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Abstract

Xiong proved that if f : I — I is any map of the unit interval /, then the depth of the centre of f is
at most 2, and Ye proved that for any map f : T — T of a finite tree T, the depth of the centre of
f is at most 3. It is natural to ask whether the result can be generalized to maps of dendrites. In this
note, we show that there is a dendrite D such that for any countable ordinal number A there is a map
f : D — D such that the depth of centre of f is A. As a corollary, we show that for any countable ordinal
number A there is a map (respectively a homeomorphism) f of a 2-dimensional ball B? (respectively a
3-dimensional ball B?) such that the depth of centre of f is A.
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1. Introduction

In [6], Xiong proved that if f : I — [ is any map of the unit interval I = [0, 1], then
the depth d( f) of the centre of f is at most 2, and in [7], Ye proved that for any map
f : T — T of a(finite) tree T, the depth d(f) of centre of f is at most 3. It is natural
to ask whether the result can be generalized to maps of dendrites. In [5], Neumann
proved that for any C* n-manifold M with n > 3 and any countable ordinal number
A, there is a C* flow ¢ on M such that the depth of centre of the flow ¢ is A.

In this note, firstly we study the depth of centre of maps of 0-dimensional compacta.
As corollaries, we show the following:

(1) There is a dendrite D such that for any countable ordinal number A there is a
map f : D — D such that the depth d(f) of centre of f is A.
(2) For any countable ordinal number A there is a map f of a disk B? such that

a(f) =i
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(3) For any countable ordinal number A there is a homeomorphism 4 : B®> — B3
of a 3-dimensional ball B* such that #|dB* = id, d(h) = A and Q,(h) = dB*|J Z,
where Z is a compact countable set in B® — 9 B>.

All spaces considered in this note are assumed to be separable metric spaces. By
a continuum, we mean a non-empty, compact, connected, metric space. Let [ be the
unit interval [0, 1]. A free is a 1-dimensional connected compact polyhedron which
contains no simple closed curve. A continuum D is a dendrite if D is a locally
connected continuum and D contains no simple closed curve (see [4] for topological
properties of dendrites). A point e of a dendrite D is called an end point if there is
no subset A of D such that ¢ € A and A is homeomorphic to the open interval (0, 1).
Let E(D) be the set of all end points of D. Note that a compactum X is a dendrite
if and only if X is a 1-dimensional compact absolute retract (= AR). The dynamics
of maps (=continuous functions) of / and trees are considerably well-understood.
Recently, the dynamical behavior of maps of dendrites have often appeared in Julia
sets of complex dynamical systems.

Let X be a compact metric space with metric d and f : X — X a map. A
point x € X is a periodic point of f if there is a natural number n > 1 such that
f(x) = x. Apoint x € X is a recurrent point of f if for each € > 0 there is a
natural number #n > | such that d(f"(x), x) < €. A point x € X is a non-wandering
point of f if for any neighborhood U of x in X there is a natural number n > 1 such
that f"(U)NU # #. By P(f), we mean the set of all periodic points of f, and
by R(f) the set of all recurrent points of f. Also, the set of non-wandering points
of f will be denoted by 2(f). The notions of periodic points, recurrent points and
non-wandering points are very important in the study of dynamical systems. Note
that P(f) C R(f) C Q(f), 2(f) is aclosed subset of X and f(2(f)) C Q(f).

Let 2o(f) = X and @,(f) = Q(f). For any ordinal number A > 1, recursively
we will define €2, (f) as follows: If A = o + 1, then we set 2, (f) = Q(f|Q.(f)).
If X is a limit ordinal number, we set Q,(f) = (), ., Qa(f).

Then we see that there is a countable ordinal number y such that Q, (f) =
Q)= m—)). The minimal such y is called the depth of the centre of f,
and it is denoted by d(f). Note that d(id) = 0. In general, it is difficult to determine
the centre @, (f) (= R(f)) and the depth d(f) of the centre of f. We are interested
in the depth d(f) of the centre of a map f.

