed
later.

From the behavior of the parameter δ − 1 detailed in previous Section, we see that
the dynamo is probably laminar for Taylor-Green flow at Re < 20, or for VKS with an
annulus and rotation, while it is probably turbulent for a TG flow with Re > 50 and for
VKS without an annulus.

2.1. Laminar dynamo

Laminar dynamo are countless. Some, like Ponomarenko or Robert’s dynamo, can even
be studied analytically. Here we focus on the TG and VKS laminar dynamos. In the
case of the TG flow, the laminar dynamo is characterized by two windows of instability
(Ponty et al. (2007); Laval et al. (2006)) (Fig. 2): the dynamo takes place for Rmc1 <
Rm < Rmc2 and for Rm > Rmc3 . The three critical magnetic Reynolds number have
been computed for mean flows measured at different Reynolds number 6 < Re < 100 and
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were found to be roughly independent of Re. With the forcing adopted in Laval et al.
(2006), one finds: Rmc1 ∼ 6, Rmc2 ∼ 13 and Rmc3 ∼ 25.

Figure 2. Windows of kinematic dynamo action with a time-averaged TG flow, as a function of
the Reynolds number Re. The dashed area corresponds to region of the parameter space where
kinematic dynamo is observed, corresponding to positive values of the Lyapunov exponent.

Because it was at the heart of VKS optimization, the laminar dynamo has been studied
with different codes, and different boundary conditions or propeller shape and size. The
lower threshold were obtained for TM73 propellers. In addition, it was found that the
addition of a layer of sodium at rest produces a significant reduction of the dynamo
threshold from Rmc ∼ 180 to Rmc ∼ 40 (Avalos-Zuniga et al. (2003); Ravelet et al.
(2005)), and that the moving sodium behinds the propeller had a tendency to increase
the dynamo threshold (Stefani et al. (2006); Laguerre et al. (20006)). This is summarized
in Fig. 3.

Figure 3. Critical value of the magnetic Reynolds number as a function of the percentage of
sodium at rest W from kinematic simulation with time-averaged von Karman flow with inox
TM73 propellers rotating in the contra direction. Note that the kinematic simulation with iron
propellers have not yet been done. Filled circle (Ravelet et al. (2005)) and open circle (courtesy
C. Nore) : with periodic axial boundary conditions; Filled square : with finite axial boundary
conditions (Laguerre et al. (20006)); open square (resp. square with cross): when taking into
account the thin layer of fluid at rest (resp. stirred) behind the impellers (Stefani et al. (2006)).
The two solid line delimit the largest Rm that can be reached in the VKS2 experiment at the
lowest (resp. largest) operating temperature 120 C (resp. 150 C).
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Specifically, the various threshold found with the kinetic simulation based on the time-
averaged velocity field with a layer of resting sodium of size w = 0.4 are:
• Rmc = 43 ± 1 for periodic axial boundary conditions in a homogeneous conducting

domain (Ravelet et al. (2005));
• Rmc = 49 ± 2 for finite axial boundary conditions;
• Rmc = 57 (resp. 95) when taking into account the thin layer of fluid at rest (resp.

stirred) behind the impellers (Stefani et al. (2006));
• Rmc = 46 without the fluid behind the impellers for more realistic conditions: finite

axial boundary condition, 5 mm copper shell separating the flow and the static conducting
layer, copper container.
• Rmc = 55 (resp. Rmc = 150) for these conditions with the fluid behind the impellers

at rest (resp. stirred). These results are given by Laguerre et al. (20006).
In the experiments, dynamo has been observed with iron propellers, with a threshold
Rmc ∼ 32 in contra rotation. With inox propellers, no dynamo has been observed in
contrarotation. However, induction measurements with an external applied field Ba can
be used to estimate a dynamo threshold via the response Bi as Ba/Bi ∼ Λ ∼ Rm−Rmc .
Linear fit to the induction curve Ba/Bi then gives (see Fig. 4):
• Rmc = 127 for TM73 inox propellers with no resting sodium and no annulus (VKS2b

campaign);
• Rmc = 67 for TM73 inox propellers with w = 0.4 of resting sodium and no annulus

