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On the Local Lifting Properties of
Operator Spaces

Z. Dong

Abstract. In this paper, we mainly study operator spaces which have the locally lifting property (LLP).

The dual of any ternary ring of operators is shown to satisfy the strongly local reflexivity, and this is

used to prove that strongly local reflexivity holds also for operator spaces which have the LLP. Several

homological characterizations of the LLP and weak expectation property are given. We also prove that

for any operator space V , V∗∗ has the LLP if and only if V has the LLP and V∗ is exact.

1 Introduction

If one wishes to prove that an operator space or a C∗-algebra has an approximate
property, one begins by proving that an appropriate model (such as the second dual)

has the corresponding exact property. One must then relate the exact property in the

model to the approximate property in the original space. In the theory of operator
spaces, this is often accomplished by using the principle of local reflexivity. The local

reflexivity of operator spaces was introduced in [4], and was further studied in [5–8,

14]. All exact operator spaces are locally reflexive [11, Corollary 4.8]. In particular, all
exact C∗-algebras are locally reflexive (also see [16]). On the other hand, it was shown

in [4] that some C∗-algebras are not locally reflexive. In light of the fact that C∗-
algebras need not be locally reflexive, it was thought the same would be true for their

dual operator spaces. It therefore came as quite a surprise to find in [10] that all such

dual spaces, as well as von Neumann algebraic preduals, are locally reflexive. This
is one of the most surprising results in the theory of operator spaces. What is even

more surprising is that these operator spaces are locally reflexive in the strong sense

that is called strong local reflexivity, i.e., we can assume that the approximations are
close in the sense of the Pisier–Banach–Mazur distance for operator spaces. Ternary

rings of operators (TROs) form a very interesting class of operator spaces. In many
cases, TROs come out more naturally than C∗-algebras in the theory of operator

spaces. It is natural to consider the above remarkable result for the case of TROs.

In Section 2, we generalize the above result to TROs and show that if V is a TRO,
then V ∗ is strongly locally reflexive. This is used to prove that if V is an operator

space which has the LLP, then V is strongly locally reflexive. In Section 3, several

homological characterizations of the LLP and weak expectation property (WEP) are
given. These results are very similar to the homological characterization of nuclearity

Received by the editors January 4, 2007.
The author’s research was partially supported by the National Natural Science Foundation of China

(No.10871174)
AMS subject classification: 46L07.
Keywords: operator space, locally lifting property, strongly locally reflexive.
c©Canadian Mathematical Society 2009.

1262

https://doi.org/10.4153/CJM-2009-059-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-059-7


On the Locally Lifting Properties of Operator Spaces 1263

(see [9, Theorem 14.6.1]). This part is closely related to Kirchberg’s Conjecture about
QWEP: every separable C∗-algebra is a quotient of a C∗-algebra with the WEP, since

Kirchberg’s Conjecture about QWEP is equivalent to LLP ⇒ WEP. In the last section,
we discuss the relationship between the LLP of V,V ∗∗. We show that V ∗∗ has the

LLP if and only if V has the LLP and V ∗ is exact. The exactness of V ∗ is essential in

this result.
The theory of operator spaces is a recently arising area in modern analysis, which

is a natural non-commutative quantization of Banach space theory. For the conve-

nience of the readers, we recall some of basic notations and terminology in operator
spaces, the details can be found in [9, 19]. Given a Hilbert space H, we let B(H)

denote the space of all bounded linear operators on H. For each natural number
n ∈ N, there is a canonical norm ‖ · ‖n on the n × n matrix space Mn(B(H)) given

by identifying Mn(B(H)) with B(Hn). We call this family of norms {‖ · ‖n} an op-

erator space matrix norm on B(H). An operator space V is a norm closed subspace
of some B(H) equipped with the distinguished operator space matrix norm inher-

ited from B(H). An abstract matrix norm characterization of operator spaces was

given in [20]. The morphisms in the category of operator spaces are the completely
bounded linear maps. Given operator spaces V and W , a linear map ϕ : V → W

is completely bounded if the corresponding linear mappings ϕn : Mn(V ) → Mn(W )
defined by ϕn([xi j]) = [ϕ(xi j)] are uniformly bounded, i.e.,

‖ϕ‖cb = sup{‖ϕn‖ : n ∈ N} <∞.

A map ϕ is completely contractive (respectively, completely isometric, a complete
quotient) if ‖ϕ‖cb ≤ 1 (respectively, for each n ∈ N, ϕn is an isometry, a quotient

map). We denote by CB(V,W ) the space of all completely bounded maps from V into

W . It is known that CB(V,W ) is an operator space with the operator space matrix
norm given by identifying Mn(CB(V,W )) = CB(V,Mn(W )). In particular, if V is an

operator space, then its dual space V ∗ is an operator space with operator space matrix
norm given by the identification Mn(V ∗) = CB(V,Mn). Given operator spaces V

and W , and a completely bounded mapping ϕ : V → W , the corresponding adjoint

mapping ϕ∗ : W ∗ → V ∗ is completely bounded with ‖ϕ∗‖cb = ‖ϕ‖cb. Furthermore,
ϕ : V → W is a completely isometric injection if and only ifϕ∗ is a complete quotient

mapping. On the other hand, if ϕ : V → W is a surjection, then ϕ is a complete

quotient mapping if and only if ϕ∗ is a completely isometric injection. We use the
notations

V ⊗̌W, V ⊗̂W, and V
h
⊗W

for the injective, projective and Haagerup operator space tensor products (see [1,3]).

