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THE TRIGONOMETRY OF
HYPERBOLIC TESSELLATIONS

H. S. M. COXETER

ABSTRACT. For positive integers p and q with (p � 2)(q � 2) Ù 4 there is, in the
hyperbolic plane, a group [p, q] generated by reflections in the three sides of a triangle
ABC with angles ôÛp, ôÛq, ôÛ2. Hyperbolic trigonometry shows that the side AC has
length †, where cosh† ≥ cÛs, c ≥ cos ôÛq, s ≥ sin ôÛp. For a conformal drawing
inside the unit circle with centre A, we may take the sides AB and AC to run straight
along radii while BC appears as an arc of a circle orthogonal to the unit circle. The circle
containing this arc is found to have radius 1Û sinh† ≥ sÛz, where z ≥

p
c2 � s2, while

its centre is at distance 1Û tanh† ≥ cÛz from A. In the hyperbolic triangle ABC, the
altitude from AB to the right-angled vertex C is ê, where sinh ê ≥ z.

1. Non-Euclidean planes. The real projective plane becomes non-Euclidean when
we introduce the concept of orthogonality by specializing one polarity so as to be able
to declare two lines to be orthogonal when they are conjugate in this ‘absolute’ polarity.
The geometry is elliptic or hyperbolic according to the nature of the polarity.

The points and lines of the elliptic plane ([11], x6.9) are conveniently represented, on
a sphere of unit radius, by the pairs of antipodal points (or the diameters that join them)
and the great circles (or the planes that contain them). The general right-angled triangle
ABC, like such a triangle on the sphere, has five ‘parts’: its sides a, b, c and its acute
angles A and B. (The right-angled vertex C is opposite to the hypotenuse c.) Every three
of the five parts are related by a trigonometric identity ([14], p. 34). Five of these ten
formulae are:

(1. 1) cos A ≥ cos a sin B,

(1. 2) cos B ≥ cos b sin A,

cos c ≥ cos a cos b(1. 3)

≥ cot A cot B,(1. 4)

(1. 5) sin a ≥ sin c sin A.

In the ‘parabolic’ case when the elliptic polarity degenerates to an elliptic involution
on a line (‘the line at infinity’), the geometry is Euclidean!

Received by the editors November 22, 1995.
AMS subject classification: 51F15, 51N30, 52A55.
c Canadian Mathematical Society 1997.

158

https://doi.org/10.4153/CMB-1997-019-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-019-0


THE TRIGONOMETRY OF HYPERBOLIC TESSELLATIONS 159

A hyperbolic polarity admits self-conjugate points and self-conjugate lines, constitut-
ing the points and tangents of a conic ([12], p. 72; [5], p. 199) called the absolute conic
of the hyperbolic plane. The interior points and chords of this conic are the ‘ordinary’
points and lines of the hyperbolic plane. Two lines are said to be parallel if the chords
have a common end-point, which is naturally called a ‘point at infinity’: the ‘center’ of
a ‘pencil’ of parallel lines. Two lines orthogonal to one line are said to be ultraparallel;
all the lines orthogonal to one line form a ‘pencil’ of ultraparallel lines.

These ideas of Cayley and Klein (1871) have been lucidly described by Roberto
Bonola ([1], pp. 154–170), who goes on to consider what happens in the Euclidean plane
when the points and lines of the hyperbolic plane are mapped on the interior points and
chords of a circle. This procedure, discovered by Eugenio Beltrami in 1868, is one of
two possible ways to map the hyperbolic plane on the inside of a circle. It is called the
projective model, because straight lines are mapped on straight chords, and the projective
concept of incidence is preserved, though distances and angles need to be redefined ([5],
pp. 206, 207).

The other way to map the hyperbolic plane is Poincaré’s inversive model, in which
lines are represented by circles orthogonal to one chosen circle °. The three kinds of
pencil of lines (intersecting, parallel or ultraparallel) are represented by the three kinds
of pencil of coaxal circles (intersecting, tangent or disjoint), all orthogonal to °. Since
orthogonality is preserved and right angles can be repeatedly bisected, an argument using
continuity shows that Poincaré’s model is conformal: angles (and infinitesimal shapes)
are represented faithfully although distances need to be redefined.