(VKS2a campaign);
• Rmc = 53) for TM73 inox propellers with w = 0.4 of resting sodium and an annulus

(VKS2f campaign);
• Rmc = 32 for TM73 iron propellers with w = 0.4 of resting sodium and an annulus

(VKS2g campaign).
The decrease of Rmc seen between 2b and 2a suggests that indeed the resting sodium
is favorable to dynamo action. The difference between 2a and 2f threshold suggests that
the turbulence (described by the parameter δ) has an impact on the dynamo threshold.
This is the subject of the next section.

2.2. Turbulent dynamo
We consider now a situation where fluctuation are non-negligible. A first natural approach
is to identify a small parameter ε in the problem, and try and solve the full problem by
perturbation theory. Specifically, one consider first the time-averaged of Eq. (2.1):

∂tB = ∇×
(
U × B

)
+ ∇×

(
u′ × b′

)
+ η∆B . (2.2)

The main idea is to find the shape of u′ × b′ as a function of B through the perturbation
expansion.

An historically successful approach is to consider an ideal case where there is a scale
separation between the typical scale l of (u′, b′) and the typical scale L of B. The nat-
ural expansion parameter is therefore ε = l/L � 1, or equivalently ∇B. Without any
computations, one can then infer that

εijku′
j × b′i = αijBj + βijk∇jBk + O(ε2), (2.3)

where αij and βijk are two tensors that depend on the velocity field and that can be
computed through classical perturbation procedure applied to Eq. (2.1) (see e.g. Dubrulle
& Frisch (1991)). When plugged back into (2.2), this expansion gives:

∂tB = ∇×
(
U × B

)
+ ∇jαijkBk + ∇j∇k (βijkl + ηδjk δil)Bl, (2.4)
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Figure 4. Estimate of dynamo threshold from induction measurements in VKS2 through the
quantity Ba /Bi in four different configuration : Upper left : 2b : no resting sodium, TM73 inox
propellers, no annulus; Upper right : 2a : 40% of resting sodium, TM73 inox propellers, no
annulus; Lower left : 2f : 40 % of resting sodium, TM73 inox propellers, annulus; Lower right :
2g : 40 % of resting sodium, TM73 iron propellers, annulus. The lines are linear fit, providing
the value of Rmc indicated on each plot.

where αijk = εijm αmk and βijkl = εikm βmjl . α is the famous alpha coefficient, while β is
a turbulent diffusivity tensor, that need not be definite positive. In the absence of mean
flow, this equation usually leads to a large scale instability via the alpha effect.

3. Stochastic Theory
Non-perturbation computations can be performed both analytically and numerically

by replacing the true velocity fluctuations by some well chosen noise. Of course, real
turbulence is characterized by temporal and spatial correlation that cannot be captured
by such a simple noise. One can however hope that first order effects can be captured
by our simple model. The reader can judge by himself from the final comparison. In
any case, the advantage of these stochastic computations is twofold: first, they allow for
non-perturbation analytical and numerical computations; second, their numerical cost
is equivalent to the cost of a kinematic simulation. Simulation of 643 can then prove
sufficient to explore a range of fluctuations equivalent to Re = 107, (i.e. that would
require 1015 grid points).

We therefore now consider that u′ is a white noise, characterized by:

〈u′
i(x, t)u′

j (x
′, t′)〉 = 2Gij (x, x′)δ(t − t′), (3.1)

where the brackets denote ensemble average, over the realizations of the noise. Equation
(2.1) then takes the shape of a stochastic partial differential equation for B, with mul-
tiplicative noise. The problems associated with this type of noise can be understood by
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looking at a simple unidimensional model:

ẋ = µx + ξx, (3.2)

where ξ(t)ξ(t′) = 2Dδ(t − t′). In the absence of noise, x is exponentially increasing
(unstable) as soon as µ > 0. In the presence of noise, we can take different moments of
the equation and get the following hierarchy:

< ẋ > = (D + µ)
< ẋ2 > = 2(2D + µ) (3.3)

so that the < x > (resp. < x2 >) is unstable for µ > −D (resp. µ > −2D). Therefore,
its seems that the instability threshold depends on the moment we consider! One can in
fact prove that this pathology is due to the absence of non-linear terms, and that in fact
the correct threshold that would prevail with non-linear term is captured by considering
the Lyapunov:

Λ = ∂t < ln x > . (3.4)

Due to the convexity of the log, Λ � ∂t ln < x >, so that Λ is always smaller than the
growth rate. The system is unstable as soon as Λ > 0.

Analytical computation of the stochastic model have been done by Leprovost & Dubrulle
(2005). In order to make the computations tractable, two approximation were made: i)
a saturating term was added to the induction equation as −cB2Bi because of symmetry
consideration. In some sense, this modification is akin to an amplitude equation, and
the cubic shape for the non-linear term could be viewed as the only one allowed by the
symmetries. Such a procedure is motivated by the observation that the precise form of
the nonlinear term does not affect the threshold value. ii) The diffusivity was ignored.

Using standard techniques (Boldyrev (2001)), one can then derive the evolution equa-
tion for P (B, x, t), the probability of having the field B at point x and time t:

∂tP = −Ūk∂kP − (∂k Ūi)∂Bi
[BkP ] + ∂k [βkl∂lP ] (3.5)

+ c∂Bi
[B2BiP ] + 2∂Bi

[Bkαlik∂lP ]
+µijkl∂Bi

[Bj∂Bk
(BlP )] ,

with the following turbulent tensors:

βkl = 〈u′
ku′

l〉, αijk = 〈u′
i∂ku′

j 〉 and µijkl = 〈∂ju
′
i∂lu

′
k 〉 . (3.6)

Due to incompressibility, the following relations hold: αkii = µiikl = µijkk = 0.
The physical meaning of these tensors can be found by analogy with the “Mean-Field

Dynamo theory”(Krause& Rädler (1980); Moffatt (1978)). Indeed, consider the equation
for the evolution of the mean field, obtained by multiplication of equation (3.5) by Bi

and integration:

∂t〈Bi〉 = −Ūk∂k 〈Bi〉 + (∂k Ūi)〈Bk 〉 − 2αkil∂k 〈Bl〉 (3.7)
+βkl∂k∂l〈Bi〉 − c〈B2Bi〉.

This equation resembled the classical Mean Field Equation of dynamo theory, with gen-
eralized (anisotropic) “α”and “β”. The first effect leads to a large scale instability for the
mean-field, while the second one is akin to a turbulent diffusivity. Note that the tensor
µ does not appear at this level.
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The Lyapunov exponent can be computed in a similar way from (3.5) by changing
variable Bi = Bei , then multiplying the resulting equation by Bd−1 ln B and integrating
with respect to B. This yields:

Λ ≡ ∂t〈ln B〉 = 〈∂k Ūieiek 〉φ + 〈µijkl(∆ik ej el + ∆kj eiel)〉φ , (3.8)

where we used ∆ij = ∂ni
(nj ) = δij − eiej an “angular Dirac tensor”, and the symbol

〈•〉φ denotes verages over the angular variables.
The condition for dynamo action in this model is Λ > 0. In the limit of zero noise, the

term proportional to µ is negligible and one recovers the classical criterion for instability
in a laminar dynamo in the infinite Prandtl number limit. Indeed, in such a case, the
magnetic field will mainly grow in the direction given by the largest eigenvalue λmax of
Sij = ∂j Ūi , so that

Λ ≈ 〈∂k Ūieiek 〉φ = λmax. (3.9)

There will be dynamo only if λmax > 0.
Consider now a situation where you increase the noise level. Two different influences

on the sign of Λ then result: one through the factor proportional by µ. According to the
sign of this factor, it can therefore favor or hinder the dynamo. In isotropic homogeneous
turbulence, µ is positive, so that it is in general favorable to dynamo action. Moreover,
being proportional to derivatives of the noise, this term gets larger as the typical scale
of the noise is small.