Let X be a compactum with metric d. Then

2% = {A] Ais a non-empty closed subset of X}
is the hyperspace with the Hausdorff metric dj, that is,

dy(A,B) =infle > 0|A CU(B,¢€), BC U(A, e)}
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where U(A, €) is the e-neighborhood of A in X. Note that 2* is a compact metric
space with the metric dy.

2. The depth of centres of maps of compact countable sets

In this section, we study the 0-dimensional case. We prove the following.

PROPOSITION 2.1. For any countable ordinal number ). there is a compact count-
able set Z, and a homeomorphism f, : Z, — Z, such that d(f.) = A.

PROOE. Note that d(id) = 0. Recursively, for any countable ordinal number A > 0
we will construct a compact countable set Z, and a homeomorphism f; : Z, — Z,
suchthat d( f,) = A. Let w be the first infinite ordinal number and Z the set of integers.
Firstly, we consider the case that A is not a limit ordinal.

I(1): Case of L = 1. Let

Z, ={x;(n)|n € Z} ® {x(00)}.

where x; (i) # x,(j)(i # j) and & implies the disjoint union. Then we can define a
metric d; on Z, satisfying lim,_, o, x;(n) = x(00) = lim, ., x;(—n) (see Figure 1).
Define a function f, : Z, — Z, by fi(x;(n)) = x,(n + 1), f1(x(00)) = x(c0). Note
that Z, is compact and f; is continuous. Then d(f) = 1.

FIGURE 1

I(m + 1): Caseof A =m + 1 (1 <m < w). We assume that the set Z,,, a metric
d, on Z,, and a homeomorphism f,, of Z,, have been obtained. Let

Zpy1 = Zp @ (X (n)|n € Z},
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where x,,1(/) # x,01(j)(i # j). Define a function f,4y : Zny1 — Zun by
Snr1 G (1)) = X (n + 1), fra1lZm = fn- Then we can define a metric d,,4; on
Z oy such that 4, is an extension of d,,, lim,_, o X4 (—n) = x(00) € Z|,

1im (dy 1) (CU L (DI J 2 1)), Z) = 0

and Q2(fn+1) = Z,, (see Figure 2). Hence d(fn+1) =m + 1. Notethat Z,, C Z,,,,
foreachi > 0.

t

Tmt1(0) Tm41(5)

.1’,"_+_1(4) l'm+1(6)

-l'm+l(_l) ~rm+l(l)

Tmt1(3)

) Trmy1(8)

FIGURE 2

Next, we consider the case that A is a countable ordinal number which is not limit.

I(w + m): Case of A = w + m, where 1 < m < w. Consider the set Z,, and a
metric d,, on Z,, (see the case I(m)). Take a sequence Z,,,, Z,,42, ... of sets and a
sequence dy, 41, dpmya, - - . Of metrics such that d,,,; is a metric on Z,,,; and each d,,;
is an extension of d,,. Moreover, we can take metrics d,; on Z,,,; satisfying the
following condition: Z,,,; is contained in the i ~'-neighborhood of Z,,(C Z,4), that
is, lim;_, oo dpyi (Zpyis Z,) = O and for any € > O, there is § > 0 such that there is
some iy such thatif i > iyand x € Z,, C Z,,,,, then

fm+i(Um+i(x7 6)) C Um+i(fm+i(x)v G),

where U, (x, 8) (respectively U,,;(x,8)) denotes the §-neighborhood of x in Z,
(respectively Z,,,;). Intuitively, we may consider that the sets Z,,,;, and maps f,;
converge to the set Z,(C Z,,;) and the map f,, : Z,, — Z,, respectively.
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Set Zym = D2, Znsi D Z,,. Define a function foim : Zysm —> Zuim by
Soim|Zmei = fnsis form|Zm = fm. By using the metric d,,; on Z,,, as above
(i > 1), we can define a metric d,,, on Z,_.,, so thatd,.,, is an extension of d,,, for
each i,

hm (dw+m)H (Zm+i s Zm) = 0,
and the following condition is satisfied:

() forany x € Z,, and any € > 0 there is § > 0 such that
fw+m(Uw+m(xv 8)) C Uw+m(fw+m(/\-)~ E)-

In particular, f,,,, is continuous (see Figure 3). Note that Q,(f,+.») = Z,. Hence
d(fw+m) =w + m.

