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Abstract

Let K be an algebraically closed field of characteristic zero, and S a nonempty subset of K
such that S o Q = 0 and card5<cardK, where Q is the field of rational numbers. By Zorn's
Lemma, there exist subfields F of K which are maximal with respect to the property of being
disjoint from S. This paper examines such subfields and investigates the Galois group Gal K/F
along with the lattice of intermediate subfields.

1980 Mathematics subject classification (Amer. Math. Soc): 12 F 05.

1.

Let K be an algebraically closed field of characteristic 0, and S a nonempty subset
of K such that SnQ = 0 and card S< card K, where Q is the field of rational
numbers. A straightforward application of Zorn's Lemma shows that there exist
subfields F of K which are maximal with respect to the property of being disjoint
from S. In fact, we can even insist that F also contain any subset V of K as long
as Sr\Q(V) = 0. It is the purpose of this paper to study such subfields F, and
to investigate the Galois group Gal K/F along with the lattice of intermediate
subfields. In so doing, we generalize and simplify (in the characteristic 0 case)
results of Quigley (1962) and McCarthy (1967), and obtain corrected versions of
theorems appearing in Gordon and Straus (1965) and Krakowski (1976).

LEMMA 1. card F = card K.

PROOF. Clearly cardF< cardK, so assume cardF<cardK. If T={-ct,<xeA}
is a transcendence base for K/F, then we must have card T = card K. The fields
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F(T^) intersect pairwise in F and each contains at least one element of S. This is
a contradiction since card S<cardK, and the result follows.

THEOREM 1. K is an algebraic extension of F.

PROOF. Suppose not. Then there exists x e K such that x is transcendental over
F. Consider the subfields F(x2+rx), reF. The element x2+rx is fixed by the
automorphism ar of F(x) which sends x to —x—r. Hence, if r ̂  s, any element
in F(x2+rx) nF(x2+sx) is fixed both by ar and us. Letf(x)/g(x) be any nonzero
such element (where / and g are assumed relatively prime). Then we have

/(*)/«(*) =A-x-r)/g(-x-r) =f(-x-s)lg(-x~s).

Set y = —x—r, so then

f(y)ld(y) =f(y+c)/g(y+c), where c—r-s.

I f / h a d a zero yeK, then f(y+nc) = 0, n = 0 ,1 ,2 ,3 , . . . . This forces / to be
constant (since char.K = 0). Similarly, g must be constant. Hence

F(x2+rx) n F{x2+sx) = F for all r ̂  s.

Since card F = card K, the result follows as in the proof of Lemma 1.

Since KjF is algebraic, it follows that every intermediate extension contains a
minimal extension of F, each of which contains at least one element of S. It is
thus no loss of generality to 'normalize' S and assume that there is a 1-1 corres-
pondence oc-*F(pi) between the elements a e S and the minimal extensions F(ct) of F.

An interesting question concerns the degree [K: F ] . We first need two lemmas
from group theory.

LEMMA 2. Let G be a finite group and O(G) its Frattini subgroup. IfG/Q>(G) can
be generated by n elements, then so can G.

PROOF. See Kurosh (1956), p. 217.

LEMMA 3. If the group G is generated by n elements, then G has at most 0!)"
subgroups of index j .

PROOF. See Hall (1950).

THEOREM 2. If S is finite, then either [K: F] = 2 or [X: f ] = Xo.

PROOF. If [K: F ] is finite, then by the Artin-Schreier Theorem, IK: F ] = 2. So
assume that [K: F ] is infinite. It clearly suffices to show that F has only finitely
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many extensions of any given finite degree. Let L be any finite normal extension
of F with L2 F(S), and set 0 = GalL/F. Since F(S) is the join of the minimal
extensions of F, it corresponds (under the Galois correspondence) to the Frattini
subgroup <D(0), and &/<&(<&) ^ Gal F(S)/F. This latter group is finite, and hence
can be generated by say n elements. By Lemmas 2 and 3, we conclude that ^ has
at most (j!)" subgroups of index j for all j . Since L is arbitrary and every finite
extension of F is contained in such an L, it follows by the Galois Correspondence
Theorem that Fhas at most (j[)" extensions of degree j .

More generally, in the case when S is infinite, we can ask whether

[K:F~]= cardS.