However, there exists another less obvious -and adverse- influence of the noise: the
disorientation effect. Indeed, noise changes the distribution of magnetic field orientation.
In the absence of noise, the latter tends to be oriented towards the most unstable di-
rection. However, noise constantly drives the magnetic field away from this favorable
direction, sometimes even driving it towards a stable direction, where the magnetic field
exponentially decreases. The net result is a decrease of the effective growth rate of the
magnetic field. A phenomenological way to quantify this effect is through the parameters
δ− 1 and δ2 . Indeed, the largest these coefficient are, the further away the instantaneous
velocity field is from the averaged field, and the largest the disorientation effect can be.
This effect is more important when the noise it at largest scale, since in that case the
disorientation effect is more pronounced-one can get farther from the mean flow.

From this discussion, one expects large scale noise to be adverse to dynamo action-
through the disorientation mechanism, while small scale noise should be favorable to
dynamo action-through the µ effect.

The previous analytical computation were tractable only in the limit η → 0 (Rm → ∞.
To investigate the more realistic case of finite diffusivity, one may resort to numerical
simulations. This has been done by Laval et al. (2006) and Dubrulle et al. (2007) for the
case of the Taylor-Green flow, without inclusion of the non-linear term in the induction
equation. Two kinds of noise were tested: shortly correlated noise, like in the analytical
case, and Markovian noise, with finite correlation time τc that can be varied from 0 to
several eddy-turnover time. Two typical noise scale were also tested, one at the largest
available scale of the system k = 1, and one of the order of the magnetic diffusive scale
k = 16.

The results are summarized in Fig. 5 for time-correlated noises at large and small scale.
In the case of the large scale noise, one sees that the two dynamo windows are lifted up
by the noise, resulting in an increase of the dynamo threshold. It can also be shown
that this effect becomes more pronounced as the correlation time of the noise increase
until the mean eddy turn over time is reached. Above this, the effect does not change
anymore. From the previous discussion, we can attribute this increase of the threshold
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Figure 5. Parameter space for noise at Re = 6 for different noise parameters : a) τc = 0,
kI = 1; b) τc = 0.03, kI = 1; c) τc = 0, kI = 16; d) τc = 0.03, kI = 16. Open square :
no-dynamo case; Square with cross : undecided state; Filled square : dynamo case. The full lines
are zero-Lyapunov lines.

to the disorientation effect. In contrast, when the noise it at small scale, the dynamo
threshold is -slightly- decreased with respect to the laminar case. This is probably a
benefit of the µ effect.

The influence of the noise onto the first dynamo threshold can be summarized by
plotting the critical magnetic Reynolds numbers as a function of the noise intensity (Fig.
6-a). Large scale (resp. small-scale) noise tends to increase (resp. decrease) the dynamo
threshold. For small noise intensities, the correction Rmturb

c − RmM F
c is linear in δ − 1,

in agreement with the perturbation theory (Pétrélis (2002)). Furthermore, one sees that
for small scale noise, the decrease in the dynamo threshold is almost independent of the
noise correlation time τc , while for the large scale noise, the increase is proportional to τc

at small τc . At τc > 1, all curves Rmc(δ) collapse onto the same curve. We have further
investigated this behavior to understand its origin. Increasing δ first increases of the flow
“turbulent viscosity” vrmslint with respect to its mean flow value VrmsLint . This effect
can be corrected by considering Rm∗

c = RmcVrmsLint/vrmslint . Second, an increase of
δ produces an increase of the fluctuations of kinetic energy, quantified by δ2 . This last
effect is more pronounced at kI = 1 than at kI = 16. It is amplified through increasing
noise correlation time. We thus re-analyzed our data by plotting Rm∗

c as a function of
δ2 (Fig. 6-b). All results tend to collapse onto a single curve, independently of the noise
injection scale and correlation time. This curve tends to a constant equal to RmM F

c at
low δ2 . This means that the magnetic diffusivity needed to achieved dynamo action in
the mean flow is not affected by spatial velocity fluctuations. This is achieved for small
scale noise, or large scale noise with small correlation time scale. In contrast, the curve
diverges for δ2 of the order of 0.2, meaning that time-fluctuations of the kinetic energy
superseding 20 percent of the total energy annihilate the dynamo.

