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Abstract

Xiong proved that if / : / — > / is any map of the unit interval / , then the depth of the centre of / is
at most 2, and Ye proved that for any map / : T —>• T of a finite tree T, the depth of the centre of
/ is at most 3. It is natural to ask whether the result can be generalized to maps of dendrites. In this
note, we show that there is a dendrite D such that for any countable ordinal number X there is a map
/ : D —> D such that the depth of centre of / is k. As a corollary, we show that for any countable ordinal
number X there is a map (respectively a homeomorphism) / of a 2-dimensional ball B2 (respectively a
3-dimensional ball 53) such that the depth of centre of / is A.
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1. Introduction

In [6], Xiong proved that if / : / - > • / is any map of the unit interval / = [0, 1], then
the depth d(f) of the centre of / is at most 2, and in [7], Ye proved that for any map
f : T -> T of a (finite) tree T, the depth d(f) of centre of / is at most 3. It is natural
to ask whether the result can be generalized to maps of dendrites. In [5], Neumann
proved that for any C°° n -manifold M with n > 3 and any countable ordinal number
k, there is a C°° flow (/> on M such that the depth of centre of the flow (f> is k.

In this note, firstly we study the depth of centre of maps of 0-dimensional compacta.
As corollaries, we show the following:

(1) There is a dendrite D such that for any countable ordinal number k there is a
map / : D -» D such that the depth d(f) of centre of / is A.
(2) For any countable ordinal number k there is a map / of a disk B2 such that

d(f) = k.
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(3) For any countable ordinal number k there is a homeomorphism h : B3 —> B3

of a 3-dimensional ball B3 such that h\dB3 = id, d(h) = k and Qk(h) = dB3 \J Z,
where Z is a compact countable set in B3 — dB3.

All spaces considered in this note are assumed to be separable metric spaces. By
a continuum, we mean a non-empty, compact, connected, metric space. Let / be the
unit interval [0,1]. A tree is a 1-dimensional connected compact polyhedron which
contains no simple closed curve. A continuum D is a dendrite if D is a locally
connected continuum and D contains no simple closed curve (see [4] for topological
properties of dendrites). A point e of a dendrite D is called an end point if there is
no subset A of D such that e e A and A is homeomorphic to the open interval (0, 1).
Let E(D) be the set of all end points of D. Note that a compactum X is a dendrite
if and only if X is a 1 -dimensional compact absolute retract (= AR). The dynamics
of maps (=continuous functions) of / and trees are considerably well-understood.
Recently, the dynamical behavior of maps of dendrites have often appeared in Julia
sets of complex dynamical systems.

Let X be a compact metric space with metric d and / : X —>• X a map. A
point x e X is a periodic point of / if there is a natural number n > 1 such that
f"(x) = x. A point x e X is a recurrent point of / if for each e > 0 there is a
natural number n > 1 such that d(f"(x), x) < e. A point x e X is a non-wandering
point of / if for any neighborhood U of x in X there is a natural number n > 1 such
that f"(U) n ( / ^ 0. By P(f), we mean the set of all periodic points of / , and
by /?(/) the set of all recurrent points of / . Also, the set of non-wandering points
of / will be denoted by £2(/). The notions of periodic points, recurrent points and
non-wandering points are very important in the study of dynamical systems. Note
that P(f) c R(f) C £2(/), Q(f) is a closed subset of X and f(Q(f)) C £2(/).

Let Qo(/) = X and Q\(f) = £2(/). For any ordinal number k > 1, recursively
we will define Qx(f) as follows: If k = a + 1, then we set &i(f) = Q(f\Qa(f)).
If A is a limit ordinal number, we set &x(f) = f]a^x Qa(f).

Then we see that there is a countable ordinal number y such that £2y(/) =
(= R(f))- The minimal such y is called the depth of the centre of f,

and it is denoted by d(f). Note that d(id) = 0. In general, it is difficult to determine
the centre Qy(f) (= /?(/)) and the depth d(f) of the centre of / . We are interested
in the depth d(f) of the centre of a map / .

Let X be a compactum with metric d. Then

2X = {A | A is a non-empty closed subset of X}

is the hyperspace with the Hausdorff metric dH, that is,

dH(A, B) = inf{e > 0| A c U(B, e), B c U(A, e)}
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where U(A, e) is the e-neighborhood of A in X. Note that 2X is a compact metric
space with the metric dH.