Zm +1

:m+2

= >

T

r(oo)

~im

FIGURE 3

I(o + m): Case that A > @ is a countable ordinal number which is not limit.
Then we can choose the limit ordinal number o < A such that A = o + m, where
1 <m < w. Take a sequence o; < o, < a3 < ..., of ordinal numbers such that
lim;_ . o, = «. Note that lim;_, (o, + m) = «. In this case, by induction we may
assume that Z, ,,, can be presented by the form Z, 1, = EB;; Zg +m ® Z,, and the
MEricC dy, . satisfies im;_, oo (dy,+m) 1 (Zp,  4m> Z,w) = 0, where lim; , . B; ; = a; (see
the case I{(w + m)). Set

Z, = é Za,+m ®Z,.
i=l1
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Define a function f; : Z, — Z, by filZe+m = fo4m> /ilZn = fn. In this case we
may assume that the metrics d, +,, (. = 1,2,...) on Z,, ,,, satisfy the condition (¥).
By using these metrics, we can define a metric d; on Z, such that d, is an extension of
the metric dy, 1, On Z,,+m, Z; is a compactum and moreover d, satisfies the condition
(). In particular, f; is continuous (see the case I(w + m)). Note that 2, ( fyrn) = Z,.
Hence d(foin) = o + m.

Next, we consider the case that A is a limit ordinal number. In this case, take a
sequence a; < o < &3 < ..., of ordinal numbers such that ¢; is not limit for each i,
and lim,_, . o; = A. For each «; we assume that Z, and f,, have been obtained. Set

=P, Z. & (oo}

We can define a metric ¢, on Z, such that lim;_, (dy)y(Z,,, {o0}) = 0 and each
2, (C Z;) is homeomorphic to Z,, . Define a function f; : Z, — Z, by filZ, = fs,,
and f, (00) = oo. Clearly f; is continuous. Then we see that d(f;) = A.

Therefore, for any countable ordinal number A we obtained a compact countable
set Z, and a homeomorphism f, : Z, — Z; such that d( f;) = A. This completes the
proof.

LEMMA 2.2. Suppose that A is a closed subset of a space X. Let g : A — A be a
map of Aandr : X — A aretraction, thatis,r|A =id. if f =g-r: X — X, then
Qf)=2(g).

PROOF. Since flA = g, Q(g) C Q(f). Let x € Q(f). Note that x € A.
Suppose, on the contrary, that x ¢ §2(g). There is a neighborhood U of x in A such
that ¢"(U) N U = ¢ for all n > 1. Since r(x) = x, we choose a neighborhood V of
x in X such that r(V) C U. Then

fravynv =g revnvc friegunnv
=g"W)NV
=g"UHNMANV)CgWU)NU = ¢.

Therefore x & Q(f). Hence Q(f) = Q(g). If d(g) > 0, then we see that d(f) =
d(g).

COROLLARY 2.3. Let C be a Cantor set. If A is any countable ordinal number, there
isamap f : C — C suchthatd(f) = A.

PROOF. We may assume A > 0. Let Z; and f; : Z, — Z, be as in (2.1). We may
assume that Z, C C. Thenthereisaretractionr : C — Z,. Put f = f,-r : C — C.
By (2.2), Q(fi) = Q(f). Clearly d(f) = A.
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COROLLARY 2.4. For any countable ordinal number ) there is a 1-dimensional
compactum Y andaflow ¢ : Y x R — Y such that d(¢) = A.

PROOF. Let Z;, f, be asin (2.1). Let Y = T (f,) be the mapping torus, that is, the
space obtained from Z, x I by identifying the points (y, 0) and ( fi(y), 1). Naturally
we obtain the flow ¢ on Y from f;. Then d(¢) = A.

3. The depth of centres of maps of dendrites

In this section, we study the depth of centres of maps of some continua. The
following is the main theorem of this note.

THEOREM 3.1. For any countable ordinal number A, there is a dendrite D and a
map f : D — D such that the set E(D) of endpoints of D is a compact countable set
andd(f) = A.

