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Abstract

The conditions on the mating matrix associated with a stable equilibrium are specified for an autosomal locus with four alleles. An example
illustrates how Hardy–Weinberg proportions are maintained with nonrandom mating. The ABO blood group provides an illustration.
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Li (1988) coined the term ‘pseudo-random mating’ to apply to his
model which demonstrated that Hardy–Weinberg proportions can
be maintained with nonrandom mating for an autosomal locus
with two alleles.

Stark (1980) gave the following mating system, which was used
to classify some systems of partial inbreeding, given here in the
original notation to avoid confusion with the notation in the main
part of the article:

fij ¼ fifjð1þ �didj=Sþ �eiej=TÞ,i ¼ 0,1,2,j ¼ 0,1,2, (1)

where d0 ¼ �2p, d1 ¼ q� p, d2 ¼ 2q, S ¼ 2pqð1þ �Þ,
e0 ¼ �pð1� �Þ=ðqþ �pÞ e1 ¼ 1, e2 ¼ �qð1� �Þ=ðpþ �qÞ,
T ¼ pqð1� �Þð1þ �Þ=ððqþ �pÞ ðpþ �qÞÞ,f0 ¼ q2 þ �pq,

f1 ¼ 2pqð1� �Þ, f2 ¼ p2 þ �pq, � ¼ 2�=ð1þ �Þ. Terms f0 etc
are the genotype frequencies in equilibrium, and so are the Hardy–
Weinberg frequencies when � ¼ 0. When � ¼ 0, the component
involving � in Eqn. (1) drops out but leaves the term involving
� so that the mating frequencies ffijg are not random frequencies
unless � ¼ 0. This demonstrates the fact that Hardy–Weinberg
frequencies can be maintained with nonrandom mating. Also, it
clearly identifies the separation between Hardy–Weinberg
frequencies and frequencies maintained by systems of mating with
inbreeding.

We have shown for an autosomal locus how, with either two
or three alleles, the parental distribution can be reproduced
among offspring (Stark, 2021; Stark & Seneta, 2012, 2013). A
corollary of this is the fact that Hardy–Weinberg proportions
can be maintained by nonrandom mating. One of the require-
ments of paternity experts is expressed as follows: ‘knowledge of
genotype frequencies in defined populations in which the poly-
morphism is in Hardy-Weinberg equilibrium and random mat-
ing occurs’ (Geserick & Wirth, 2012, p. 164). In his definition,
Buckleton (2005b, p. 68) comes very close to one of the main

points of this article when he writes ‘the Hardy-Weinberg law
is a statement of independence between alleles at one locus’
but then includes random mating as one of the conditions that
make the law true.

In the scenario sketched by Clayton and Buckleton (2005, pp.
224−226), fingernail clippings have been taken from a womanwho
has been assaulted and claims to have scratched her attacker.
Suppose that evidence (E) consists of DNA from two individuals
and can be fully explained by the presence of DNA from both the
woman and her suspected attacker. The authors explain the foren-
sic approach by considering the case when the woman’s DNA at a
particular locus is A1A2 and that of the other person is A3A4. They
calculate the value of the likelihood ratio, a ratio of probabilities:

LR ¼ prðEjGs,Gv ,HpÞ
prðEjGv ,HdÞ

,

whereHp is the hypothesis that the nail clippings contain the DNA
of the complainant and the suspect, Hd is the hypothesis that the
nail clippings contain the DNA of the complainant and an unre-
lated person, Gs is the genotype of the suspect and Gv is the geno-
type of the complainant. Clayton and Buckleton find the likelihood
ratio to be 1=ð2p3p4Þ by invoking the Hardy–Weinberg proportion
for the suspect. The importance of the LR is seen in the relation:

posterior odds ¼ likelihood ratio� priorodds.

The prior odds are the odds on the hypothesis Hp before DNA evi-
dence, and the posterior odds are the odds after DNA evidence. If
the [subjective] probability of an event is p, the odds in favor of the
event are p/(1 − p). Good (1950, p. 62) has a note on terminology
applied to odds (o): ‘If o=m/n it is often said that the odds are “m
to n on” or “n to m against”’. Probability can be calculated from
odds by p ¼ o=ð1þ oÞ. As Buckleton (2005a) points out, the
weighing of evidence is subjective, so, while the calculation of
the likelihood ratio may have a scientific basis, the subjective
element might be disputable.
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In this article, we give the conditions for maintaining equilib-
rium for a systemwith four alleles. The principle could be extended
to any number of alleles.