The operator space tensor products share many of the properties of the Banach space

analogues. For example, we have the natural complete isometries

(V ⊗̂W )∗ = CB(V,W ∗), (V ⊗̂W )∗ = CB(W,V ∗)

and the completely isometric injection V ∗⊗̌W →֒ CB(V,W ). The tensor product ⊗̌
is injective in the sense that if ϕ : W → Y is a completely isometric injection, then so

is

idV ⊗ϕ : V ⊗̌W → V ⊗̌Y.
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On the other hand, the tensor product ⊗̂ is projective in the sense that if ϕ : W → Y

is a complete quotient mapping, then so is

idV ⊗ϕ : V ⊗̂W → V ⊗̂Y.

The Haagerup tensor product
h
⊗ satisfies the surprising property that it is both injec-

tive and projective.

A TRO between Hilbert spaces K and H is a norm closed subspace V of B(K,H),
which is closed under the triple product

(x, y, z) ∈ V ×V ×V → xy∗z ∈ V.

A TRO V ⊆ B(K,H) is called a W ∗-TRO if it is w∗-closed (equivalently, weak

operator closed, or strong operator closed) in B(K,H). TROs were first introduced
by Hestenes [13], and have been intensively studied by Harris [12], Zettl [22], Effros–

Ozawa–Ruan [11] and Kaur–Ruan[15]. In general, a TRO can be identified with the

off-diagonal corner of its linking C∗-algebra

A(V ) =

[

C(V ) V

V ∗ D(V )

]

,

where C(V ) and D(V ) are C∗-algebras generated by VV ∗ and V ∗V . If we let M(C)
and M(D) denote the multiplier C∗-algebras of C(V ) and D(V ), respectively, then

we may identify V with the off-diagonal corner of the unital C∗-algebra

R(V ) =

[

M(C) V

V ∗ M(D)

]

.

If V is a W ∗-TRO, then it is known from [15, Proposition 2.3] that R(V ) is a von

Neumann algebra. In this case, we call R(V ) the linking von Neumann algebra of

V . Without loss of generality, we may always assume that a TRO is non-degenerately
represented on Hilbert spaces K and H, i.e., VK is norm dense in H and V ∗H is

norm dense in K. More details about TROs may be found in [11, 15].

2 Strong Local Reflexivity

Given operator spaces V and W , we say that a completely bounded mapping

ϕ : V ∗ → W satisfies the weak∗ approximation property (W∗AP) if there exists a

net of finite rank weak∗-continuous mappings ϕα : V ∗ → W with ‖ϕα‖cb ≤ ‖ϕ‖cb

that converges to ϕ in the point-norm topology.

Lemma 2.1 Suppose that V,W are operator spaces and every complete contraction

from V ∗ to W satisfies the W∗AP. If G ⊆ V is completely complemented in V , then

every complete contraction from G∗ to W satisfies the W∗AP.
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Proof Let P : V → G be a completely contractive projection, and ι : G →֒ V the
completely isometric inclusion. We have P ◦ ι = idG and ι∗ ◦ P∗

= idG∗ . For any

complete contraction ϕ : G∗ → W , ϕ◦ ι∗ is a complete contraction from V ∗ to W . It
follows from the assumption that there exists a net of finite rank weak∗-continuous

complete contractions ϕα : V ∗ → W which converges to ϕ ◦ ι∗ in the point-norm

topology. Set ψα = ϕα ◦ P∗. It is apparent that ψα is a net of finite rank weak∗-
continuous complete contractions from G∗ to W . For any g∗ ∈ G∗, we have

ψα(g∗) = ϕα(P∗(g∗))
‖·‖
−→ ϕ ◦ ι∗(P∗(g∗)) = ϕ(g∗).

This shows that {ψα} converges to ϕ in the point-norm topology and ϕ satisfies the
W∗AP.

Theorem 2.2 Given non-degenerately TROs V ⊆ B(K,H) and W ⊆ B(K′,H ′),

then every complete contraction ϕ : V ∗ → W satisfies the W∗AP.

Proof The corresponding linking C∗-algebras

A(V ) =

[

C(V ) V

V ∗ D(V )

]

, A(W ) =

[

C(W ) W

W ∗ D(W )

]

.

Since V is non-degenerately represented on Hilbert spaces K and H, it is easy to see
that the induced C∗-algebras C(V ) and D(V ) are non-degenerately represented on

H and K respectively. Thus the identity operators IH and IK are contained in the

multiplier C∗-algebras M(C(V )) and M(D(V )) of C(V ) and D(V ) respectively. If we
let

e =

[

IH 0

0 0

]

and e⊥ =

[

0 0

0 IK

]

,

then we may write V = eA(V )e⊥. Similarly, if we let

f =

[

IH ′ 0

0 0

]

and f ⊥ =

[

0 0

0 IK ′

]

,

then we may write W = f A(W ) f ⊥. Define P : A(V ) → V = eA(V )e⊥ by

P(a) = eae⊥, for any a ∈ A(V ). Certainly P is a completely contractive projection
from A(V ) onto V . This means that V is completely complemented in A(V ). The