Most simply, the distance between any two ordinary points A and C in the hyperbolic
plane can be measured as the distance between two ultraparallel lines (one through A
and one through C, both orthogonal to the line AC). These two lines are represented by
disjoint circles, and the distance between them is simply the inversive distance between
the circles, that is, the natural logarithm of the ratio (greater to smaller) of the radii of
any two concentric circles into which the disjoint circles can be inverted ([15], p. 128;
[10], p. 392).

A circle and any interior point can be inverted into a circle and its centre ([15], Fig-
ure 5.5B on p. 116); therefore, when discussing interior points of a circle, we lose no
generality by assuming one of the points to be the centre.

2. The angle of parallelism. Figure 1 shows how the projective and inversive mod-
els depict the angle of parallelism í ≥ Q

(x) between AC, the perpendicular from A to the
line CN, and AN, the parallel from A to the ray CN. Both models use the same Euclidean
circle °, with centre A and radius AN ≥ 1, to represent the set of points at infinity.

In Beltrami’s projective mapping, the hyperbolic distance x ≥ AC is evidently repre-
sented by the Euclidean distance cos í.

In Poincaré’s inversive mapping, the ray CN appears as an arc of a circle ãwith radius
r, whose centre O lies on the line AC at distance d from A. We proceed to determine how
the Euclidean distances d and r are related to the hyperbolic distance x ≥ AC, which is
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FIGURE 1. Projective and inversive views of the angle of parallelism í ≥ Q(AC).

the inversive distance between two circles, orthogonal to both the circle ° and the line
AC. The “circle” through A is simply the line ‡ through A orthogonal to AC, while the
circle through C is ã.

In the right half of Figure 1, QQ0 is the diameter through O of °, with A between Q
and C; ‡ is the perpendicular diameter; QM and AN are the tangents to ã at M and N; ï
is the circle with centre O and radius OQ; and ñ is the circle with centre Q and radius
QM. Since the tangent QM to ã is perpendicular to the radius OM, ñ inverts ã into itself.
Since ° is orthogonal to both ‡ and ã, Q and Q0 are the limiting points of the coaxal
pencil that includes ã with radical axis ‡. The orthogonal pencil of circles through Q
and Q0 is inverted by ñ into the pencil of lines through the inverse of Q0. (Compare [15],
p. 121 and Example 4 on pp. 131, 176; [10], pp. 391-395.)

The right-angled triangle ANO (with AN ≥ 1) shows that r2 ≥ d2�1. Since QQ0 ≥ 2
and QO ≥ d + 1, we have

QM2 ≥ QO2 �MO2 ≥ (d + 1)2 � r2 ≥ (d + 1)2 � (d2 � 1) ≥ 2(d + 1) ≥ QQ0 ð QO.

Therefore ñ inverts Q0 into O, and inverts the pencil of circles through Q and Q0 into the
pencil of lines through O, and inverts the orthogonal pencil into the pencil of concentric
circles round O. In particular, ñ inverts ‡ and ã into the two concentric circles ï and ã,
whose radii are d + 1 and r.

In terms of the angle CAN ≥ í, we have

d ≥ sec í, r ≥ tan í.

Hence the ratio of radii is

d + 1
r

≥ cosecí + cot í ≥ cot
1
2
í
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FIGURE 2. The ‘triangle’ ABC with two straight sides and an arc BC.

and the hyperbolic distance AC is

x ≥ log cot 1
2í.

Since í ≥ Q
(x), this result agrees with Lobachevsky’s famous formula

tan 1
2
Q

(x) ≥ e�x

([18], p. 41; [6], p. 82; [11], p. 5A1; [11a], p. 453) and with six simple relations such as

(2. 1) cosh x ≥ cosecí
which are neatly epitomized by drawing a Euclidean right-angled triangle with sides 1,
sinh x, cosh x. In this triangle, the angle opposite to the side of length 1 is

Q
(x).

It is of some interest to compare the hyperbolic distance AC ≥ x with the Euclidean
distance AC, which is

AO � CO ≥ sec í � tan í

≥ 1
tanh x

� 1
sinh x

≥ ex + e�x � 2
ex � e�x

≥ exÛ2 � e�xÛ2

exÛ2 + e�xÛ2

≥ tanh
x
2

.