Boyd (1962, p. 335) begins his survey of blood groups, starting
with ABO, as follows:

The study of human genetics has consistently lagged behind that of lower
forms. The classical Landsteiner blood groups were the first example of
Mendelizing characteristics demonstrated in man, and even today few
other normal hereditary characteristics have been as well studied as have
the various blood-group systems.

In his tribute to Felix Bernstein, Crow (1993, p. 7) refers to ‘that
genetically refractory species Homo sapiens’, citing two of
Bernstein’s major papers relating to the ABO system (Bernstein,
1924, 1925). Westhoff (2019) summarizes the evolving methodol-
ogy and applications of genotyping.

The ABO system with four alleles as set out by Penrose (1973,
pp. 25–27; p. 132) and Boyd (1962, pp. 335–337) is a relevant
example. Ostrowski et al. (2020) outline the important role played
by Ludwik Hirszfeld (1884–1954) in the introduction of ABO into
medical practice. Apart from its importance in, for example, organ
transplantation, it is studied in other specialities. Kahr et al. (2018)
compared postpartum blood loss in type O and non-O women.
They found a statistically significant but clinically minor increase
in blood loss following delivery in women of type O. They suggest
that O carriers may suffer from aggravated bleeding in the presence
of additional obstetric bleeding pathologies.

Adapting the notation of Crew (1947, p. 65) the alleles would be
written as HA1, HA2, HB and HO, but to conform with the general
notation used with three alleles (in an earlier paper) are written as
A, B, C and D. Genotypes are taken in order AA, BB, CC, DD, AB,
AC, AD, BC, BD, CD, which are numbered from 1 to 10 and their
frequencies denoted by Gi,i, ¼ 1,2, . . . ,10.

This article gives the conditions on the matrix of mating pro-
portions such that the distribution of genotypes in the parents is
reproduced in the offspring. The included numerical example illus-
trates how a parental distribution that follows the Hardy–
Weinberg form can be maintained with nonrandom mating.

A Stable Population and Hardy–Weinberg Frequencies

Phenotypic identities are ignored so that the focus is on the 4 genes
and 10 genotypes. There are 100 possible mating combinations,
and the proportions are set out in a symmetric matrix with ele-
ments ci,j, i, j= 1, 2, : : : , 10.

The parental distribution is reproduced if the mating matrix
obeys the following constraints:

c55 ¼ 4c12; c66 ¼ 4c13; c77 ¼ 4c14; c88 ¼ 4c23; c99 ¼ 4c24; c10,10 ¼ 4c34;

c56 ¼ 2c
18
; c57 ¼ 2c19; c58 ¼ 2c26; c59 ¼ 2c27; c67 ¼ 2c1,10; c68 ¼ 2c35;

c6,10 ¼ 2c37; c79 ¼ 2c45; c7,10 ¼ 2c46; c89 ¼ 2c2,10; c8,10 ¼ 2c39; c9,10 ¼ 2c48;

c5,10 ¼ c69 ¼ c78.

These restraints can be verified by calculating the progeny of each
genotype and showing that it is the same as the proportion in the
parents. For example, for genotype AB, the proportion in progeny
is calculated from

2c12 þ c15 þ c18 þ c19 þ c25 þ c26 þ c27þ
þðc55 þ c56 þ c57 þ c58 þ c59 þ c68 þ c69 þ c78 þ c79Þ=2.

Referring to the constraints and taking account of the symmetry of
the mating matrix, this expression is equal to

1
2 c55 þ c51 þ 1

2 c56 þ 1
2 c57 þ c52 þ 1

2 c58 þ 1
2 c59þþ 1

2 c55 þ 1
2 c56 þ 1

2 c57 þ 1
2 c58 þ 1

2 c59 þ c53 þ 1
2 c5,10 þ 1

2 c5,10 þ c54.

Collating the terms gives the sum of the elements in the 5th row of
the mating matrix and so the frequency of genotype AB in the
parents.