Junge Approximation Theorem(see [9, Theorem 15.1.1]) shows that every complete
contraction from A(V )∗ into A(W ) satisfies the W∗AP. It follows from Lemma 2.1

that every complete contraction ϕ : V ∗ → W →֒ A(W ) can be approximated by a

net of finite rank weak∗-continuous complete contractions ϕα : V ∗ → (W ) in the
point-norm topology. Set ψα(v∗) = fϕα(v∗) f ⊥, for all v∗ ∈ V ∗. Thus {ψα} is a

net of finite rank weak∗-continuous complete contractions from V ∗ into W . Since

ϕα(v∗)
‖·‖
−→ ϕ(v∗) for any v∗ ∈ V ∗,

ψα(v∗) = fϕα(v∗) f ⊥
‖·‖
−→ fϕ(v∗) f ⊥ = ϕ(v∗).

This implies that any complete contraction ϕ : V ∗ → W satisfies the W∗AP.
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Definition 2.3 Given operator spaces V and W , we say that a completely bounded
mapping ϕ : V ∗ → W ∗∗ satisfies the weak∗ reflexive property (or simply, W∗RP) if

there exists a net finite rank weak∗-continuous mapping ϕα : V ∗ → W with
‖ϕα‖cb ≤ ‖ϕ‖cb that converges to ϕ in the point-weak∗ topology.

It is obvious that W∗RP implies W∗AP.

Lemma 2.4 Suppose that V,W are operator spaces and every complete contraction

from V ∗ into W ∗∗ satisfies the W∗RP. If Y is completely complemented in W , then every

complete contraction from V ∗ into Y ∗∗ also satisfies the W∗RP.

Proof Let P : W → Y be a completely contractive projection and ι : Y →֒ W the

completely isometric inclusion. We have P ◦ ι = idY and ι∗ ◦ P∗
= idY∗ . For

any complete contraction ϕ : V ∗ → Y ∗∗, it follows from the assumption that the

complete contraction ι∗∗ ◦ ϕ : V ∗ → W ∗∗ can be approximated by a net finite rank
weak∗-continuous complete contractions ϕα : V ∗ → W in the point-weak∗ topol-

ogy. Define ψα : V ∗ → Y by ψα(v∗) = P ◦ ϕα(v∗) for v∗ ∈ V ∗. Certainly {ψα} is a

net of finite rank weak∗-continuous complete contractions from V ∗ into Y . For any
v∗ ∈ V ∗ and y∗ ∈ Y ∗, we have

〈ψα(v∗), y∗〉 = 〈P ◦ ϕα(v∗), y∗〉

= 〈ϕα(v∗), P∗(y∗)〉

→ 〈ι∗∗ ◦ ϕ(v∗), P∗(y∗)〉

= 〈ϕ(v∗), ι∗ ◦ P∗(y∗)〉

= 〈ϕ(v∗), y∗〉.

This shows that {ψα} converges to ϕ in the point-weak∗ topology and ϕ satisfies the
W∗RP.

The exposition and structure in the rest of this section follows closely those in [10].

The relationship between the completely nuclear, completely integral, and exactly
integral mappings introduced in [6, 7, 14] play a fundamental role in this section.

More details about them can be found in [10].

Proposition 2.5 If W is a TRO and V is an operator space, then we have the isometric

identification Iex(V,W ) = I(V,W ).

Proof Certainly we have ιex(ϕ) ≤ ι(ϕ), so it suffices to show ι(ϕ) ≤ ιex(ϕ). Let us
assume that ιex(ϕ) ≤ 1. Then it follows from the definition of ιex that we can find a

factorization

B(H)
M(ω) // B(K)∗

s

##GG
GG

GG
GG

G

V

r

OO

φ // W
�

� ιW // W ∗∗
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where r, s are complete contractions and ω ∈ B(H ⊗ K)∗ is of norm one. Since
W is a TRO, W is completely complemented in its linking C∗-algebra A(W ). The

Junge Approximation Theorem (see [10, Theorem 15.1.1]) shows that every complete
contraction from B(K)∗ into A(W )∗∗ satisfies the W∗RP. From Lemma 2.4, we may

approximate s in the point-weak∗ topology by a net of finite rank weak∗-continuous

complete contractions sα : B(K)∗ → W . If we fix α and let ϕα = sα ◦ M(ω) ◦ r, we
have the commutative diagram

B(H)
M(ω) // B(K)∗

sα

��

ιW◦sα

##GG
GG

GG
GG

G

V

r

OO

ϕα // W
�

� ιW // W ∗∗

where ιW ◦ sα : B(K)∗ → W ∗∗ is a weak∗-continuous complete contraction. It fol-

lows from [10, Corollary 4.6] that ι(ϕα) ≤ 1. Since each of the mappings sα and ϕ
has its range in W , the net {ϕα} converges to ϕ in the point-weak topology.

Now given any finite dimensional subspace L ⊆ V , it follows that ν(ϕα|L) =

ι(ϕα|L) ≤ 1 and the net {ϕα|L} converges to ϕL in the point-weak topology. From

[9, Lemma 12.2.7], ν(ϕ|L) ≤ 1. Thus ι(ϕ) ≤ 1 follows by the definition of ι, so

ι(ϕ) = ιex(ϕ).