Since cos í ≥ tanh x and tanh1 ≥ 1, we have obtained the following neat theorem:

THEOREM. When the hyperbolic plane is mapped, projectively or inversively, on the
interior of the Euclidean unit circle, a point at hyperbolic distance x from the centre is
at Euclidean distance tanh x or tanh 1

2 x, respectively.

Since tanh 1
2 x Ú tanh x, the inversive mapping causes less distortion than the projec-

tive mapping. Accordingly, we will henceforth abandon the latter in favour of the former.
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3. The inversive model for a hyperbolic triangle. If three lines in the hyperbolic
plane intersect one another so as to form a triangle ABC, they are mapped inversively by
three mutually intersecting circles, all orthogonal to the unit circle °. Two of the three
circles may conveniently be replaced by diameters of °, forming an angle A ≥ CAB,
while the third circle intersects them so as to form angles B at B, and C at C. Figure 2
illustrates the special case when C is a right angle, so that we are considering the general
right-angled hyperbolic triangle with acute angles A and B, mapped on the Euclidean
plane by a ‘triangle’ ABC whose sides through A proceed along two radii of ° while
BC is an arc of a circle ã (orthogonal to °) whose centre O lies on the extension of AC
outside °. (Since BC is not straight, B Ú 1

2ô � A.) Let r denote the radius of ã, C0 the
far end of its diameter through C, N one of its intersections with °, and d(≥ AO) the
distance of its centre from A.

Applying the rule of sines to the Euclidean triangle ABO, whose angle at B is B + 1
2ô,

we find
d

cos B
≥ r

sin A
.

We can express d and r in terms of

(3. 1) s ≥ sin A, c ≥ cos B,

by observing that, since the sides of the triangle AON are d, r and 1, we have

d2 � r2 ≥ 1,
d2

c2
≥ r2

s2
≥ d2 � r2

c2 � s2
≥ 1

c2 � s2

and

(3. 2) d ≥ cp
c2 � s2

≥ 1q
1 � (sÛc)2

,

(3. 3) r ≥ sp
c2 � s2

≥ 1q
(cÛs)2 � 1

.

4. The hyperbolic reflection group [p, q]. An important special case arises when
A and B are submultiples of ô, say ôÛp and ôÛq, so that reflections in the lines CA, AB,
BC (or inversions in the representative circles) will generate an infinite group

[p, q] ≥ ž ž ž
p q

transforming the fundamental region ABC into a tessellation of congruent right-angled
triangles filling the whole hyperbolic plane (or the while interior of the circle °) ([7],
p. 201). The group is infinite because we are assuming

A + B + C Ú ô,
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FIGURE 3. Beginning to draw the scaffolding for [4, 5].

which implies A + B Ú 1
2ô, p�1 + q�1 Ú 1

2 ,

(p � 2)(q � 2) Ù 4

and

(4. 1) cos2 ô
p

+ cos2 ô
q
Ù 1.

The ‘even’ subgroup
[p, q]+ ≥ (p, q, 2),

generated by products of pairs of reflections (or inversions), is a Fuchsian group of signa-
ture (0; p, q, 2) in the notation of Klein and Fricke. This subgroup preserves the ‘colour-
ing’ when alternate triangles of the tessellation are blackened or shaded. Klein’s drawings
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of [3, 7]+ and [3, 8]+ were repeated by Magnus ([19], pp. 183, 187) and the author ([3],
pp. 126, 127; [4], pp. 150, 160, 166).

To undertake the precise construction of such a tessellation, one may begin by ob-
serving that the circle ã of Figure 2 is still determined by (3.2) and (3.3), although now,
instead of (3.1), we have

(4. 2) s ≥ sin
ô
p

, c ≥ cos
ô
q

.

For instance, the fundamental region for [6,4] (where s ≥ 1
2 and c ≥

q
1
2 ) is given by

d ≥
p

2, r ≥ 1,

in evident agreement with Figure 15.8b of [11a, p. 284], where the two circles are visibly
congruent.