2. The depth of centres of maps of compact countable sets

In this section, we study the O-dimensional case. We prove the following.

PROPOSITION 2.1. For any countable ordinal number X there is a compact count-
able set Zx and a homeomorphism fk : Zx —>• Zx such that d(fk) = X.

PROOF. Note that d(id) = 0. Recursively, for any countable ordinal number A. > 0
we will construct a compact countable set Zx and a homeomorphism fx : Zx —> Zk

such that d(fx) = A,. Let co be the first infinite ordinal number and Z the set of integers.
Firstly, we consider the case that A is not a limit ordinal.

1(1): Case of A = 1. Let

Z, = {Xl(n)\n e Z } e { x ( o o ) } ,

where x,(/) ^ X\{j)(i ^ j) and © implies the disjoint union. Then we can define a
metric dx on Z, satisfying l im^^X\(n) — x{oo) = lim^oo JCI(—n) (see Figure 1).
Define a function / , : Z, -> Z, by /i(x,(«)) = jr,(n + 1), /,(x(oo)) = J:(OO). Note
that Z\ is compact and / , is continuous. Then d(f) = 1.

FIGURE 1

I(m + 1): Case of X = m + 1 (1 < w < co). We assume that the set Zm, a metric
dm on Zm and a homeomorphism fm of Zm have been obtained. Let

Zm+1 = Z m ©{*„,+,(«)| n e Z},
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where xm+](i) ^ xm+l(j)(i ^ j). Define a function /„,+, : Zm+1 -» Zm + ) by
fm+](xm+](n)) = xm+l(n + 1), / m + , |Z m = / m . Then we can define a metric dm+1 on
Zm+1 such that cfm+i is an extension of dm, limn^oo j:m+i(—n) = x{oo) 6 Z\,

\im(dm+l)H(Cl({xm+i(j)\ j > n}), Zm) = 0
n—»oo

and fi(/m+l) = Zm (see Figure 2). Hence d ( / m + l ) = m + \. Note that Zm C Zm+,
for each ; > 0.

- m\ jm+i(8)

FIGURE 2

Next, we consider the case that A. is a countable ordinal number which is not limit.
\(a> + m): Case of A. = u> + m, where 1 < m < co. Consider the set Zm and a

metric dm on Zm (see the case I(m)). Take a sequence Zm+i, Zm+2, . . . of sets and a
sequence dm+\, dm+2,... of metrics such that dm+i is a metric on Zm+, and each dm+l

is an extension of dm. Moreover, we can take metrics dm+i on Zm+, satisfying the
following condition: Zm+i is contained in the i"1-neighborhood of Z m ( c Zm+i), that
is, linii^ao dm+i(Zm+i, Zm) = 0 and for any e > 0, there is 8 > 0 such that there is
some i'o such that if / > i0 and x 6 Zm C Zm+,, then

/m +,(( /m + ,U,5)) C Um+i(fm+i(x),€),

where f/mU,S) (respectively Um+i(x,S)) denotes the 5-neighborhood of J: in Zm

(respectively Zm+I). Intuitively, we may consider that the sets Zm+, and maps fm+i

converge to the set Z m (c Zm+i) and the map fm : Zm —>• Zm, respectively.
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Set Zm+m = 0 ° ! , Zm+i 0 Zm. Define a function fw+m : Zw+m -* Zm+m by
fw+m\Zm+i = /„,+,-, fw+m\Zm = fm. By using the metric dm+i on ZmM as above
0 > 1), we can define a metric dw+m on Zw+m so that du+m is an extension of dm+, for
each;,

\im(dw+m)H(Zm+i, Zm) = 0,

and the following condition is satisfied:

(t) for any x e Zm and any e > 0 there is 8 > 0 such that

fw+m(Uo,+m(x, 8)) c £/w+m(/«+,„(A), e).

In particular, f01+m is continuous (see Figure 3). Note that fiw(/„+„,) = Zm. Hence

d(fw+m) = co + m.