Theorem 2.6 For any TRO W , W ∗ is a locally reflexive operator space.

Proof From [10, Proposition 4.4], it suffices to show that I(W ∗, F) = N(W ∗, F)

for any finite dimensional operator space F. Given ϕ : W ∗ → F, it is trivial from
the definition that ι(ϕ) ≤ ν(ϕ). On the other hand, if we let S(ϕ) = ϕ∗, then the

composition of the following mappings

I(W ∗, F)
S
−→ I

ex(F∗,W ∗∗) ∼= I(F∗,W ∗∗) ∼= N(F∗,W ∗∗)
S−1

−−→ N(W ∗, F)

is a contraction (where S is contractive by [10, Lemma 5.1]. The first identification

is proved in Proposition 2.5 and W ∗∗ is a W∗-TRO, the second is trivial, and by
[10, Lemma 3.2] S−1 is isometric between N(F∗,W ∗∗) and N(W ∗, F)). This means

that ν(ϕ) ≤ ι(ϕ). Thus, ν(ϕ) = ι(ϕ) and W ∗ is locally reflexive.

Corollary 2.7 For any W∗-TRO W , the predual W∗ is locally reflexive.

Theorem 2.8 If W is a TRO, then W ∗ is strongly locally reflexive.

Proof Since W ∗∗ is also a TRO, it follows from Theorem 2.2 that any completely
isometric injection from W ∗∗∗ into B(H) satisfies the W∗AP. Since W ∗ is locally

reflexive from Theorem 2.6, the strongly local reflexivity of W ∗ follows from [10,
Theorem 6.6].

Corollary 2.9 If W is a W∗-TRO, then the predual W∗ is strongly locally reflexive.
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Proof From Theorem 2.2, any complete contraction from W ∗
= (W∗)∗∗ into B(H)

has the W∗AP. Since W∗ is locally reflexive from Corollary 2.7, the result follows from

[10, Theorem 6.6].

Corollary 2.10 Suppose that V is an injective operator space, then V ∗ is locally reflex-

ive, and, in fact, it is strongly locally reflexive.

Proof If V is an injective operator space, it follows from [21, Theorem 4.5] that V

has the form eAe⊥, where e is a projection in an injective C∗-algebra A. In particular,

V is a TRO. From Theorem 2.8, V ∗ is strongly locally reflexive, certainly it is locally
reflexive.

Corollary 2.11 Suppose that V is a dual injective operator space, then the predual V∗

is strongly locally reflexive.

Proof It follows from [11, Theorem 1.3] and Corollary 2.9 directly.

In [17], Kye and Ruan showed that the LLP implies the local reflexivity. The fol-
lowing result shows that the LLP implies the strong local reflexivity.

Theorem 2.12 Suppose that V is an operator space which has the LLP, then V is

strongly locally reflexive.

Proof From [17, Theorem 5.5], V ∗ is injective. Corollary 2.11 implies that V is

strongly locally reflexive.

In general, even nuclear C∗-algebras do not satisfy the strong local reflexivity. The

following corollary shows that V ∗ satisfies the strong local reflexivity for any nuclear

operator space V .

Corollary 2.13 Suppose that V is a nuclear operator space, then V ∗ is strongly locally

reflexive.

Proof It follows from [11, Theorem 4.5] that V ∗ has the LLP. Theorem 2.12 implies

that V ∗ satisfies the strongly local reflexivity.

3 Characterizations of the LLP and WEP

We say that a diagram of operator spaces and complete contractions

0 // X
ϕ // Y

ψ // Z // 0

is 1-exact if ϕ is a complete isometry, ψ is a complete quotient mapping, and kerψ =

Imϕ.

The following result was discussed by Pisier [18], who attributed the result to

Kirchberg and Valliant.
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Lemma 3.1 An operator space V is nuclear if and only if it has the following property.

For any 1-exact sequence of operator spaces

0 // X
�

� ϕ // Y
ψ // Z // 0,

it follows that

0 // X⊗̌V
ϕ⊗id // Y ⊗̌V

ψ⊗id // Z⊗̌V // 0

is 1-exact.

We say an operator space V ⊆ B(H) has the weak expectation property (or sim-

ply, WEP) if there exists a completely contractive projection P from B(H) onto V ∗∗

such that P(v) = v for any v ∈ V . In the following, we will give some similar charac-
terizations about the LLP and WEP.

Lemma 3.2 Suppose that X,Y,Z are operator spaces, X ⊆ Y and π : Y → Y/X is the

canonical complete quotient mapping. If for any finite dimensional operator subspace

F of Z, the mapping π ⊗ idF : Y ⊗̌F → Y/X⊗̌F is a complete quotient mapping, then

ker(π ⊗ idZ : Y ⊗̌Z → Y/X⊗̌Z) = X⊗̌Z.

Proof Suppose that u ∈ Y ⊗̌Z satisfies (π⊗̌ idZ)(u) = 0. Then given ǫ > 0, we

may choose an element u0 =

∑n
i=1 hi ⊗ vi ∈ Y ⊗∨ Z such that ‖u − u0‖ < ǫ. It

follows that u0 ∈ Y ⊗̌F, where F is the finite dimensional subspace of Z spanned by

v1, . . . , vn. Since the obvious mapping Y/X⊗̌F → Y/X⊗̌Z is isometric, we have

‖(π ⊗ idF)(u0)‖ = ‖(π ⊗ idZ)(u0)‖

≤ ‖(π ⊗ idZ)(u0) − (π ⊗ idZ)(u)‖ + ‖(π ⊗ idZ)(u)‖

= ‖(π ⊗ idZ)(u0 − u)‖ + 0 ≤ ‖u0 − u‖ < ǫ.