As soon as the first circle ã has been drawn, the tessellation can be continued by
repeated inversion (or reflection). All the circles through a vertex, such as B, have a sec-
ond common point: the °-inverse of the first. Being coaxal, these circles have collinear
centres, midway between the two common points.

If we regard the lines AB and AC as mirrors of a kaleidoscope, the point O and its
images form the vertices of a regular p-gon (as in Figure 3, where p ≥ 4). They are the
centres of p circles, such as ã, belonging to the tessellation. The line of centres of circles
through B (and its °-inverse) is an edge of this p-gon. One of the q centres on this line is
at infinity because it is the ‘centre’ of the ‘circle’ consisting of the line AB. If q is even,
another one of the q centres is the midpoint of this edge of the p-gon. This edge and other
lines of centres form a kind of scaffolding for the building of the tessellation. Since the
centres lie on pairs of tangents, they are all outside °, and so too are all the relevant lines
of centres. (In Figures 6 and 7 of [3], pp. 126–127, and 15.8b of [11], p. 346, those lines
which are secants should not have been drawn.)

Usually, each new centre arises as the common point of two such lines; but occasion-
ally a direct appeal to inversion is required. For instance, Figure 3 shows an early stage
in the construction of the tessellation for [4,5] ([4], p. 160, Figure 9), where

s ≥ sin
ô
4
≥ 2�

1
2 , c ≥ cos

ô
5
≥ 1

2
ú

so that

d ≥ 1p
1 � 2ú�2

≥ ú 3
2 , r ≥ 1q

1
2 ú2 � 1

≥ (2ú) 1
2 .

In this case the p-gon appears as the peripheral square. Its right and bottom sides, ñ
and ñ0, are the lines of centres of circles through B and B0, respectively. Since the circle
OFGB is the inverse, with respect to the circle ã ≥ BC, of the straight line AB, its centre
M is located where ñmeets the perpendicular bisector of OB. Similarly, M0, N and N0 are
the centres of circles B0G, B0F and BH. The line ACG reflects F to F0, where the circles
BH and B0G intersect. Since MN and M0N0 are the lines of centres of circles through F
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and F0, respectively, their common point is the centre of the circle FF0. Also the straight
line MM0 is the line of centres of circles through G. One of these circles is EG, whose
centre is the midpoint of MM0.

Understanding that ° represents the region of infinitely distant points ([16], p. 109),
the artist M. C. Escher wrote:

‘For beyond that there is “absolute nothingness”. And yet this round world can-
not exist without the emptiness around it, not simply because “within” presupposes
“without”, but also because it is out there in the “nothingness” that the centre points
of the arcs that go to build up the framework are fixed with such geometric exac-
titude.’

5. Regular hyperbolic tessellations. If we regard the lines BC, CA, AB as mirrors
in a kaleidoscope, the point B and its images form the vertices of a regular tessellation
fp, qg ([20], p. 15), consisting of regular p-gons, q round each vertex. In other words,
the set of vertices of fp, qg is the orbit of the point B in the reflection group [p, q]. The
vertex A of the triangle ABC is the centre of a tile (or ‘face’) of fp, qg. This ‘face’ is a
p-gon of edge (say) 2û, circumradius ü and inradius †. Thus BC ≥ û, CA ≥ ü, AB ≥ †.

The group [p, q] is the symmetry group not only of fp, qg but also of the dual tessel-
lation fq, pg, whose vertices are the orbit of A.

For fragments of f7, 3g and f3, 7g, see ([7], pp. 206, 207). Analogous drawings of
f3,1g and f1, 3g were made by L. Fejes Tóth ([17], p. 97).

The general right-angled hyperbolic triangle resembles its spherical counterpart in
having five ‘parts’, every three of which are related by a trigonometric equation. Five of
these ten formulae, analogous to (1.1), etc., are:

(5. 1) cos A ≥ cosh a sin B,

(5. 2) cos B ≥ cosh b sin A,

(5. 3) cosh c ≥ cot A cot B ≥ cosh a cosh b,

(5. 4) sinh a ≥ sinh c sin A,

When B ≥ 0, so that A ≥ Q
(b), (5.2) reproduces (2.1)!