-m+2

~ni+3

.r oo

FIGURE 3

I(a + m): Case that X > co is a countable ordinal number which is not limit.
Then we can choose the limit ordinal number a < X such that X = a + m, where
1 < m < co. Take a sequence a, < a2 < oc3 < ... , of ordinal numbers such that
lim^ocd!, = a. Note that lim,_,oo(a/ + m) = a. In this case, by induction we may
assume that ZOi+m can be presented by the form Zai+m = 0 ° ^ ZA i+m © Zm and the
metric dai+m satisfies l im^0 0(Ja ,+ m)H(Z/ 3 , j + m, Zm) = 0, where lirn,_TC#,; = a, (see
the case l(co + m)). Set

oo
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Define a function fk : Zk - • Zk by fk\Za.+m = /„.+„, fk\Zm = fm. In this case we
may assume that the metrics dOi+m, (i = 1 ,2 , . . . ) on Za,+m satisfy the condition (t).
By using these metrics, we can define a metric dk on Zk such that dk is an extension of
the metric dai+m on Za.+m, Z, is a compactum and moreover dk satisfies the condition
(t). In particular, fk is continuous (see the case l(co + m)). Note that Qa(fa+m) = Zm.
Hence d{fa+m) =a + m.

Next, we consider the case that A. is a limit ordinal number. In this case, take a
sequence at < a2 < a3 < . . . , of ordinal numbers such that a, is not limit for each i,
and lim^sc a, = A.. For each a, we assume that Za. and /„. have been obtained. Set

Za. ® {oo}.

We can define a metric d, on Zk such that lim,-_>00(dx)H(ZOl., {oo}) = 0 and each
Za/ (C Zk) is homeomorphic to Ztti. Define a function / x : Zk —*• Zk by fk\ZOi = /„.,
and /x(oo) = oo. Clearly / ; is continuous. Then we see that d(fk) = k.

Therefore, for any countable ordinal number k we obtained a compact countable
set Zk and a homeomorphism fk : Zk —>• Zk such that d ( / l ) = A.. This completes the
proof.

LEMMA 2.2. Suppose that A is a closed subset of a space X. Let g : A —> A be a

map of A and r : X —»• A a retraction, that is, r\A = id. if f = g • r : X —> X,

PROOF. Since f\A = g, Q(g) c fi(/). Let JC e S2(/). Note that x e A.
Suppose, on the contrary, that JC ^ ^ (g ) - There is a neighborhood U of x in A such
that g"({/) D U = (p for all n > 1. Since r(x) = x, we choose a neighborhood V of
.r in X such that r( V) C U. Then

n v = f"~\g • r(V)) n v c fn-\g{U)) n v

n(A n V) c g"(t/) nu =

Therefore x ^ ft ( /) . Hence ft (/) = ft (g). If rf(g) > 0, then we see that d(f) =
dig).

COROLLARY 2.3. Let C be a Cantor set. Ifk is any countable ordinal number, there
is a map f : C —> C such that d(f) = k.

PROOF. We may assume A. > 0. Let Zk and fk:Zk^>- Zk be as in (2.1). We may
assume that Zk c C. Then there is a retraction r : C —> Zk. Put f = fk-r : C —> C.
By (2.2), ft(/A) = ft(/). Clearly d(f) = A..
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COROLLARY 2.4. For any countable ordinal number A. there is a 1 -dimensional
compactum Y and a flow (j> : Y x R —> Y such that d(<j>) = A..

PROOF. Let Zx, fk be as in (2.1). Let Y = T(fx) be the mapping torus, that is, the
space obtained from Zx x / by identifying the points (y, 0) and (fx(y), 1). Naturally
we obtain the flow <j> on Y from fk. Then d((p) = X.

3. The depth of centres of maps of dendrites

In this section, we study the depth of centres of maps of some continua. The
following is the main theorem of this note.

THEOREM 3.1. For any countable ordinal number X, there is a dendrite D and a
map f : D —• D such that the set E(D) of endpoints of D is a compact countable set
andd(f) = k.