From the hypothesis, π⊗idF : Y ⊗̌F → Y/X⊗̌F is a quotient mapping, and thus there
is an element u1 ∈ Y ⊗̌F with ‖u1‖ < ǫ and (π ⊗ idF)(u1) = (π ⊗ idF)(u0). We have

‖u−(u0−u1)‖ ≤ ‖u−u0‖+‖u1‖ < 2ǫ, where u0−u1 ∈ kerπ⊗ idF = X⊗̌F ⊆ X⊗̌Z

and thus dist(u,X⊗̌Z) < 2ǫ. Since ǫ > 0 is arbitrary, it follows that u ∈ X⊗̌Z. The

converse inclusion is obvious.

Theorem 3.3 For any operator space, the following are equivalent.

(i) V has the LLP;

(ii) for any finite dimensional operator space F and any 1-exact sequence of operator

spaces

(3.1) 0 // X
�

� ι // Y
π // V // 0

it follows that

0 // X⊗̌F
ι⊗idF // Y ⊗̌F

π⊗idF // V ⊗̌F // 0

is 1-exact;
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(iii) for any operator space Z and 1-exact sequence(3.1), it follows that

0 → X⊗̌Z
ι⊗idZ−−−→ Y ⊗̌Z

π⊗idZ−−−→ V ⊗̌Z → 0

is 1-exact.

Proof (i) ⇒ (ii). Since F is a finite dimensional operator space, it is easy to show

that kerπ ⊗ idF = X⊗̌F. From the injectivity of ⊗̌, ι ⊗ idF is a complete isometry.
So it suffices to show that π ⊗ idF is a complete quotient mapping. For any ϕ ∈
CB(Tn(F∗),V ) with ‖ϕ‖cb < 1 and any ǫ > 0 with (1 + ǫ)‖ϕ‖cb < 1, since V has the

LLP there exists a completely bounded linear mapping ϕ̃ : ϕ(Tn(F∗)) → Y such that
‖ϕ̃‖cb < 1 + ǫ and π ◦ ϕ̃ = idV |ϕ(Tn(F∗)), i.e., the following diagram commutes:

Y

π

��

Tn(F∗)
ϕ // ϕ(Tn(F∗))

�

� //

ϕ̃

55kkkkkkkkkkkkkkkkkk

V
idV // V = Y/X

Set ψ = ϕ̃ ◦ ϕ : Tn(F∗) → Y . We have π ◦ ψ = π ◦ ϕ̃ ◦ ϕ = ϕ and

‖ψ‖cb ≤ ‖ϕ̃‖cb · ‖ϕ‖cb < (1 + ǫ)‖ϕ‖cb < 1.

Thus the top row of the following commutative diagram is a quotient mapping:

CB(Tn(F∗),Y ) // CB(Tn(F∗),V )

Mn(F)⊗̌Y // Mn(F)⊗̌V

Mn(Y ⊗̌F)
(π⊗idF)n // Mn(V ⊗̌F)

This implies that the bottom row (π ⊗ idF)n is also a quotient mapping and thus
π ⊗ idF is a complete quotient mapping.

(ii) ⇒ (iii). It suffices to prove that the kernel π ⊗ idZ is X⊗̌Z, and π ⊗ idZ is a

complete quotient mapping. From the hypothesis of (ii), the mapping

π ⊗ idF : Y ⊗̌F → V ⊗̌F = Y/X⊗̌F

is a complete quotient mapping for any finite dimensional operator space F. It follows
from Lemma 3.2 that ker(π ⊗ idZ : Y ⊗̌Z → V ⊗̌Z) = X⊗̌Z.

To show the quotient condition, it suffices to show that π ⊗ idZ maps (Y ⊗∨

Z)‖ · ‖<1 onto a dense subset of (V ⊗∨ Z)‖ · ‖<1. Given an element ũ in the latter set,
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there exists a finite dimensional subspace F ⊆ Z with ũ ∈ V ⊗∨ F ⊆ V ⊗∨ Z. From
(ii) there exists an element u ∈ Y ⊗̌F with ‖u‖ < 1 and (π ⊗ idF)(u) = ũ, and since

we may regard u as an element of Y ⊗̌Z, we have (π⊗ idZ)(u) = ũ. Thus we have the
desired result and π⊗idZ is a quotient mapping. The following commutative diagram

implies that π ⊗ idZ is always a complete quotient mapping, where the bottom row

is a quotient mapping by the above proof:

Mn(Y ⊗̌Z) // Mn(V ⊗̌Z)

Y ⊗̌Mn(Z) // V ⊗̌Mn(Z)

(iii) ⇒ (ii). It is obvious.

(ii) ⇒ (i). It is known from [2, Corollary 3.2] that every operator space V is a

complete quotient space of some TI space. Let π : TI → V denote the complete
quotient mapping from TI onto V and W = kerπ. Then we have a 1-exact sequence

of operator spaces

0 // W
�

� ι // TI
π // V // 0.