We do not know the answer even for the case card S = Xo.
For a given set S, we are interested in describing the lattice of subfields between

F and K, and their respective Galois groups over F. In general, this problem is
quite difficult—we shall solve it completely only in the case when card S < 2, or
when the degrees (over F) of the minimal extensions of F are distinct. We begin
with a group-theoretical lemma.

LEMMA 4. Let G be a finite group whose maximal subgroups have distinct indices

PuPi-> •••>/'*• Then each p% is prime and G is cyclic of order p\l pe
2
2... pe

k", ei > 1.

PROOF. The proof is straightforward and follows immediately from results in
Takeuchi (1968).

Suppose now that S = {a}, so that F{ai) is the unique minimal extension of F.
Let Lj^Fbe any finite normal extension of F. Then F(a) £ L, and F(oc) corres-
ponds to the unique maximal subgroup of ^ = Gal L/F. By Lemma 4, 0 is cyclic
of order pe, where p = [F(a) : F] is prime. Moreover, for each integer / with
0 < / < e , there exists a unique intermediate field E with [ £ : F ] = / / , whose
Galois group Gal E/F is necessarily cyclic of order pf. Since any finite extension
of F is contained in such an L, it follows that every such extension is cyclic of
degree pd over F, and that there is at most one for each positive integer d.

Since the pth. roots of 1 satisfy a polynomial of degree p — 1 over F, it follows
that F contains all such roots. Hence we can assume that a.peF (see Kaplansky
(1969), Theorem 34). Using Theorem 51 in Kaplansky, we see that if p is odd and
n is a positive integer, then x""—a? is irreducible over F and hence that F(a1/p" )
is the unique extension of F of degree p". Moreover, GalK/F^ lp (the inverse
limit of all cyclic ̂ -groups). If/> = 2 and ieF, then -4a 2 =(2/a)2 is not a fourth
power in Fand thus (by Theorem 51) results hold as in the case in which/? is odd.
If i$F, so that F(oc)=F(i), then iaeF and one of +2/a is a square in F. Thus
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— 4a2 is a fourth power in F, so again by Theorem 51, x4 — a2 is not irreducible
over F, so that F(<x)=F(Jtx). If F is real closed, then GalK/F^Z 2 . Otherwise,
there is an element P$F(i) with P2eF(i) such that F(J}1/2"~2) is the unique
extension of F of degree 2", n > 2.

The determination of GalA"/Feven in the case cardS = 2 is more difficult and
requires the following discussion of Galois groups of algebraically closed fields.

2.

A group G is called full if it is the Galois group of some algebraically closed
field K over a subfield Fwith ^//"algebraic. Our objective is to classify full abelian
groups, and thus obtain the corrected version of the last corollary in Krakowski
(1976).

LEMMA 5. Let Rbe a real field with unique ordering, and F a subfield such that R/F
is normal algebraic. Then F — R.

PROOF. Let a be a nonidentity element of Gal R/F. Choose txeF such that
<x(a)<a. By uniqueness of ordering, a must preserve order, hence ar(a)<a for all r.
But as a is algebraic over F, it follows that an(jx) = a for some n > 0, a contradiction.
Thus Gal R/F is trivial and R = F.

COROLLARY. If a full group G = Gal F/F contains a nontrivial torsion normal
subgroup H, then GsZ2.

PROOF. By the Galois Correspondence and Artin-Schreier Theorems, it follows
that H^Z2. Since H^G, its fixed field is a real closed normal extension of F.
Since any real closed field has a unique ordering, this fixed field must be F. Hence
H = G, and the result follows.

Since a real closed field R is of codimension 2 in its algebraic closure R, it
follows that GalR/R^Z2, so that indeed Z2 does occur as a full group. In
Krakowski (1976), it is stated that if G is full, then so is GxY\asA2Pa for any
index set A and corresponding primes pa. We see in fact by the above corollary
that this is false for G =Z2. A closer examination of his proof reveals that what
is actually shown is:

THEOREM 3. If G is a full group, then there exists a full group H isomorphic to
some semidirect product Y\xeA 2Ptt xs G. This product can be taken to be direct if G
is a full group over afield containing the cyclotomic field.
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Using this and completing the argument along the lines of that of Krakowski,
we obtain the following classification of full abelian groups.

THEOREM 4. An abelian group G is full if and only if either

G^Z2 or G^n^^P.

for some set of (not necessarily distinct) primes pa and index set A.