An obvious stationary solution of (3.5) is a Dirac function, representing a solution
with vanishing magnetic field. Another stationary solution can be found for B such that
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Figure 6. Evolution of the dynamo threshold for KS simulations with u(Re = 6). a) Rmc as
a function of δ and b) Rm∗

c as a function of δ2 for different noise parameters : k = 1 : square
τc = 0; boxdot : τc = 0.1 sec; boxminus : τc = 1 sec; boxplus : τc = 8 sec; black square τc = 50
sec; k = 16 : circle : τc = 0; odot : τc = 0.1 sec; bullet : τc = 50 sec.

Bi = Bei by setting ∂tP = 0 in (3.5), with solution:

P (B) =
1
Z

BΛ/a−1 exp
[
− c

2a
B2

]
, (3.10)

where Z is a normalization constant and a = 〈µijkleiej ek el〉φ . This solution can represent
a meaningful probability density function-and therefore a dynamo case- only if it can be
normalized. Condition of integrability at infinity of (3.10) requires a be positive. This
illustrates the importance of the non-linear term which is essential to ensure vanishing
of the probability density at infinity. Condition of integrability near zero requires Λ > 0
be positive.
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Figure 7. Result of the surrogate 1D model ∂tx = [b + ξ(t)]x − γx3 : On the left side we show
time series for a = 0.2, γ = 1 and 3 different values of the parameter b. On the right side, the
corresponding PDF and the theoretical curve corresponding to equation (3.10), with Λ = b.

This is the dynamo condition identified before, that is obtained using the mean field as
control parameter. However, the shape of the PDF traces an interesting new paradigm
for the turbulent dynamo (Fig. 7). Indeed, in the range 0 < Λ < a, the PDF is maximum
at zero, meaning that the most probable value for the magnetic field is zero. This is
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the signature of an “intermittent” dynamo, with periods of large magnetic field followed
by quiescent periods, in a way reminiscent to “on-off” intermittency. Above this second
threshold, Λ > a, the PDF exhibits a non-zero value for its most probable value, meaning
a more classical “turbulent stationary dynamo”, with fluctuations of the magnetic field
around a finite value. Note that the transition from one regime to another can be mediated
by the value of δ−1: as this parameter is increased, the disorientation effect becomes more
and more important, and Λ decreases. This remark is corroborated by recent stochastic
computations of Aumaitre et al. (2005), who showed that the intermittent behavior
could be switched off by changing the value of the noise spectrum at zero frequency,
i.e. by removing large scale noise. Note also that this new paradigm cannot be tested in
the previous TG computations, since they did not include any non-linearities. A more
serious question is also: Is this new paradigm an artifact of our synthetic turbulence, or
is it something that one can actually see? To check this, one needs to resort to numerical
simulations or experiments.

4. Taylor-Green Numerical simulations
Direct numerical simulation of Eq. (1.1) for Taylor-Green forcing have been made in

Ponty et al. (2005), Laval et al. (2006), Ponty et al. (2007) and Dubrulle et al. (2007).
The dynamo threshold Rmc has been computed for different values of Re. The result is
shown in Fig. 8. One sees that the dynamo threshold increases with Re until a value of
the order Re ∼ 100 where it seems to saturate. Dubrulle et al. (2007) also performed
computations at low Re but larger and larger Rm to try and detect a possible signature
of the second laminar window of instability. At Re = 6, they detected a transition from
an intermittent dynamo at Rm = 25, to a dynamo with a mean field at Rm = 100 (see
Fig. 9). Moreover, one can see a remarkable correlation between the dynamo windows
predicted by the stochastic numerical simulation and the direct numerical simulation.
This is an indication that maybe the stochastic model does capture the main features of
the turbulent dynamo transition.