For any finite dimensional operator space E, it follows from (ii) that the top sequence

of the following commutative diagram is 1-exact,

0 // W ⊗̌E∗ ι⊗idE∗ // TI⊗̌E∗ π⊗idE∗ // V ⊗̌E∗ // 0

0 // CB(E,W ) // CB(E,TI) // CB(E,V ) // 0,

and this implies that the bottom sequence is also 1-exact. From [17, Theorem 3.2],

V has the LLP.

In the following result, we use the projective tensor product to characterize the

LLP. This result can be seen as the “dual” result of Lemma 3.1.

Theorem 3.4 Suppose that V is an operator space, the following are equivalent.

(i) V has the LLP;

(ii) for any 1-exact sequence of operator spaces

0 // X
�

� ι // Y
π // Z // 0

it follows that

0 // X⊗̂V
ι⊗idV // Y ⊗̂V

π⊗idV // Z⊗̂V // 0

is 1-exact;
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(iii) for any 1-exact sequence of finite dimensional operator spaces

0 // E
�

� ι // F
π // G // 0

it follows that

0 // E⊗̂V
ι⊗idV // F⊗̂V

π⊗idV // G⊗̂V // 0

is 1-exact.

Proof (i) ⇒ (ii). Suppose that V has the LLP, it follows from [17, Theorem 5.5] that

V ∗ is injective, and [9, Lemma 4.1.7] shows that the bottom restrictive mapping is a
complete quotient mapping

(Y ⊗̂V )∗
(ι⊗idV )∗ // (X⊗̂V )∗

CB(Y,V ∗) // CB(X,V ∗)

thus (ι ⊗ idV )∗ is also a complete quotient mapping and ι ⊗ idV is a completely

isometric injection. It follows from [9, Proposition 7.1.7] that ker(π ⊗ idV ) is equal
to the closure of X ⊗ V in Y ⊗̂V . Since ι ⊗ idV is a complete isometry, we have

ker(π ⊗ idV ) = X⊗̂V . The projectivity of ⊗̂ implies that π ⊗ idV is a complete
quotient mapping. Thus the sequence

0 // X⊗̂V
ι⊗idV // Y ⊗̂V

π⊗idV // Z⊗̂V // 0

(ii) ⇒ (iii). It is obvious.

(iii) ⇒ (i). For any 1-exact sequence of finite dimensional operator spaces

0 // E
�

� ι // F
π // F/E // 0,

it follows from the hypothesis of (iii) that ι ⊗ idV : E⊗̂V → F⊗̂V is completely iso-

metric, and thus (ι⊗idV )∗ is a complete quotient mapping. The following commuta-
tive diagram implies that the bottom restrictive mapping is also a complete quotient

(F⊗̂V )∗
(ι⊗idV )∗ // (E⊗̂V )∗

CB(F,V ∗) // CB(E,V ∗)

This means that V ∗ is finitely injective. From [17, Corollary 4.4, Theorem 5.5], V ∗ is

injective and V has the LLP.
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Proposition 3.5 For any operator space V and 1-exact sequence of operator spaces

0 // X
�

� ι // Y
π // Z // 0

it follows that

0 //
X

h
⊗V

ι⊗idV //
Y

h
⊗V

π⊗idV //
Z

h
⊗V

// 0

is 1-exact.

Proof We may suppose that X is an operator subspace of Y and Z is the quotient

Y/X. Since the Haagerup tensor product is both injective and projective, ι⊗ idV is a

complete isometry and π ⊗ idV is a complete quotient mapping. It suffices to show

kerπ ⊗ idV = X
h
⊗ V . Suppose that u ∈ Y

h
⊗ V satisfies (π ⊗ idV )(u) = 0. Then

given ǫ > 0, we may choose an element u0 =

∑n
i=1 yi ⊗ vi ∈ Y ⊗h V such that

‖u − u0‖ < ǫ. It follows that u0 ∈ Y
h
⊗ L, where L is the finite dimensional subspace

of V spanned by v1, . . . , vn. Since the obvious mapping Z
h
⊗ L → Z

h
⊗V is isometric,

‖(π ⊗ idL)(u0)‖ = ‖(π ⊗ idV )(u0)‖

≤ ‖(π ⊗ idV )(u0) − (π ⊗ idV )(u)‖ + ‖(π ⊗ idV )(u)‖

= ‖(π ⊗ idV )(u0 − u)‖ + 0 ≤ ‖u0 − u‖ < ǫ.

Since
h
⊗ is projective, π⊗ idL : Y

h
⊗ L → Z

h
⊗ L is a complete quotient mapping. Thus

there exists an element u1 ∈ Y
h
⊗ L with ‖u1‖ < ǫ and (π⊗ idL)(u1) = (π⊗ idL)(u0).

We have ‖u − (u0 − u1)‖ ≤ ‖u − u0‖ + ‖u1‖ < 2ǫ, where

u0 − u1 ∈ kerπ ⊗ idL = X
h
⊗ L ⊆ X

h
⊗V

and thus dist(u,X
h
⊗ Z) < 2ǫ. Since ǫ > 0 is arbitrary, it follows that u ∈ X

h
⊗ Z. The

converse inclusion is obvious.