We define the degree set of a field F to be the set of all degrees [L : F] of finite
extensions of F. In Gordon and Straus (1965), Theorem 13, it is stated that for
any odd prime p, there exists a field F all of whose finite extensions are cyclic and
whose degree set is {pe,2pe: e = 0,1,2,. . .}. This is incorrect, for otherwise
G a l F / F s Z2 x2p, contradicting Theorem 4. However, applying the construction
in Krakowski (1976) used to prove our Theorem 3 with G=Z2, we can show
that if P is any set of primes, then there exists a field /"with

(where the Z2 factor acts on the direct product by inversion). It follows that the
corresponding degree set is {Fp'i pe

2 ...pi", e = 0,1; p,eP}. Clearly though, not
every finite extension of F can be cyclic.

3.

If the subfield F of K is maximal with respect to the property of being disjoint
from a subset S s K, it is in general quite difficult to determine the Galois group
of K/F. In the special cases where cardS is small, or the minimal extensions
of F have distinct degrees over F, we can however make this determination.

THEOREM 5. Suppose that distinct elements of S have distinct degrees over F.
Then:

(i) Every finite extension ofF is cyclic, and there is at most one of any given degree
over F.

(ii) The minimal extensions of F all have prime degree over F.
(iii) Either Gal K/F 21Z2 or GsAK/F^ ]\2p^ where px runs through the degrees

of the minimal extensions ofF.

PROOF. TO prove (i), it suffices (as in the discussion following Lemma 4) to show
that every finite normal extension L of F is cyclic. The minimal extensions
MuM2,...,Mkof F which are contained in such an L correspond to the maximal
subgroups of <$ = GalL/F. By Lemma 4, it follows that <$ is cyclic of order
Pi1 Ve2 •• • />**> where pt = [M, : F ] . Now (i) and (ii) follow. To prove (iii), we use
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Theorem 4 and observe that Gal KjF is abelian since it is the inverse limit of the
cyclic groups GalL/F, where L runs through the finite normal extensions of F-

In case S = {a}, we have already (in 1) obtained the results of the theorem.
Suppose now that S = {a,/?}, where S is assumed 'normalized' (see 1) so that
F(<x) n Fiff) = F. The field L = F(a, ft) is a normal extension of F (since it is
generated by the two minimal extensions of F), and ^ = Gal L/F contains exactly
two maximal subgroups. It follows (see Takeuchi (1968)) that there exist distinct
primes p and q such that [F(a): F] =p, \_F(P): F ] =q, and <S s Zpq. Using
Theorem 5, we conclude that all finite extensions of F are cyclic, and that
Gal K/F^ 2P x 2q. The lattice of intermediate subfields is just the direct product
of two countable chains.

To examine the case card 5 = 3, we need to consider finite groups having
exactly three maximal subgroups. These have been classified by Takeuchi (1968)
and are either cyclic of order p\l pe

2
2 p%3, where px,p2,p3 are distinct primes, or are

non-cyclic 2-groups generated by two elements. If the three minimal extensions
of F have distinct degrees over F, then Theorem 5 applies and we have
GalK/F £ 2pi x 2p2 x 2p3. Otherwise, each minimal extension has degree 2 over F.
If % = Galtf/F is abelian, then by Theorem 4, ^ s 22 x 22.

To see that Gal K/F can be nonabelian, we need only observe that the semi-
direct product <8 = 22 xsZ2 (where the Z 2 factor acts on 22 by inversion) contains
exactly three maximal subgroups of finite index, and (as seen earlier) can arise as
the Galois group Gal KjF, where (necessarily) F is maximal with respect to the
avoidance of some three elements. The subgroup Z 2 of <3 corresponds to a real
closed subfield R of K; hence F itself contains no nontrivial roots of unity.

There are even examples of subfields F of K with Gal K/F nonabelian such that
F contains the cyclotomic field s/ and has exactly three minimal extensions. One
such is provided by choosing S = {*J2, */3, ^/6} and requiring that F contain

V3\A* ~ V 2 ) i n addition t0 d-
Finally, it is worthwhile to note that if F is perfect of arbitrary characteristic,

the results of this paper are essentially unchanged. Even if F is not perfect, the
results of Section 1 remain valid (except for those involving discussion of Galois
groups).
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