Table 1 is an example that illustrates how Hardy–Weinberg
frequencies can be maintained with nonrandom mating. The gene
frequencies are 6/32, 7/32, 9/32 and 10/32, and the genotype
frequencies 36/1024, 49/1024, 81/1024, 100/1024, 84/1024, 108/
1024, 120/1024, 126/1024, 140/1024 and 180/1024. Each element
in the table is to be divided by 8192 to convert to a fraction.

Estimating Gene Frequencies

The frequencies of genes HA1, HA2, HB and HO are fp1,p2,p3,p4g
and are defined in terms of the parental frequencies as

p1 ¼ ð2G1 þ G5 þ G6 þ G7Þ=2,

p2 ¼ ð2G2 þ G5 þ G8 þ G9Þ=2,

p3 ¼ ð2G3 þ G6 þ G8 þ G10Þ=2,

p4 ¼ ð2G4 þ G7 þ G9 þ G10Þ=2.

In Crew’s (1947, p. 65) notation, the correspondence between gen-
otypes and phenotypes is as follows: A1 ˜ (HA1HA1, HA1HA2 &
HA1HO); A2 ˜ (HA2HA2 & HA2HO); B ˜ (HBHB & HBHO); O ˜
(HOHO); A1B ˜ (HA1HB); A2B ˜ (HA2HB). The procedure for esti-
mating gene frequencies, from a sample, used by Hartl & Clark
(1989, pp. 40–42) can be adapted for four alleles. Wherever neces-
sary, the Hardy–Weinberg frequencies can be used to split the phe-
notype counts according to the following correspondences:

Table 1 Nonrandom mating proportions which produce the same Hardy–
Weinberg frequencies in offspring as in parents (multiplied by 8192)

AA BB CC DD AB AC AD BC BD CD Total

AA 16 64 60 112 0 0 4 4 8 20 288

BB 64 1 99 136 24 12 16 0 0 40 392

CC 60 99 9 216 88 104 28 0 44 0 648

DD 112 136 216 68 32 36 80 48 60 12 800

AB 0 24 88 32 256 8 16 24 32 192 672

AC 0 12 104 36 8 240 40 176 192 56 864

AD 4 16 28 80 16 40 448 192 64 72 960

BC 4 0 0 48 24 176 192 396 80 88 1008

BD 8 0 44 60 32 192 64 80 544 96 1120

CD 20 40 0 12 192 56 72 88 96 864 1440

Genotypes are taken in order, AA, BB, CC, DD, AB, AC, AD, BC, BD, CD.
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A1 ~p
2
1 : 2p1p2 : 2p1p4; A2 ~p

2
2 : 2p2p4; B~p

2
3 : 2p3p4.

Penrose (1973, p. 132) gives the following phenotypic counts per
thousand:

A1 ~349; A2 ~97; B~85; O~436; A1B~25; A2B~8.

The following gene frequencies are compatible with the phenotypic
counts:

HA1 ~0.2088; HA2 ~0.0694; HB ~0.0609; HO ~0.6609

The method of Hartl and Clark (1989), like other methods,
assumes that zygotes are formed by the union of independently
drawn gametes.

Discussion

In the following quotation, Kingman (1980, p. 3) outlines an
approach to population genetics which is similar to that given here
in separating mating from zygote production and in contrast to the
approach of Penrose (1934), which is described afterwards.

It is convenient to have a definite model for the reproductive process in a
monoecious randomly mating population. Suppose we have a popula-
tion whose size N is held constant (for example, by constraints on living
space or food supply). Direct attention to a particular locus. One can
then imagine that each individual produces a very large number of cells
called gametes, each of which contains only one gene at the locus. Half
the gametes inherit copies of one of the individual’s genes, the other half
copies of the other. All the gametes produced by all the individuals are
thrown into a pool, and an individual of the next generation is produced
by drawing two gametes at random from the pool and combining them.
The N individuals of the next generation are obtained by 2N indepen-
dent drawings from the pool.

Kingman’s model can be adapted for the present purpose by sup-
posingN to be a very large number to eliminate random changes to
the composition of the population.

Penrose (1934) is the edited version of an essay written for a
competition. At the time when he wrote it, the Hardy–Weinberg
distribution was widely known but not everyone realized that ran-
dom mating was an assumption, not an inference from Hardy–
Weinberg proportions.