Theorem 3.6 For any operator space V , the following are equivalent.

(i) V has the WEP;

(ii) for any finite dimensional operator space F and any 1-exact sequence of operator

spaces

(3.2) 0 // V
�

� ι // X
π // Y // 0

it follows that

0 // V ⊗̂F
ι⊗idF // X⊗̂F

π⊗idF // Y ⊗̂F // 0

is 1-exact;
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(iii) for any operator space Z and any 1-exact sequence (3.2) it follows that

0 // V ⊗̂Z
ι⊗idZ // X⊗̂Z

π⊗idZ // Y ⊗̂Z // 0

is 1-exact.

Proof (i) ⇒ (ii). We may suppose that V ⊆ X ⊆ B(H). Since V has the WEP, there
exists a completely contractive mapping P : B(H) → V ∗∗ such that P(v) = v for any

v ∈ V . Thus the composition of complete contractions ι⊗ idF and P|X ⊗ idF

V ⊗̂F
ι⊗idF // X⊗̂F

P|X⊗idF// V ∗∗⊗̂F

is

(3.3) (P|X ⊗ idF) ◦ (ι⊗ idF) = (P|X ◦ ι) ⊗ idF .

From the definition P, P|X ◦ ι is the canonical inclusion from V into V ∗∗. It follows

from [9, (7.1.28)] that (P|X ◦ ι) ⊗ idF is a completely isometric injection from V ⊗̂F

into V ∗∗⊗̂F. Hence the first mapping ι⊗ idF of (3.3) is completely isometric. From

the projectivity of ⊗̂, π ⊗ idF is a complete quotient mapping. It was shown in

[9, Proposition 7.1.7] that kerπ ⊗ idF is equal to the closure of V ⊗ F in X⊗̂F. Since
ι⊗ idF is a complete isometry, we have kerπ ⊗ idF = V ⊗̂F.

(ii) ⇒ (iii). We may suppose that V is an operator subspace of X and Y is the op-

erator quotient X/V . In this case ι is the canonical inclusion and π is the canonical
complete quotient mapping. Similarly, we only need to prove that ι ⊗ idZ is com-

pletely isometric. Let u be an element in V ⊗ Z, we can regard u as an element of
X ⊗ Z. If ‖u‖X⊗̂Z < 1, then there exists a representation u = α(x ⊗ z)β, where

α ∈ M1,pq, x = [xi j] ∈ Mp(X), z = [zkl] ∈ Mq(Z), and β ∈ Mpq,1 with norm

less than 1. Let F = span{zkl} be the finite dimensional subspace of Z spanned by
{zkl : k, l = 1, . . . , q}. Then we can regard u as an element of X⊗F with ‖u‖X⊗̂F < 1.

It is easy to see (by choosing a basis for F) that u is in fact contained in V ⊗ F, thus

u = (ι⊗ idF)(u). From the hypothesis of (ii), ι⊗ idF is an isometry. Hence we have

‖u‖V ⊗̂Z ≤ ‖u‖V ⊗̂F = ‖(ι⊗ idF)(u)‖X⊗̂F = ‖u‖X⊗̂F < 1.

This shows that ι⊗ idZ is an isometry. In the following, we will prove that ι⊗ idZ is

a complete isometry.

For any n ∈ N, it follows from [9, (7.1.18), Theorem 4.1.8] that Tn(ι) : Tn(V ) →
Tn(X) is a complete isometry. Thus it is easy to see that the sequence of operator

spaces

0 // Tn(V )
Tn(ι) // Tn(X)

Tn(π) // Tn(Y ) // 0

is 1-exact. It follows from (ii) that for any finite dimensional operator space F the

sequence

0 // Tn(V )⊗̂F // Tn(X)⊗̂F // Tn(Y )⊗̂F // 0
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is also 1-exact. Thus by similar discussion as above, we can deduce that for any oper-
ator space Z, the top row of the commutative diagram

Tn(V )⊗̂Z // Tn(X)⊗̂Z

Tn(V ⊗̂Z)
Tn(ι⊗idZ )// Tn(X⊗̂Z)

is an isometry, thus Tn(ι⊗ idZ) is also isometric. As [9, Theorem 4.1.8] implies that

(ι ⊗ idZ)n : Mn(V ⊗̂Z) → Mn(X⊗̂Z) is an isometry, this means that ι ⊗ idZ is a

complete isometry.
(iii) ⇒ (i). For the 1-exact sequence

0 // V
�

� ι // B(H)
π // B(H)/V // 0,

and we let Z = V ∗, then it follows from (iii) that

0 // V ⊗̂V ∗
ι⊗idV∗// B(H)⊗̂V ∗

π⊗idV∗// (B(H)/V )⊗̂V ∗ // 0

is 1-exact. This implies that the top row of the commutative diagram

(B(H)⊗̂V ∗)∗
(ι⊗idV∗ )∗ // (V ⊗̂V ∗)∗

CB(B(H),V ∗∗) // CB(V,V ∗∗)

is a complete quotient mapping and thus the same is true for the bottom row. Hence
the identity mapping idV ∈ CB(V,V ) →֒ CB(V,V ∗∗) has a completely contractive

extension P ∈ CB(B(H),V ∗∗) such that P(v) = v for any v ∈ V . This shows that V

has the WEP.