PROOE. Firstly, we define some kinds of dendrites by the following general method
(see [2]): Let X be a O-dimensional compact metric space and let g : X — X be
any map of X. Choose an inverse sequence X = {X,. p,,aln = 1,2,... .} of
finite sets X, such that X; = {*} is a one point set, p, .+ : X,+; — X, is an onto
bonding map (# > 1) and X = inviimX. For 1 <m < n,let p,, = Pmms1 - Prein
and let p, : X — X, be the natural projection. Now, consider the infinite telescope
T(X) = U2, M(pp.n+1), where M(p, ,+1) denotes the mapping cylinder of p, .. :
X1 — X, thatis, in a topological sum X, U (X, X [1/(n + 1), 1/n]), M(py..t1)
is obtained by identifying points (x, 1/n) € X,y x {1/n} and p, .+ (x) € X, for
x € X,;, and T (X) is obtained by identifying each point of X,, x {1/n}in M(p,_,,)
and the corresponding point of X, in M(p, ). Put Y(X) = X U T(X). Define a
function u : Y(X) - I =1[0,1] by u([x,t]) = tif [x,¢] € T(X) and u(x) =0
if x € X. Also, define a retraction ¥, : Y(X) — u~'([t,1])(t € I) by ¥,(y) =
[Pey(x),t] for y = x € X, ¥.(y) = [pgyn(x),t] for y = [x,s] € u™'((0,1])
and x € X,, and ¥,(y) = y for y € u~'([t, 1]), where g(¢) is the natural number
such that 1/g(¢) <t < 1/(q(t) — 1). The topology of Y (X) is defined by assuming
that the totality of the following sets — open sets of T (X) and the sets of the form
1//,‘,:,(U) N~ ' ([0, 1/n)), where U is an open set of X,(C Y(X)),n > 1 —is an open
base of Y (X). Then Y (X) is a compact absolute retract, and u and ¥, are continuous
(see [2]).

Next, for any map g : X — X we shall construct amap f : Y(X) — Y (X) such
that f is an extension of g and Q(f) = Q(g) U {p} where p = x € X, C Y(X).
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For each closed subset A of X, consider the minimal subcontinuum c(A) of Y (X)
containing A, that is,

c(A) = Cl(Ufla, b} : a, b € A}),

where [a, b] is the arc from a to b in Y (X). If an arc [a, b] from a to b is not decreasing
with respect to p (thatis, if x, y € [a,b]and a < x < y < b, then w(x) < u(y)), we
call [a, b] an order arc from a to b.

Let « (A) be the unique point of c(A) such that u(«(A)) = min{u(y); y € c(A)}.
Define a map g, : U, X, — Y(X) such that g,(x) = «(g(p;"'(x))). By using this
map g,, we can naturally define amap g, : Y(X) — Y (X) such that g, is an extension
of g, and g, and if A = [qa, b] is an order arc from a to b, then g,(A) is also an
order arc from g,(a) to g-(h). In this case, we say that g, is order-arc preserving.
Choose a homeomorphism /# : I — [ such that #(0) =0, (1) = 1, and h(z) > ¢ for
0 <t < 1; for example, 4 (t) = /. Define a function f : Y (X) — Y(X) by

fy)= 1/%-;1@)(82()’))-

Then f is continuous and f(p) = p, f|X = g and f is order-arc preserving. Also,
note that if y € Y(X) — (X U {p}), then u(y) < u(f(y)).

Next, we show that Q(f) = Q(g) U {p}. Letx € Q(f). Since y < u(y) for
any y € Y(X) — (X U {p}), we see that x € X U {p}. Suppose, on the contrary, that
x &€ Q2(g)U{p}. Then there is a neighborhood U of x in X such that g"(U)NU = ¢ for
all n > 1. Take a point x,, € X, such that x € ilfl_/l,(x,,) NXcCcU. SetV = 1/;1_/1,(x,1).
Then f"(V) NV = ¢ for all n > 1. In fact, suppose, on the contrary, that there
is y € V such that f"(y) € V for some n > 1. Choose a point y' € X NV such
that [y’, y] is an order arc. Then [f"(y"), f"(y)] is an order arc. Since f"(y) € V,
[y e VN X C U, which implies that g"(U) N U # ¢. This is a contradiction.
Hence x € Q2(g) U {p}.