PROOF. Firstly, we define some kinds of dendrites by the following general method
(see [2]): Let X be a 0-dimensional compact metric space and let g : X —> X be
any map of X. Choose an inverse sequence X = {X,,, pnM+\ \n = 1, 2 , . . . , } of
finite sets X,, such that X, = {*} is a one point set, pn,n+\ : Xn+] —>• Xn is an onto
bonding map (n > 1) and X = invlimX. For 1 < m < n, let /?„,.„ = pm.m+] • • • pn-\.n
and let pn : X —> Xn be the natural projection. Now, consider the infinite telescope
T(X) = U,M

= lM(po + l ) , where M(/?„,„+,) denotes the mapping cylinder of /?„.„+, :
Xn+l -> X,,, that is, in a topological sum Xn U (Xn+i x [\/(n + 1), 1/n]), M(pn.„+,)
is obtained by identifying points (x, l/n) e Xn+i x {1//?} and pn^+i(x) e Xn for
x e X,,+i and T(X) is obtained by identifying each point of X,, x {l/n} in M(pn^]n)
and the corresponding point of Xn in M(pn,„+,). Put Y(X) = X U T(X). Define a
function fi : Y(X) -> I = [0, 1] by /*([*, r]) = r if [x, t] e Tffl and /x(ar) = 0
if x € X. Also, define a retraction f, : K(X) -> ^"'([r, l])(r e / ) by ^ ( y ) =
[p,(o(^)^] for y = x e X, ^ ( j ) = tp,(o.«(-f).f] f o r 31 = U.*l e M~'((0,r])
and x e X«, and ^ / ( j ) = >" for j e /x~'([r, 1]), where q(t) is the natural number
such that \/q{t) < t < \/{q{t) — 1). The topology of Y(X) is defined by assuming
that the totality of the following sets — open sets of T(X) and the sets of the form
\lr^l

n(U) C\ n~* ([0, l /n)) , where U is an open set of X,,(c Y(X)),n > 1—is an open
base of Y(X). Then Y(X) is a compact absolute retract, and p. and \jj, are continuous
(see [2]).

Next, for any map g : X —> X we shall construct a map / : Y(X) —>• K(A') such
that / is an extension of g and £2(/) = fi(^) U {/?} where /? = * e X, c Y(X).
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For each closed subset A of X, consider the minimal subcontinuum c(A) of Y(X)
containing A, that is,

c(A) =C\(U[[a,b] :a,be A}),

where [a, b] is the arc from a to b in Y (X). If an arc [a, b] from a to b is not decreasing
with respect to /x (that is, if .v, y e [a, b] and a < x < y < b, then /J,(X) < [i(y)), we
call [a, b] an order arc from a to b.

Let K(A) be the unique point of c(A) such that H(K(A)) = min{jn(j); y € c(A)}.
Define a map g, : U~ ,X,, - • Kffl such that g,(.x) = K(g(/>-'(•*)))• By using this
map g,, we can naturally define a map g2 : F(X) —> Y(X) such that g2 is an extension
of g| and g, and if A = [a, b] is an order arc from a to b, then g2(A) is also an
order arc from g2(a) to g2(fr). In this case, we say that g2 is order-arc preserving.
Choose a homeomorphism h : / —> / such that A(0) = 0, /i(l) = 1, and /z(r) > / for
0 < ? < 1; for example, /?(/) = V?- Define a function / : Y(X) —• F(X) by

Then / is continuous and f(p) = p, f\X = g and / is order-arc preserving. Also,
note that if y e K(X) - (X U {/?}), then ^(y) < ix(f(y)).

Next, we show that Q(f) = Q(g)U {p}. Let x € J2( / ) . Since y < ^(;y) for
any >> e y ( I ) — (X U {/?}), we see that x e X U {p}. Suppose, on the contrary, that
x g£2(g)U{p}. Then there is a neighborhood £/ of x in X such that g"(U)r\U = 0for
all /i > 1. Take a point x,, e X,, such that ^ e iAi"/U;cn) n ^ C f/. Set V = ^n(xn).
Then / " (V) n V = <p for all « > 1. In fact, suppose, on the contrary, that there
is y € V such that f"(y) e V for some n > 1. Choose a point / G X D V such
that [ / , y] is an order arc. Then [f(y'), f"(y)] is an order arc. Since f(y) e V,
f(y') e V DX c U, which implies that g"(U) n U ^ (p. This is a contradiction.
Hence JC e ^ ( g ) U { p } .