Applying (5.1), (5.2), (5.3) with a, b, c, A, B replaced by

û, †, ü, ôÛp, ôÛq

([7], p. 201), we obtain

coshû ≥ cos
ô
p
Û sin

ô
q

, cosh† ≥ cos
ô
q
Û sin

ô
p

,

coshü ≥ coshû cosh† ≥ cot
ô
p

cot
ô
q

.
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FIGURE 4. The altitude ê ≥ CD.

In the notation of (4.2), cosh† ≥ cÛs. Thus the distance and radius of (3.2) and (3.3)
are functions of † alone, namely

(5. 5) d ≥ 1Û
q

1 � sech2† ≥ 1Û tanh†,

(5. 6) r ≥ 1Û
q

cosh2 † � 1 ≥ 1Û sinh†.

In the triangle ABC (see Figure 4), the altitude ê ≥ CD, from the hypotenuse AB to
the right-angled vertex C, is obtained by applying (5.4) to the smaller triangle ACD:

sinh ê ≥ sinh† sin
ô
p

.

Since cosh† ≥ cÛs, we have sinh† ≥
p

c2 � s2Ûs, and

(5. 7) sinh ê ≥
p

c2 � s2.

The altitude ê provides simple expressions for sinhû and sinh†:

sinhû ≥ sinh êÛ sin
ô
q

, sinh† ≥ sinh êÛ sin
ô
p

.

It is thus the hyperbolic counterpart of the spherical arc ôÛh ([8], p. 9; [9], p. 21) where
h is the ‘Coxeter number’ for a finite reflection group [p, q] ([2], p. 117; [21]). In other
words, fp, qg has for its Petrie polygon a zigzag, and the length ê measures the translation
component of the glide-reflection that takes the zigzag one step (one ‘zig’ or ‘zag’) along
itself.

6. Quasi-regular tessellations. We have seen that, in the reflection group [p, q],
with fundamental region ABC, the orbits of A and B yield the regular tessellations fq, pg
and fp, qg. Analogously, the orbit of C yields the quasi-regular tessellation

(
p
q

)
([9],

pp. 18-19, 101) which is analogous to two of the Archimedean solids: the cuboctahedron
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(
3
4

)
and the icosidodecahedron

(
3
5

)
. Of course,

(
p
q

)
is the same as

(
q
p

)
. Exception-

ally, when p ≥ q the tessellation is regular:
(

p
p

)
≥ fp, 4g

([9], p. 60).
A small part of Figure 3 shows four right-angled triangles, two white and two black,

surrounding the point C which is a typical vertex of
(

p
q

)
. The white and black pairs

of triangles are crossed by pairs of edges of
(

p
q

)
(such as CE, of length 2ê): one pair

crossing the two white triangles and then crossing two ‘new’ black triangles, the other
pair crossing the two black triangles and then crossing two ‘new’ white triangles. Thus
the complete set of edges forms a network of infinitely long lines spreading out over
the whole plane. The Euclidean case when p ≥ q ≥ 4 is, of course, very familiar. (For
fragments of other cases, namely

(
5
4

)
,
(

6
4

)
,
(

7
3

)
,

see [3], pp. 136, 137, 139.)
Such ‘infinitely long lines’ are the ‘axes’ of the above-mentioned Petrie polygons of

fp, qg: they join the midpoints of the edges in the zigzag.
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18. L. Fejes Tóth, Regular Figures, Pergamon, New York, 1964.
19. N. I. Lobachevsky, Geometrical researches on the theory of parallels, pp. 1-48 at the end of Bonola [1].

https://doi.org/10.4153/CMB-1997-019-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-019-0


168 H. S. M. COXETER

20. W. Magnus, Noneuclidean Tesselations and their Groups, Academic Press, New York, 1974.
21. F. A. Sherk, P. McMullen, A. C. Thompson and A. I. Weiss, Kaleidoscopes, Wiley-Interscience, New York,

1995.
22. E. B. Vinberg, Reflection groups, Soviet Encyclopaedia of Mathematics, 20, p. 33, Kluwer, Dordrecht,

1992.

Department of Mathematics
University of Toronto
Toronto, Ontario
M5S 2G3

https://doi.org/10.4153/CMB-1997-019-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-019-0