Suppose that A > 0 is any countable ordinal number. Choose a compact countable
set X = Z, and a homeomorphism g = f, : X = Z, — X = Z, such that
d(f.) = A. In this case, we may assume that for eachn > 2 |X,| > 2, where |X,|
denotes the cardinality of X,,. Then we obtain amap f : D = Y(X) — D such that
Qfy=Q(fiyU{pland E(D) = Z,. Hence d(f) = A.

By (2.2), we obtain the following.

COROLLARY 3.2. There is adendrite D such that for any countable ordinal number
A thereisamap f : D — D such thatd(f) = A.

COROLLARY 3.3. For any countable ordinal number X, thereisamap f : B> — B?
of a disk (= 2-dimensional ball) B* such thatd(f) = X.
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PROOF. Let A > 0 be any countable ordinal number. By (3.1), we can choose a
map g : D — D of a dendrite D such that d(g) = A. Since D is a dendrite, we
may assume that D C B2. Since D is an AR, there is a retraction r : B> — D. Put
f=g-r:B>— B2 Thend(f) = A.

In [5], Neumann proved that for any C* n-manifold M with n > 3 and any
countable ordinal number A, there is a C* flow ¢ on M such that the depth of the
centre of ¢ is A.

Here, we prove the following.

COROLLARY 3.4. For any countable ordinal number X, there is a homeomorphism
h : B> — B? of a 3-dimensional ball B* such that h|0B* = id, d(h) = X and
Q,(h) = dB* U Z, where Z is a countable compactum in B* — 3 B>.

PROOF. We may assume that B® = B? x [—1, 1]. Choose a compact countable set
Z, and a homeomorphism f, : Z, — Z, such that d(f,) = A. We may assume that
X = Z, C (B?>— 8B?) x {0}. By [3, Chapter 13], we can choose a homeomorphism
g : B> = B?such that g is an extension of f and g|dB = id. We can choose a map
¥ : B? x [—1, 1] = [—1, 1] satisfying the following conditions:

(1) ¥(x,t)=tforx € 9B? x [—1, 1],

(2) ¥(x,—1)=—1,%(x,1) = 1foreach x € B,
B) v, )>tifxegX, -1 <t <1,

“4) Yvx,00=0ifx € X, and

B) v, 0)>tifxe X, t#-1,0,1.

Consider the suspension S(B?) of B2, that is, S(B*) is the quotient space of
B? x [—1, 1] in which B x {—1} and B? x {1} are identified to two different points. If
(x,1) € B? x [—1, 1], we use [x, t] to denote the corresponding point of S(B?) under
the quotient map ¢ : B2 x[—1, 1] — S(B?). Note that S(B*) = B? is a 3-dimensional
ball. Define a homeomorphism 4 : B®> — B? by h([x, t]) = [g(x), ¥ (x, 1)].

Suppose that (x, 1) € (B> x [—1,1]) = (X Ud(B? x [—1, 1])). Since ¥ (x,t) > t,
we can choose a neighborhood U of (x,t) such that v (U) N p(U) = ¢, where
p: B> x [—1, 1] — [—1, 1] is the natural projection. Since v (x, t) is not decreasing
with respect to ¢, we see that #"(q(U)) Ng(U) = ¢ foralln > 1. Hence Q(h) C
X UdB>. If A is any ordinal number with A > w, then we see that d(h) = A. Suppose
that 0 < A = m < w. In this case, moreover, we can choose a homeomorphism
g : B> — B? such that there is a small disk D’ which is a neighborhood of x,,(0) €
Zy — Zm_y satisfying g/ (D) N g/(D') = ¢(i # j), &(D)YNZ,_, = ¢ for each i,
and lim,_, ., diam(g'(D’)) = O (see Figure 4 and the proof of [3, Theorem 1, p. 91]),
where Z, = {x(00)}. Then Q(h) = 3(B*) UQ(f,) = dB*U Z,,_,. Hence we see
that d(h) = m.
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FIGURE 4
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