4 Weak∗ Locally Lifting Property (W∗-LLP)

We know that an operator space V has the LLP if and only if there exist diagrams of

complete contractions

Tn(α)

tα

!!C
CC

CC
CC

C

V

sα

=={{{{{{{{
idV // V

which approximately commute in the point-norm topology.
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Definition 4.1 We say that a dual operator space V has the weak∗ locally lifting
property (or simply W∗-LLP) if there exist diagrams of weak∗-continuous complete

contractions

Tn(α)

tα

!!C
CC

CC
CC

C

V

sα

=={{{{{{{{
idV // V

which approximately commute in the point-weak∗ topology.

We recall that a dual operator space V is called semi-discrete if there exist diagrams

of weak∗-continuous complete contractions

Mn(α)

ψα

!!D
DD

DD
DD

D

V

ϕα

==zzzzzzzz
idV // V

which approximately commute in the point-weak∗ topology. From these definitions,
we can see that there are close relationship between nuclearity, semi-discreteness,

LLP and W∗-LLP. For any operator space V , it follows from the definitions and the
standard convexity argument that

V ∗is semi-discrete ⇔ V has the LLP,

V ∗has the W∗-LLP ⇔ V is nuclear.

Theorem 4.5 in [11] shows that

V is nuclear ⇔ V ∗∗ is semi-discrete and V is locally reflexive

⇔ V ∗ has the LLP and V is locally reflexive.

So we have the following relationship between LLP and W∗-LLP of V ∗.

V ∗ has the W∗-LLP ⇔ V ∗ has the LLP and V is locally reflexive.

As pointed out [11], local reflexivity is an essential condition in this result. Turning
to the second dual V ∗∗ of V , we will find in the following result that it is in striking

contrast to the situation for the dual space V ∗. Theorem 4.5 in [11] shows the rela-

tionship between the nuclearity of V and the semi-discreteness of V ∗∗. By analogy,
we will consider the relationship between the LLP of V and the W∗-LLP of V ∗∗.

Theorem 4.2 Suppose that V is an operator space, then the following are equivalent.

(i) V ∗∗ has the W∗-LLP;

(ii) V ∗∗ has the LLP;

https://doi.org/10.4153/CJM-2009-059-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-059-7


On the Locally Lifting Properties of Operator Spaces 1277

(iii) V has the LLP and V ∗ is exact.

Proof (i) ⇒ (ii). Suppose that V ∗∗ has the W∗-LLP. From the definitions and the

standard convexity argument, V ∗ is nuclear. It follows from [11, Theorem 4.5] that

V ∗∗ has the LLP.
(ii) ⇒ (iii). Suppose that V ∗∗ has the LLP. It follows from [17, Theorem 5.5] that

V ∗∗∗ is injective. Let ι : V →֒ V ∗∗ be the canonical inclusion. It is easy to see that

the adjoint ι∗ is a completely contractive projection from V ∗∗∗ onto V ∗. Since V ∗∗∗

is injective, [9, Proposition 4.1.6] implies that V ∗ is also injective. It follows from

[11, Theorem 1.3] that V ∗ is a TRO. Thus from [15, Theorem 6.5], the injectivity of

V ∗∗∗ implies that V ∗ is nuclear and V ∗ is exact. For any finite operator spaces E ⊆ F,
it follows from Lemma 3.1 that the top row of the commutative diagram

F∗⊗̌V ∗ // E∗⊗̌V ∗

CB(F,V ∗) // CB(E,V ∗)

is a complete quotient mapping, and the same is true for the bottom row. In other

words, any mapping ϕ : E → V ∗ with ‖ϕ‖cb < 1 can be extended to a mapping
ψ : F → V ∗, i.e., V ∗ is finitely injective. Corollary 4.4 and Theorem 5.5 in [17] imply

that V ∗ is injective and V has the LLP.
(iii) ⇒ (i). Suppose that V has the LLP and V ∗ is exact. Given a finite dimensional

subspace L ⊆ V ∗ and ǫ > 0, it follows from the exactness of V ∗ that we may choose

an n ∈ N, a subspace G ⊆ Mn, and a linear isomorphism r : L → G with ‖r‖cb = 1
and ‖r−1‖cb < 1 + ǫ. Since V ∗ is injective from [17, Theorem 5.5], we may find a

corresponding extension s : Mn → V ∗ of r−1 with ‖s‖cb < 1 + ǫ. We thus obtain a

diagram

Mn

s

!!B
BB

BB
BB

B

L

t0

>>~~~~~~~~
r // G

⊆

r−1 // V ∗

in which t0 : L → Mn is just the inclusion mapping composed with r. We may extend

t0 to a complete contraction t : V ∗ → Mn. From this construction it is evident that

V ∗ is nuclear and V ∗∗ has the W∗-LLP.

Exactness of V ∗ is an essential condition in this result. For example, let V = T(l2).

We know that T(l2) has the LLP, but V ∗∗ does not have the LLP since V ∗∗∗
= B(l2)∗∗

is not injective.

Corollary 4.3 Suppose that V ∗ is a nuclear dual operator space. Then V is strongly

locally reflexive.

Proof Since V ∗ is nuclear, V ∗∗ has the W∗-LLP. From Theorem 4.2, V has the LLP.

Theorem 2.12 implies that V is strongly locally reflexive.
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