Penrose applies the phrase ‘the principle of random mating’, in
respect of an autosomal locus with two alleles, to the Hardy–
Weinberg distribution. He does not attribute it to any individual
thus giving the impression that it was widely known at the time.
He writes: ‘the principle of randommating is one of the most valu-
able concepts in human genetics.’ (p. 25). The details of his defi-
nition are important:

There are three genotypes formed by a pair of allelomorphic genes, D andR.
If these genes are distributed at random in the general population, the three
types will have the following frequencies, where x is the frequency of the
gene D and (1 – x) is the frequency of the gene R.

He then gives the familiar distribution of genotypes
fx2,2xð1� xÞ,ð1� xÞ2g. This is followed by the remark: ‘If there
is random mating in the population the frequencies of these
types remain constant.’ (p. 26).

The important point to note in the above is the notion that ran-
dom mating and the Hardy–Weinberg distribution are somehow
equivalent. This notion has appeared countless times in the liter-
ature and continues to appear (Cassidy, 2021, p. 72). This article

demonstrates, yet again, the flaw in the notion. The assumption
embodied in fx2,2xð1� xÞ,ð1� xÞ2g is that the zygote is formed
by the union of two gametes drawn independently from the gene
pool. This is possible by one of the uncountable number of mat-
ing combinations, including random mating of parents, set
out above.

Penrose (1934, p. 26) mentions the ABO system:

Now, in a homogeneous population, we should expect to find the gene
responsible for agglutinogen A distributed according to the principle of
random mating: the same should apply to B. If the two dominant genes
are distributed independently in the population, we can infer a certain theo-
retical relation between the sizes of the classes of people having different
blood types. If the two dominant genes are allelomorphic, as suggested
by Bernstein, we get another theoretical distribution. Snyder has shown
that, in practically every instance where a large number of individuals
has been examined, the proportions of the four groups are in agreement
with the expectation calculated on Bernstein’s hypothesis. This result
not only supports very strongly the theory that the two agglutinogens
are determined by allelomorphic genes, but also fortifies our belief in
the truth of the principle of random mating as applied to man. The sub-
varieties of the agglutinogen A have also been shown to be due to allelo-
morphic factors.

Penrose (1934, pp. 45–47) used data on ABO that he had collected
to see whether they supported Bernstein’s theory that the genes
were allelomorphic and concluded that they did. Penrose and
Penrose (1933) recorded the ABO type of 1000 patients of the
Royal Eastern Counties Institution for Mental Defectives. As noted
above, Crow (1993) reviews Felix Bernstein’s important
contributions.

Buchanan and Higley (1921) show the uncertainty about the
genetics of ABO that existed then. Some of it was about whether
an existing pathology affected agglutination. This is a different
question from the notion that antigens may sometimes play a bio-
logical role (Garratty, 1996). There have beenmany studies looking
at the association between ABO type and fitness.

Geserick and Wirth (2012) sketch the advances that enabled
more accurate forensic testing, from Landsteiner’s (1901) discov-
ery of the ABO system to serum proteins, the HLA system, eryth-
rocyte enzymes and DNA markers, a progression from phenotype
to genotype level.

Ostrowski et al. (2020) is a tribute to Ludwik Hirszfeld
(1884–1954), one of the pioneers of ABO research. Ludwik
and his wife Hanka published their study on ABO distribution
under Ludwik’s German name (Hirschfeld & Hirschfeld, 1919).
It contains many fascinating details, including highlights of
Ludwik’s collaboration with von Dungern (von Dungern &
Hirschfeld, 1910).

Ludwik and Hanka give the theory of ‘Landsteiner’s Law of
Iso-agglutination’ (Hirschfeld & Hirschfeld, 1919, p. 676). They
write about ‘race’ problems, where they mean biochemical race,
which would now be referred to as allele. They give a long table
of ABO phenotypic proportions observed in various races, in
which the term is used conventionally. Much of these data they
collected themselves among troops involved in World War II.
They attempt some segregation analysis that treats A and B as
unlinked loci, a few years before Felix Bernstein proposed his
single locus theory. Because of the trend in phenotypic frequen-
cies from East to West, they speculate that India was a ‘cradle of
one part of humanity’ (p. 679). Having accepted ‘Mendel’s Law’,
they suggest the possible forensic use of ABO (p. 676).
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