Suppose that A. > 0 is any countable ordinal number. Choose a compact countable
set X = Zx and a homeomorphism g = fx : X = Zx —> X = Z^ such that
J ( / x ) = A. In this case, we may assume that for each n > 2 \Xn\ > 2, where |Xn|
denotes the cardinality of X,,. Then we obtain a map f : D = Y(X) —> D such that
S2(/) = f 2 ( / J U { p } a n d £ ( D ) = Zx. Hence d(f) = X..

By (2.2), we obtain the following.

COROLLARY 3.2. There is a dendrite D such that for any countable ordinal number
k, there is a map f : D —> D such that d(f) = k.

COROLLARY 3.3. For any countable ordinal number k, there is a map f : B2 —>• B2

of a disk (= 2-dimensional ball) B2 such that d(f) = k.
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PROOF. Let A. > 0 be any countable ordinal number. By (3.1), we can choose a
map g : D -* D of a dendrite D such that d(g) = A. Since D is a dendrite, we
may assume that D c B2. Since D is an AR, there is a retraction r : B2 —>• D. Put
f = g-r : B2 -+ B2. T h e n r f ( / ) = A.

In [5], Neumann proved that for any C°° n-manifold M with « > 3 and any
countable ordinal number A., there is a C°° flow 0 on M such that the depth of the
centre of 4> is A.

Here, we prove the following.

COROLLARY 3.4. For any countable ordinal number A, there is a homeomorphism
h : B3 ^ B3 of a 3-dimensional ball B3 such that h\dB3 = id, d{h) = A and
Qx(h) = dB3 U Z, where Z is a countable compactum in B3 — dB3.

PROOF. We may assume that B3 = B2 x [—1, 1]. Choose a compact countable set
ZA and a homeomorphism fk : Zk —>• Zx such that G K / 0 = A. We may assume that
X = Zx C (B2 — dB2) x {0}. By [3, Chapter 13], we can choose a homeomorphism
g : B2 —> B2 such that g is an extension of / and g|3£ = id. We can choose a map
xj/ : B2 x [—1, 1] —> [—1, 1] satisfying the following conditions:

(1) f(x,t) = tforx e 3B2 x [ - 1 , 1],

(2) i/̂ (-:f, - 1 ) = - l .VK*, 1) = 1 for each x e B2,
(3) VU, 0 > ' i f x $ X, - 1 < t < 1,
(4) Vt*,O) = 0 i fx e X,and
(5) iA(x,r) > tifx € X, / # - 1 , 0 , 1.

Consider the suspension S(B2) of B2, that is, S(B2) is the quotient space of
B2 x [—1, l ] inwhichB x {—ljandfi2 x {1} are identified to two different points. If
(x,t) e B2 x [—1, 1], we use [x, t] to denote the corresponding point of S(B2) under
the quotient map q : B 2 x [ - 1 , 1] - • S(B2). Note that S(B2) = B3 is a 3-dimensional
ball. Define a homeomorphism /* : B3 —> B3 by h{[x, f]) = [g(x), i/r(A-, /)]•

Suppose that (x,/) e (B2 x [ - 1 , 1 ] ) - ( X U 3 ( B 2 x [ - 1 , 1])). Since iA(*,0 > t,
we can choose a neighborhood U of (x,r) such that \//(U) n p(t/) = <̂>, where
p : fi2 x [— 1, 1] —> [—1, 1] is the natural projection. Since \f/(x, t) is not decreasing
with respect to t, we see that h"(q(U)) n q{U) = (p for all n > 1. Hence Q(h) c
X U 3B3. If A is any ordinal number with A > a>, then we see that d(h) = A. Suppose
that 0 < A = m < co. In this case, moreover, we can choose a homeomorphism
g : B2 —>• B2 such that there is a small disk D' which is a neighborhood of xm(O) e
Zm - Zm_, satisfying g'(£>') n gJ(D') = 4>{i + j), g'(D') D Zm_, = 0 for each i,
and lim,,^±oo diam(^'(D')) = 0 (see Figure 4 and the proof of [3, Theorem 1, p. 91]),
where Zo = {JC(OO)}. Then Q(h) = d(B3) U Q(fx) = dB3 U Zm_,. Hence we see
that
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D'

<J~l(D'

FIGURE 4
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