10

100

10 100

R
m

Re
3

2

Figure 8. Comparison between DNS and KS simulations with Re = 6 with kI = 1, τc � 0.3.
Squares refer to DNS-MHD and LES-MHD simulations, and shaded areas to windows of dynamo
action for kinematic-stochastic simulations at Re = 6 with kI = 1, τc � 0.3. Note the tiny
dynamo window near Re = 6, Rm = 40. Open square : no-dynamo case; Square with cross :
intermittent dynamo; Filled square : dynamo case; square with line : undecided state; − Rmtur b

c ;
−− RmM F

c ; −·−· end of the first dynamo window; · · · beginning of the second dynamo window.

5. Experiments
Various configurations have been tested in VKS with the TM73 propellers and the layer

of sodium at rest: with and without annulus, and with inox or iron propellers. In the inox
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Figure 9. Example of dynamos in TG flow. Left : Magnetic energy as a function of time. Right
: PDF of the magnetic energy. Upper panel : Intermittent dynamo Re = 6, Rm = 40. Lower
panel : Turbulent dynamo Re = 25, Rm = 50.

case, no dynamo has been observed (Ravelet et al. (2008)). However, a critical magnetic
Reynolds number could be estimated from induction measurements for configurations
with positive and negative rotation. In the induction regime, the disorientation effect
could be directly measured by following strong local magnetic field perturbations (Volk
et al. (2006)).

In the iron case, with an annulus in the midplane, different types of dynamo have been
identified, in the rotating and non-rotating case (Berhanu et al. 2007; Monchaux et al.
(2007); Monchaux et al. (2008)). Among them, intermittent dynamo have been observed
around θ = 0.2 (see Fig. 10).

Figure 10. Example of intermittent dynamo observed in the VKS2 with TM73 iron propellers
at θ = 0.17, Rm = 32. Left : Components of the magnetic field as a function of time (red : Bz ,
green Bθ ; blue : Br . Right : Corresponding PDF of the magnetic field components.

Note that the intermittent dynamo observed near θ = 0.2 is characterized by the largest
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value of δ. In the previous Section we argued that it was probably a good condition to
observe, if any, the intermittent dynamo.

Regarding threshold for dynamo instability (transition towards stationary dynamo), it
has been accurately measured so far in 3 cases: at θ = 0, with impellers rotating in the
(+) or (-) direction with respect to the pales curvature; at θ = −1 with impellers rotating
in the (+) direction. Using the values of δ measured in water, we can check whether the
trend observed in TG numerical simulation (higher threshold for larger values of δ or
δ2 , see Fig. 6) is also valid here. With the presently available data, the trend is indeed
respected (Fig. 11, but more data is needed to confirm this point.

Figure 11. Critical magnetic Reynolds number Rmc as a function of δ (left) and δ2 (right) in
the VKS2 experiment for inox (square) and iron propellers ( circle). The δ2 have been estimated
from the water model experiment. The Rmc are measured in the case of iron propellers, and
estimated using induction measurements for the inox propellers.
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Discussion

E. Ntormousi: How far are your experiments from similarity to solar dynamo?

B. Dubrulle: Our device is cylindrical and not spherical (Smile). The energy source
is through impellers rather than convection. But apart from that, we have regimes with
periodical or aperiodical dynamos, exactly like in stars. So we think we may gain a lot
of insight on the solar dynamo from studying our device.

C. Forest: What is the status of the soft iron propellors in getting or not dynamo
action in VKS2?

B. Dubrulle: For the present time, we only get dynamo when at least one iron propellor
is rotating. However, we have observed situations where dynamo depends on the sense of
rotation of the iron impellers. This change mainly influences the sodium fluid properties.
So this demonstrates that VKS is more than a pure “disk-dynamo” and that the fluid
effect is very important.

https://doi.org/10.1017/S1743921311017753 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311017753



